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Abstract: The concept of cubic m-polar fuzzy set (CmPFS) is a new approach to fuzzy modeling
with multiple membership grades in terms of fuzzy intervals as well as multiple fuzzy numbers. We
define some fundamental properties and operations of CmPFSs. We define the topological structure of
CmPFSs and the idea of cubic m-polar fuzzy topology (CmPF topology) with P-order (R-order). We
extend several concepts of crisp topology to CmPF topology, such as open sets, closed sets, subspaces
and dense sets, as well as the interior, exterior, frontier, neighborhood, and basis of CmPF topology
with P-order (R-order). A CmPF topology is a robust approach for modeling big data, data analysis,
diagnosis, etc. An extension of the VIKOR method for multi-criteria group decision making with
CmPF topology is designed. An application of the proposed method is presented for chronic kidney
disease diagnosis and a comparative analysis of the proposed approach and existing approaches is also
given.
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1. Introduction

In our daily life, we deal with problems resulting from indefinite and vague information without
using the appropriate modeling tools, this leads to imprecise reasoning and inexact solutions. That is
why it is a quite difficult task for the decision-makers (DMs) to make reasonable and logical decisions
in handling such problems. So, for such kinds of problems and difficulties, it has become particularly
important to address vagueness and uncertainties. Zadeh [1] suggested an innovative idea of fuzzy set,
which is an extension of a crisp set. It was eminent attainment and a milestone in the development of
fuzzy set theory and fuzzy logic. To address the problems of daily life with vagueness and uncertainties

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022721


13020

in them, different models and theories have been introduced by the researchers. Later, the concept of
the interval-valued fuzzy set (IVFS) was originated by Zadeh [2].

Atanassov [3, 4] suggested intuitionistic fuzzy set (IFS) theory and Pythagorean fuzzy sets (PFSs)
were suggested by Yager [5, 6]. The generalization of PFSs with generalized membership grades
was suggested by Yager [7], who named the generalization as follows: q-rung orthopair fuzzy sets (q-
ROFSs). The idea of bipolarity was proposed by Zhang [8,9] in terms of bipolar fuzzy set (BFS). A new
direct extension of fuzzy set with m degrees of membership grades was suggested by Chen et al. [10]
and named m-polar fuzzy sets (mPFSs). Smarandache [11, 12] originated the notion of a neutrosophic
set, which focuses on truthness, falsity and indeterminacy. The picture fuzzy set (PiFS) was proposed
by Cuong [13]. Xu [14] developed IFS based aggregation operators for the information fusion of
intuitionistic fuzzy numbers. Garg and Nancy [15] proposed linguistic single-valued neutrosophic
prioritized aggregation operators and their applications.

The notion of a soft set was originated by Molodtsov [16]. The structure by merging soft sets
with fuzzy sets was introduced by Cagman et al. [17]. Sometimes, it is very difficult for DMs to
exactly weigh their certainty in real numbers. So, specifying their degree by the intervals is more
appropriate. A hybrid model of a fuzzy set with IVFSs was suggested by Jun et al. [18] and named
the cubic set (CS) along with their internal and external modes. A hybrid of the CS and mPFS was
proposed by Riaz and Hashmi [19]. They developed aggregation operators for cubic m-polar fuzzy
(CmPF) information aggregation. New extensions of fuzzy set, such as the linear Diophantine fuzzy
sets (LDFS), linear Diophantine fuzzy soft rough sets, and spherical linear Diophantine sets [20–22],
have robust features and applications in computational intelligence and information analysis. Liu et
al. [23], Liu and Wang [24], and Jain et al. [25] suggested novel concepts of information aggregation for
multi-criteria decision making (MCDM) problems. Fuzzy topology takes its motivation from classical
analysis, and it has a vast number of applications. Chang [26] proposed the idea of fuzzy topology and
the notion of intuitionistic fuzzy topology was introduced by Coker [27]. These ideas ware extended by
Olgun et al. [28] to define Pythagorean fuzzy topology. Cagman et al. [29] proposed certain properties
of soft topological spaces.

Saha et al. [30, 31] developed novel concepts of aggregation operators for information aggregation.
Jana et al. [32, 33] proposed IFS-based Dombi and bipolar fuzzy Dombi prioritized aggregation
operators in MADM. Akram et al. [34] developed MCDM with m-polar fuzzy attributes reduction
algorithms. Akram et al. [35] proposed PFS-based extensions of TOPSIS and ELECTRE-I methods.
Ashraf and Abdullah [36] introduced fuzzy modeling based on spherical fuzzy sine trigonometric
information aggregation methods. Almagrabi [37] proposed a new approach to q-LDFSs and their
operational laws with applications.

MCDM is the method that provides the ranking of the objects and also the ranking of feasible
objects. The most important problem in decision analysis is how to describe the attribute values in an
efficient way. It is very difficult for an individual in various situations to select an option due to the
inconsistency in the data that occur because of human error or lacking information.

Many techniques have been used for the fusion of information. The word VIKOR has the
abbreviation of “Vlse Kriterijiumska Optimizacija Kompromisno Resenje” and it is a very important
technique in decision-making analysis. This process is widely used in decision-making analysis
because of its computational comfort. It provides multiple suitable solutions for problems with unequal
standards and helps DMs to achieve a neutral ending judgment. Some applications with help of VIKOR
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technique are discussed in Table 1.

Table 1. Some applications of the VIKOR technique.
Researchers Benchmarks Applications
Zhao et al. [40] Extended VIKOR Supplier selection
Joshi and Kumar [41] Extended VIKOR Supplier selection
Park et al. [42] Extended VIKOR Teacher performance evaluation
Shouzhen et al. [43] Modified VIKOR Supply chain management
Arya and Kumar [44] VIKOR-TODIM Management information system
Devi [45] Extended VIKOR Robot selection
Luo and Wang [46] Extended VIKOR Distance measure
Chen [47] PF- VIKOR Evaluating internet stock performance
Zhou and Chen [48] Extended PF-VIKOR Selection of Blockchain technology
Bakioglu and Atahan [49] AHP integrated VIKOR Prioritize risk in self-driving vehicle
Guleria and Bajaj [50] VIKOR Site selection for power plant
Gul [51] VIKOR Assessment of safety risk
Kirisci et al. [52] Novel VIKOR Survey on early childhood in quarantine
Dalapati and Pramanik [53] NC-VIKOR Selection of green supplier for cars
Pramanik et al. [54] NC-VIKOR Selection of green supplier for cars
Pramanik et al. [55] VIKOR Best option for money investment
Wang et al. [56] VIKOR Risk evaluation for construction project
Arya and Kumar [57] TODIM-VIKOR Selection of team leader in company
Joshi [58] VIKOR Selection of election bound country
Arya and Kumar [59] VIKOR-TODIM Selecting opinion polls
Khan et al. [60] VIKOR Selection of priority area for investment
Yue [61] Extended VIKOR Software reliability assessment
Meksavang [62] Extended PiF-VIKOR Supplier management
Singh and Kumar [63] VIKOR Supplier selection

Ali et al. [38, 39] proposed the idea of neutrosophic cubic sets and bipolar neutrosophic soft sets
with applications in decision making.

The primary objective of this paper was to generate two different types of topological structures on
cubic m-polar fuzzy sets (CmPFSs) while keeping in view the two orders of cubic sets. The concepts
of CmPF topology with P-order and R-order are defined. The goals of this study are as follows: (i) to
define open sets and closed sets in CmPF topology, (ii) to discuss the interior, closure, and exterior of
CmPFSs in CmPF topology, (iii) to study the subspace of CmPF topology, (iv) to define the dense set,
neighborhood and base of CmPF topology, (v) to develop an extension of the VIKOR method based
on CmPFSs, and (vi) to develop a new multi-criteria group decision-making (MCGDM) method based
on CmPF topology.

The remaining part of this paper is arranged in the following way. In Section 2, we look back to
some elementary concepts like CSs, mPFSs, CmPFSs, and operations on CmPFSs. In Section 3, we
describe the notion of a topological structure on CmPFSs under P-order. We also discuss some major
results on CmPFs with P-order. In Section 4, we introduce the notion of a topological structure on
CmPFSs under R-order. In Section 5, an extension of the VIKOR method for MCGDM with CmPF
topology is introduced. An application of the proposed method for chronic kidney disease (CKD)
diagnosis is presented, and a comparison analysis of the suggested approach and existing approaches
is also given. The conclusion of the study is given in Section 6.
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2. Preliminaries

In this section, we discuss some elementary concepts of CmPFSs.

Definition 2.1. [18] A CS { on a universal set k is expressed as

{ = {`, [A−(`), A+(`)], λ(`) : ` ∈ k},

in which A = [A−(`), A+(`)] is an interval-valued fuzzy set and λ(`) is a fuzzy set on k. For simplicity,
the CS { = {`, [A−(`), A+(`)], A(`) : ` ∈ k} is denoted as { =< A, λ >

Definition 2.2. [10] Let k be a universal set of discourse. An mPFS on k is defined by [0, 1]m, and it
can be written as

ðp =

{(
`, µ1(`), · · ·, µm(`)

)
: ` ∈ k

}
,

where µ1(`), · · ·, µm(`) represents m number of membership grades (MGs) in [0, 1].

Definition 2.3. [19] Let k be a universal set. A CmPFS on a universal set k is expressed as

C = {(`, [A−1 (`), A+
1 (`)], [A−2 (`), A+

2 (`)], · · · , [A−m(`), A+
m(`)], A1(`), A2(`), · · · , Am(`)) : ` ∈ k}

Here, [A−j (`), A+
j (`)]m

j=1 are fuzzy valued intervals and (A j(`))m
j=1 are fuzzy numbers. For simplicity, we

can write the cubic m-polar fuzzy number (CmPFN) as

Cγ = ([A−j , A
+
j ], A j)m

j=1

Definition 2.4. [18] Let Ia = [z−a , z
+
a ] and Ib = [k−b , k

+
b ] be any two fuzzy valued intervals . Then

1. Ia ≤ Ib ⇔ z−a ≤ k
−
b and z+

a ≤ k
+
b

2. Ia ≥ Ib ⇔ z−a ≥ k
−
b and z+

a ≥ k
+
b

3. Ia = Ib ⇔ z−a = k−b and z+
a = k+

b

2.1. Operations on CmPFSs

Definition 2.5. [19] Let us consider two CmPFSs on k given by

C
1 =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
,

C
2 =

{(
λ, [B−j , B

+
j ], B j

)m

j=1
: λ ∈ k

}
Some basic operations on these sets with P-order are defined as

1. (C1)c =

{(
λ, [1 − A+

j , 1 − A−j ], 1 − A j

)m

j=1
: λ ∈ k

}
2. (C2)c =

{(
λ, [1 − B+

j , 1 − B−j ], 1 − B j

)m

j=1
: λ ∈ k

}
3. C1 ⊆P C

2 ⇔ A−j (λ) ≤ B−j (λ) , A+
j (λ) ≤ B+

j (λ) and A j(λ) ≤ B j(λ)

4. C1 tP C
2 =

{(
λ, [A−j (λ) ∨ B−j (λ), A+

j (λ) ∨ B+
j (λ)], A j(λ) ∨ B j(λ)

)m

j=1
: λ ∈ k

}
5. C1 uP C

2 =

{(
λ, [A−j (λ) ∧ B−j (λ), A+

j (λ) ∧ B+
j (λ)], A j(λ) ∧ B j(λ)

)m

j=1
: λ ∈ k

}
AIMS Mathematics Volume 7, Issue 7, 13019–13052.
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Similarly, some basic operations on the above two CmPFSs with R-order are defined as

1. C1 ⊆R C
2 ⇔ A−j (λ) ≤ B−j (λ) , A+

j (λ) ≤ B+
j (λ) and A j(λ) ≥ B j(λ)

2. C1 tR C
2 =

{(
λ, [A−j (λ) ∨ B−j (λ), A+

j (λ) ∨ B+
j (λ)], A j(λ) ∧ B j(λ)

)m

j=1
: λ ∈ k

}
3. C1 uP C

2 =

{(
λ, [A−j (λ) ∧ B−j (λ), A+

j (λ) ∧ B+
j (λ)], A j(λ) ∨ B j(λ)

)m

j=1
: λ ∈ k

}

2.2. Some novel concepts of CmPFSs

Definition 2.6. [19] A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
on a universal set k is an internal CmPFS (ICmPFS) if A−j (λ) ≤ A j(λ) ≤ A+

j (λ), for all λ ∈ k and
j = 1, 2, · · · ,m.

Definition 2.7. [19] A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
on a universal set k is an external CmPFS (ECmPFS) if A−j (λ) ≮ A j(λ) ≮ A+

j (λ), for some λ ∈ k or
j = 1, 2, · · · ,m.
For simplicity, the ECmPFS is the inverse of the ICmPFS.

Definition 2.8. A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
for which [A−j , A

+
j ] = 0 and A j(λ) = 0 for all λ ∈ k and j = 1, 2, · · · ,m is denoted by C.

Definition 2.9. A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
for which [A−j , A

+
j ] = 1 and A j(λ) = 1 for all λ ∈ k and j = 1, 2, · · · ,m is denoted by 1C.

Definition 2.10. A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
for which [A−j , A

+
j ] = 0 and A j(λ) = 1 for all λ ∈ k and j = 1, 2, · · · ,m is denoted by C.

Definition 2.11. A CmPFS

C =

{(
λ, [A−j , A

+
j ], A j

)m

j=1
: λ ∈ k

}
for which [A−j , A

+
j ] = 1 and A j(λ) = 0 for all λ ∈ k and j = 1, 2, · · · ,m is denoted by 1C.
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Definition 2.12. Let Cγ = ([A−j , A
+
j ], A j)m

j=1 be a CmPFN. The score function and accuracy functions of
a CmPFN are respectively defined as

S (Cγ) =
Σm

j=1|λ([A−j , A
+
j ]) − A j|

m
(2.1)

and

A(Cγ) =
Σm

j=1(λ([A−j , A
+
j ]) + A j)

2m
(2.2)

where λ([A−j , A
+
j ] is the length of the fuzzy interval. Clearly, S (Cγ) ∈ [−1, 1] andA(Cγ) ∈ [0, 1].

Let C1
γ and C2

γ be two CmPFNs. Then the ranking of CmPFNs in association with the proposed
score and accuracy functions is defined as follows:

• C1
γ < C

2
γ if S (C1

γ) < S (C2
γ),

• If S (C1
γ) = S (C1

γ), then C1
γ < Cγ ifA(C1

γ) < A(C2
γ)

• If S (C1
γ) = S (C1

γ) andA(C1
γ) = A(C2

γ) , then C1
γ = C2

γ

Definition 2.13. Let C1 = 〈[A−1 , A
+
1 ], [A−2 , A

+
2 ], · · · , [A−m, A

+
m], A1, A2, · · · , Am〉 = 〈[A−j , A

+
j ], A j〉

m
j=1 and

C2 = 〈[B−1 , B
+
1 ], [B−2 , B

+
2 ], · · · , [B−m, B

+
m], B1, ν2, · · · , Bm〉 = 〈[B−j , B

+
j ], B j〉

m
j=1 be two CmPFSs.

The distance between two CmPFSs is defined by

d(C1,C2) =

 m∑
j=1

∣∣∣∣∣∣A−j + A+
j

2
−

B−j + B+
j

2

∣∣∣∣∣∣
m

+

m∑
j=1

|A j − B j|
m


1/m

(2.3)

3. CmPF topology with P-order

Definition 3.1. Let k be a non-empty set and cmp(k) be the collection of all CmPFSs in k. The
collection τCp containing the CmPFSs is called CmPF topology with P-order, abbreviated as CmPFTP,
if it satisfies the following properties:

1. Cp, 1Cp ∈ τCp

2. If (Cp)i ∈ τCp∀i ∈ Λ then tp(Cp)i ∈ τCp

3. If Cp1,Cp2 ∈ τCp then Cp1 up Cp2 ∈ τCp

Then, the pair (k, τCp) is called CmPF topological space with P-order, abbreviated as CmPFTPS.

Example 3.2. Let k = {k1, k2, k3} be a non-empty set. Then, cmp(k) is the collection of all P-cubic mPFSs (PCmPFSs)
in k. We consider two cubic 3-polar fuzzy subsets of cmp(k) given as

Cp1 =

{(
k1, [0.23, 0.46], [0.31, 0.52], [0.47, 0.65], 0.24, 0.32, 0.51

)
,(

k2, [0.30, 0.42], [0.45, 0.56], [0.53, 0.69], 0.20, 0.41, 0.72
)
,(

k3, [0.44, 0.63], [0.55, 0.78], [0.61, 0.83], 0.42, 0.53, 0.60
)}

Cp2 =

{(
k1, [0.19, 0.36], [0.24, 0.48], [0.39, 0.52], 0.20, 0.31, 0.42

)
,(

k2, [0.27, 0.38], [0.39, 0.52], [0.49, 0.63], 0.15, 0.30, 0.65
)
,

AIMS Mathematics Volume 7, Issue 7, 13019–13052.
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k3, [0.36, 0.61], [0.50, 0.68], [0.60, 0.81], 0.39, 0.52, 0.58

)}
The P-union and P-intersection results by applying Definition 2.5 to the CmPFSs Cp1 and Cp1 are given below in Tables 2
and 3, respectively.

Table 2. Union with P-order.

tp Cp 1Cp Cp1 Cp2

Cp Cp 1Cp Cp1 Cp2
1Cp 1Cp 1Cp 1Cp 1Cp

Cp1 Cp1
1Cp Cp1 Cp1

Cp2 Cp2
1Cp Cp1 Cp2

Table 3. Intersection with P-order.

up Cp 1Cp Cp1 Cp2

Cp Cp Cp Cp Cp
1Cp Cp 1Cp Cp1 Cp2

Cp1 Cp Cp1 Cp1 Cp2

Cp2 Cp Cp2 Cp2 Cp2

Then, clearly
TCp1 =

{
Cp, 1Cp,Cp1,Cp2

}
,

TCp2 =

{
Cp, 1Cp,Cp1

}
,

TCp3 =

{
Cp, 1Cp,Cp2

}
,

TCp4 =

{
Cp, 1Cp

}
,

are cubic 3-polar fuzzy topologies with P-order.

Definition 3.3. Let k , φ and τCp =

{
Cpk

}
where Cpk are all cmPF subsets of k. Then, τCp is a P-cubic

m-polar fuzzy topology on k that is also the largest P-cubic m-polar fuzzy topology on k, it is called
P-discrete CmPF topology.

Definition 3.4. Let k , φ and τCp =

{
Cp, 1Cp

}
be a collection of CmPFSs. Then, τCp is a P-cubic

m-polar fuzzy topology on k that is also the smallest P-cubic m-polar fuzzy topology on k, it is called
P-indiscrete CmPF topology.

Definition 3.5. The members of the P-cubic m-polar fuzzy topology τCp are called P-cubic m-polar
fuzzy open sets (PCmPFOSs) in (k, τCp).

Theorem 3.6. Let (k, τCp) be any P-cubic m-polar fuzzy topological space. Then

1. Cp and 1Cp are PCmPFOSs.
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2. The P-union of any (finite/infinite) number of PCmPFOSs is a PCmPFOS.
3. The P-intersection of finite PCmPFOSs is a PCmPFOS.

Proof. 1. From the definition of the P-cubic m-polar fuzzy topology CmPFTP, Cp, 1Cp ∈ τCp. Hence
Cp and 1Cp are PCmPFOSs.

2. Let
{
(Cp)i|i ∈ Λ

}
be PCmPFOSs. Then, Cp)i ∈ τCp. By the definition of CmPFTP

tp(Cp)i ∈ τCp

Hence, tp(Cp)i represents PCmPFOSs.
3. Let Cp1,Cp2, ...,Cpn be PCmPOSs. Then, by the definition of τCp

up(Cp)i ∈ τCp

Hence, up(Cp)i represents PCmPFOSs.
�

Definition 3.7. The complement of the P-cubic m-polar fuzzy open sets are called the P-cubic m-polar
fuzzy closed sets (PCmPFCSs) in (k, τCp).

Theorem 3.8. If (k, τCp) is any P-cubic m-polar fuzzy topological space, then

1. Cp and 1Cp are PCmPFCSs.
2. The P-intersection of any number of PCmPFCSs is a PCmPFCS.
3. The P-union of finite PCmPFCSs is a PCmPFCS.

Proof. 1. Cp and 1Cp are PCmPFCSs. By the definition of CmPFTP, Cp, 1Cp ∈ τCp. Since the
complement of Cp is 1Cp, and the complement of 1Cp is Cp. This shows that Cp and 1Cp are
PCmPFCSs.

2. Let
{
(Cp)i|i ∈ Λ

}
be PCmPFCSs. Then,

(
(Cp)i

)C

∈ τCp

By the definition of CmPFTP

tp

(
(Cp)i

)C

∈ τCp

Hence, tp

(
(Cp)i

)C

represents PCmPFOSs but

(
tp ((Cp)i)C

)
=

(
up (Cp)i

)C

So, up(Cp)i represents PCmPFCSs.
3. Let Cp1,Cp2, ...,Cpn be PCmPCSs. Then, (Cp1)C, (Cp2)C, ..., (Cpn)C are PCmPFOSs. So,

(Cp1)C, (Cp2)C, ..., (Cpn)C ∈ τCp

AIMS Mathematics Volume 7, Issue 7, 13019–13052.
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by the definition of τCp

up

(
(Cp)i

)C

∈ τCp

This implies that up((Cp)i)C ∈ τCp is PCmPFOSs but(
(up(Cp)i)C

)
=

(
tp ((Cp)i

)C

Hence, tp(Cp)i is PCmPFOSs.
�

Definition 3.9. The PCmPFSs which include both PCmPFOSs and PCmPFCSs are called P-cubic
m-polar fuzzy clopen sets in (k, τCp).

Proposition 3.10. 1. In every τCp, Cp and 1Cp are P-cubic m-polar fuzzy clopen sets.
2. In discrete P-order CmPF topology, all cubic m-polar subsets of k are P-cubic m-polar fuzzy

clopen sets.
3. In in-discrete P-order CmPF topology, only Cp and 1Cp are P-cubic m-polar fuzzy clopen sets.

Definition 3.11. Let (k, τCp1
) and (k, τCp2

) be two CmPFTPSs in k. These CmPFTPSs are said to be
comparable if

τCp1
⊆P τCp2

or
τCp2
⊆P τCp1

If τCp1
⊆P τCp2

then, τCp1
becomes P-cubic m-polar fuzzy coarser than τCp2

. Similarly, τCp2
becomes

P-cubic m-polar fuzzy finer than τCp1
.

Example 3.12. Let k , φ; then from Example 3.2,

τCp1
=

{
Cp, 1Cp,Cp1,Cp2

}
and

τCp2
=

{
Cp, 1Cp,Cp1

}
are cubic 3-polar fuzzy topologies on k. Since, τCp2

⊆P τCp1
. Therefore, τCp2

becomes a P-cubic
m-polar coarser than τCp1

.

3.1. Sub spaces of CmPFTP

Definition 3.13. Let (k,TCpk) be a CmPFTPS. LetY ⊆ k andTCpY be a CmPFTP onY with PCmPFOSs
that are

CpY = TCpk up Y̆

where Cpk are PCmPFOSs of TCpk , TCpY are PCmPFOSs of TCpY and Y̆ is an absolute PCmPFS on
Y. Then, TCpY is the P-cubic m-polar fuzzy subspace of TCpk i.e.,

TCpY =

{
CpY : CpY = Cpk up Y̆, Cpk ∈ TCpk

}
AIMS Mathematics Volume 7, Issue 7, 13019–13052.
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Example 3.14. Let k = {k1, k2} be a non-empty set.

Cp1 =

{(
k1, [0.14, 0.39], [0.28, 0.42], 0.27, 0.33

)
,(

k2, [0.26, 0.53], [0.43, 0.52], 0.57, 0.61
)}

Cp2 =

{(
k1, [0.61, 0.86], [0.58, 0.72], 0.52, 0.64

)
,(

k2, [0.37, 0.74], [0.48, 0.57], 0.81, 0.72
)}

Then,
TCpk =

{
Cp, 1Cp,Cp1,Cp2

}
is a cubic 2-polar fuzzy topology with P-order on k. Now, the absolute cubic 2-polar fuzzy set on
Y = {k1} ⊆ k is

Y̆ =

{
(k1, [1, 1], [1, 1], 1, 1)

}
Since

Y̆ up Cp = Cp = Ćp,

Y̆ up
1
Cp = 1

Cp = Y̆,

Y̆ up Cp1 = Cp1 = ´Cp1,

Y̆ up Cp2 = Cp2 = ´Cp2,

we have
TCpY = {Ćp, Y̆, ´Cp1, ´Cp2}

which is a cubic 2-polar fuzzy relative topology of TCpk .

Let (k,TCpk) be a CmPFTPS. Let Y ⊆ k and TCpY be a CmPFTP on Y with PCmPFOSs that are

CpY = TCpk up Y

where Cpk denotes the PCmPFOSs of TCpk , TCpY are PCmPFOSs of a TCpY and Y is any subset of
PCmPFS on Y. Then, TCpY is the P-cubic m-polar fuzzy subspace of TCpk i.e.,

TCpY =

{
CpY : CpY = Cpk up Y, Cpk ∈ TCpk

}
Example 3.15. From Example 3.14

TCpk =

{
Cp, 1Cp,Cp1,Cp2

}
is a cubic 2-polar fuzzy topology with P-order on k.
Now, take any cubic 2-polar fuzzy subset on k such that Y = {k1} ⊆ k is

Y =

{
(k1, [0.33, 0.43], [0.49, 0.68], 0.42, 0.51)

}
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Since
Y̆ up Cp = Cp = Ćp,

Y̆ up
1
Cp = 1

Cp = Y,

Y̆ up Cp1 = Cp1 = ´Cp1,

Y̆ up Cp2 = Y,

we have
TCpY = {Ćp,Y, ´Cp1}

which is a cubic 2-polar fuzzy relative topology of TCpk .

3.2. Interior, closure, frontier and exterior of the PCmPFS

Definition 3.16. Let (k,TCp) be a CmPFTPS and Cp ∈ cmp(k) then the interior of Cp is denoted as
Cp0 and defined as the union of all open CmPF subsets contained in Cp. It is the greatest open cubic
m-polar fuzzy set contained in Cp.

Example 3.17. Consider the cubic 3-polar topological space as presented in Example 3.2. Let Cp3 ∈

cmp(k) given as

Cp3 =

{(
k1, [0.37, 0.49], [0.38, 0.56], [0.54, 0.69], 0.39, 0.41, 0.60

)
,(

k2, [0.41, 0.52], [0.48, 0.61], [0.57, 0.83], 0.38, 0.43, 0.83
)
,(

k3, [0.53, 0.72], [0.59, 0.91], [0.64, 0.89], 0.61, 0.82, 0.73
)}
.

Then,
Cp3

0 = Cp tp Cp1 tp Cp2 = Cp1.

Theorem 3.18. Let (k,TCp) be a CmPFTPS and Cp ∈ cmp(k). Then Cp is an open CmPFS if, and only
if, (Cp)0 = Cp.

Proof. If Cp is an open CmPFS then the greatest open CmPFS contained in Cp is itself Cp. Thus

(Cp)0 = Cp

Conversely, if (Cp)0 = Cp then (Cp)0 is an open CmPFS. This means that Cp is an open CmPFS. �

Theorem 3.19. Let (k,TCp) be a CmPFTPS and Cp1, Cp2 ∈ cmp(k). Then

•
(
(Cp)0

)0

= (Cp)0

• Cp1 ⊆p Cp2 ⇒ (Cp1)0 ⊆p (Cp2)0

•
(
Cp1 up Cp2

)0

= (Cp1)0 ⊆p (Cp2)0

•
(
Cp1 tp Cp2

)0

⊇p (Cp1)0 tp (Cp2)0
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Proof. The proof is obvious. �

Definition 3.20. Let (k,TCp) be a CmPFTPS and Cp ∈ cmp(k) then the closure of Cp is denoted as Cp
and is defined as the intersection of all closed cubic m-polar fuzzy supersets of Cp. It is the smallest
closed cubic m-polar fuzzy superset of Cp.

Example 3.21. Consider the cubic 3-polar topological space given in Example 3.2. Then, the closed
CmPFSs are (Cp)c = 1Cp and (1Cp)c = Cp

(Cp1)c =

{(
k1, [0.54, 0.77], [0.48, 0.69], [0.35, 0.53], 0.76, 0.68, 0.49

)
,(

k2, [0.58, 0.70], [0.44, 0.55], [0.31, 0.47], 0.80, 0.59, 0.28
)
,(

k3, [0.37, 0.56], [0.22, 0.45], [0.17, 0.39], 0.58, 0.47, 0.40
)}

(Cp2)c =

{(
k1, [0.64, 0.81], [0.52, 0.76], [0.48, 0.61], 0.80, 0.69, 0.58

)
,(

k2, [0.62, 0.73], [0.48, 0.61], [0.37, 0.51], 0.85, 0.70, 0.35
)
,(

k3, [0.39, 0.64], [0.32, 0.50], [0.19, 0.40], 0.61, 0.48, 0.42
)}

Let Cp4 ∈ cmp(k) be given as

Cp4 =

{(
k1, [0.43, 0.69], [0.39, 0.54], [0.28, 0.49], 0.52, 0.49, 0.36

)
,(

k2, [0.31, 0.67], [0.40, 0.52], [0.26, 0.35], 0.48, 0.49, 0.31
)
,(

k3, [0.35, 0.43], [0.21, 0.38], [0.12, 0.36], 0.36, 0.32, 0.21
)}

Then,
Cp4 = 1

Cp up (Cp2)c = (Cp2)c

is a closed CmPFS.

Theorem 3.22. Let (k,TCp) be a CmPFTPS and Cp ∈ cmp(k). Then, Cp is a closed CmPFS if, and
only if, Cp = Cp.

Proof. If Cp is a closed CmPFS then the smallest closed CmPFS superset of Cp is itself Cp. Thus

Cp = Cp

Conversely, if Cp = Cp then Cp is a closed CmPFS. This means that Cp is a closed CmPFS. �

Definition 3.23. Let Cp be a P-cubic m-polar fuzzy subset of (k,TCp); then, its frontier or boundary is
denoted by

Fr(Cp) = Cp up

(
Cp

)c
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Definition 3.24. Let Cp be a P-cubic m-polar fuzzy subset of (k,TCp); then, its exterior is denoted by

Ext(Cp) =

(
Cp

)c

=

(
Cpc

)0

Example 3.25. Consider the cubic 3-polar topological space as constructed in Example 3.2 and Cp3
and Cp4 from Example 3.17 and Example 3.21, respectively. Then,
(Cp3)0 = Cp1 , Cp3 = 1Cp

Fr(Cp3) = Cp1 , Ext(Cp3) = Cp

(Cp4)0 = Cp , Cp4 = (Cp2)c

Fr(Cp4) = (Cp2)c , Ext(Cp4) = Cp

Remark. In the case of the CmPFTPS, the law of contradiction Cp up (Cp)c = Cp and law of the
excluded middle Cp tp (Cp)c = 1Cp do not hold in general. From Example 3.17,
Cp3 up (Cp3)c , Cp

Cp3 tp (Cp3)c , 1Cp

Theorem 3.26. Let (k,TCp) be a CmPFTPS and Cp ∈ cmp(k). Then

1. (Cp0)c = (Cpc)
2. (Cp)c = (Cpc)0

3. Ext(Cpc) = Cp0

4. Ext(Cp) = (Cpc)0

5. Ext(Cp) tp Fr(Cp) tp Cp0 , 1Cp

6. Fr(Cp) = Fr(Cpc)
7. Fr(Cp) up Cp0 , Cp

Proof. 1. The proof is obvious.
2. The proof is obvious.

3. Ext(Cpc) =

(
Cpc

)c

Ext(Cpc) =

(
(Cpc)c

)0

Ext(Cpc) = Cp0

4. Ext(Cp) = (Cp)c

Ext(Cp) = (Cpc)0

5. Ext(Cp) tp Fr(Cp) tp Cp0 , 1Cp. Given Example 3.25, we can see that
Ext(Cp3) tp Fr(Cp3) tp Cp0 , 1Cp.

6. Fr(Cpc) = (Cpc) up

(
(Cpc)c

)
Fr(Cpc) = (Cpc) up

(
Cp

)
= Fr(Cp)

7. Fr(Cp) up Cp0 , Cp. From Example 3.25, we can see that,
Fr(Cp3) up Cp0 , Cp.

�

Definition 3.27. A PCmPFS is said to be dense in a universal set k if

Cp = 1
Cp

From Example 3.17 Cp3 = 1Cp. So, Cp3 is dense in k.
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Definition 3.28. A P-cubic m-polar number Cγ = ([A−j , A
+
j ], A j)m

j=1 belong PCmPFS if, and only if,
A−i (λ) ≤ A−j (λ) , A+

i (λ) ≤ A+
j (λ) and Ai(λ) ≤ A j(λ) j = 1, 2, ...,m and l ∈ k

Let (k,TCp) be a CmPFTPS. A PCmPFS Ćp of k which contains a PCmPF number Cγ ∈ k is
said to be a neighborhood of Cγ if, there exists a PCmPFOS Cp such that

Cγ ∈ Cp ⊆p Ćp.

Example 3.29. From Example 3.2, consider a PCmPF number

Cγ =

{
[0.14, 0.39], [0.28, 0.42], 0.27, 0.33

}
which belongs to the PCmPFOS Cp1, which is a PCmPF subset of Cp2. From this, we can say that Cp2
is a neighborhood of Cγ.

3.3. P-cubic m-polar fuzzy basis

Definition 3.30. Let (k,TCp) be a CmPFTPS. Then B ⊆ TCp is said to be the P-cubic m-polar fuzzy
basis for TCp if, for each Cp ∈ TCp, ∃ B ∈ B such that

Cp = tpB

Example 3.31. From Example 3.2,

τCp =

{
Cp, 1Cp,Cp1,Cp2

}
is a P-cubic 3-polar fuzzy topology on k. Then,

B =

{
1
Cp,Cp1,Cp2

}
is a P-cubic 3-polar fuzzy basis for τCp.

4. CmPF topology with R-order

Definition 4.1. Let k be a non-empty set and cmp(k) be the assemblage of all CmPFSs in k. The
collection TCr containing CmPFSs is called a CmPF topology with R-order, abbreviated as CmPFTr, if
it satisfies the following properties:

1. Cr, 1Cr ∈ TCr
2. If (Cr)i ∈ TCr∀i ∈ Λ then tr(Cr)i ∈ TCr

3. If Cr1,Cr2 ∈ TCr then Cr1 ur Cr2 ∈ TCr

Then, the pair (k,TCr) is called the CmPF topological space with R-order, abbreviated as CmPFTrS.

Example 4.2. Let k = {k1, k2, k3} be a non-empty set. Then, cmp(k) is the collection of all R-cubic
m-polar fuzzy sets (RCmPFSs) in k. We consider two cubic 3-polar fuzzy subsets of cmp(k), given as

Cr1 =

{(
k1, [0.19, 0.39], [0.31, 0.48], [0.38, 0.61], 0.8, 0.7, 0.6

)
,
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k2, [0.21, 0.40], [0.34, 0.53], [0.40, 0.70], 0.7, 0.6, 0.5

)
,(

k3, [0.24, 0.52], [0.40, 0.62], [0.47, 0.81], 0.6, 0.5, 0.4
)}

Cr2 =

{(
k1, [0.27, 0.41], [0.32, 0.50], [0.39, 0.65], 0.7, 0.6, 0.5

)
,(

k2, [0.24, 0.49], [0.39, 0.58], [0.42, 0.73], 0.6, 0.5, 0.4
)
,(

k3, [0.26, 0.58], [0.44, 0.70], [0.51, 0.89], 0.5, 0.4, 0.3
)}
.

The R-union and R-intersection results obtained by applying Definition 2.5 to the CmPFSs Cr1 and
C21 are given below in Tables 4 and 5, respectively.

Table 4. Union with R-order.

tr Cr 1Cr Cr1 Cr2

Cr Cr 1Cr Cr1 Cr2
1Cr 1Cr 1Cr 1Cr 1Cr

Cr1 Cr1
1Cr Cr1 Cr2

Cr2 Cr2
1Cr Cr2 Cr2

Table 5. Intersection with R-order.

ur Cr 1Cr Cr1 Cr2

Cr Cr Cr Cr Cr

1Cr Cr 1Cr C11 Cr2

Cr1 Cr Cr1 Cr1 Cr1

Cr2 Cr Cr2 Cr1 Cr2

Then, clearly

TCr1 =

{
Cr, 1Cr,Cr1,Cr2

}
,

TCr2 =

{
Cr, 1Cr,Cr1

}
,

TCr3 =

{
Cr, 1Cr,Cr2

}
,

TCr4 =

{
Cr, 1Cr

}
,

are cubic 3-polar fuzzy topologies with R-order.
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Example 4.3. Let k = {k1, k2} be a non-empty set. Then, cmp(k) is the collection of all RCmPFSs in
k. We consider five cubic 3-polar fuzzy subsets of cmp(k), given as

Cr1 =

{(
k1, [0.20, 0.41], [0.33, 0.50], [0.44, 0.60], 0.9, 0.8, 0.7

)
,(

k2, [0.24, 0.42], [0.35, 0.60], [0.45, 0.65], 0.8, 0.7, 0.6
)}
,

Cr2 =

{(
k1, [0, 0], [0, 0], [0, 0], 0.9, 0.8, 0.7

)
,(

k2, [0, 0], [0, 0], [0, 0], 0.8, 0.7, 0.6
)}
,

Cr3 =

{(
k1, [1, 1], [1, 1], [1, 1], 0.9, 0.8, 0.7

)
,(

k2, [1, 1], [1, 1], [1, 1], 0.8, 0.7, 0.6
)}
,

Cr4 =

{(
k1, [0.20, 0.41], [0.33, 0.50], [0.44, 0.60]0, 0, 0

)
,(

k2, [0.24, 0.42], [0.35, 0.60], [0.45, 0.65], 0, 0, 0
)}
,

Cr =

{(
k1, [0.20, 0.41], [0.33, 0.50], [0.44, 0.60]1, 1, 1

)
,(

k2, [0.24, 0.42], [0.35, 0.60], [0.45, 0.65], 1, 1, 1
)}
.

The R-union and R-intersection results obtained by applying Definition 2.5 to these CmPFSs are
given below in Tables 6 and 7, respectively.

Table 6. Union with R-order.

tr Cr 1Cr Cr 1Cr Cr1 Crr2 Cr3 Cr4 Cr

Cr Cr 1Cr Cr 1Cr Cr4 Cr 1Cr Cr4 Cr4
1Cr 1Cr 1Cr 1Cr 1Cr Cr3 Cr3 Cr3

1Cr 1Cr

Cr Cr 1Cr Cr 1Cr Cr1 Cr2 Cr3 Cr4 Cr

1Cr 1Cr 1Cr 1Cr 1Cr 1Cr 1Cr 1Cr 1Cr 1Cr

Cr1 Cr4 Cr3 Cr1
1Cr Cr1 Cr1 Cr3 Cr4 Cr1

Cr2 Cr Cr3 Crr2
1Cr Cr1 Cr2 Cr3

1Cr Cr1

Cr3
1Cr Cr3 Cr3

1Cr Cr3 Cr3 Cr3
1Cr Cr3

Cr4 Cr4
1Cr Cr4

1Cr Cr4 Cr4
1Cr Cr4 Cr4

Cr Cr4
1Cr Cr 1Cr Cr1 Cr1 Cr3 Cr4 Cr
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Table 7. Intersection with R-order.

ur Cr 1Cr Cr 1Cr Cr1 Cpr2 Cr3 Cr4 Cr

Cr Cr Cr Cr Cr Cr2 Cr2 Cr2 Cr Cr
1Cr Cr 1Cr Cr 1Cr Cr Cr 1Cr Cr Cr

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr

1Cr Cr 1Cr Cr 1Cr Cr1 Cr2 Cr3 Cr4 Cr

Cr1 Cr2 Cr Cr Cr1 Cr1 Cr2 Cr1 Cr1 Cr

Cr2 Cr2 Cr Cr Cr2 Cr2 Cr2 Cr2 Cr2 Cr

Cr3 Cr2
1Cr Cr Cr3 Cr1 Cr2 Cr3 Cr1 Cr

Cr4 Cr Cr Cr Cr4 Cr1 Cr2 Cr1 Cr4 Cr

Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr

Then clearly,

TCr =

{
Cr, 1Cr, Cr, 1Cr,Cr1,Cpr2 ,Cr3,Cr4,Cr

}
,

TCr =

{
Cr, 1Cr, Cr, 1Cr

}
,

are cubic 3-polar fuzzy topologies with R-order.

Definition 4.4. Let k , φ and TCr =

{
Crk

}
, where Crk denotes all of the CmPFSs of k. Then, TCr is a

R-cubic m-polar fuzzy topology on k that is also the largest R-cubic m-polar fuzzy topology on k; it is
called an R-discrete CmPF topology.

Definition 4.5. Let k , φ and TCr =

{
Cr, 1Cr

}
be the collection of CmPFSs. Then, TCr is a R-cubic

m-polar fuzzy topology on k that is also the smallest R-cubic m-polar fuzzy topology on k; it is called
an R-indiscrete cubic m-polar fuzzy topology.

Definition 4.6. The members of the RCmPF topology TCr are called RCmPFOSs in (k,TCr).

Theorem 4.7. If (k,TCr) is any R-cubic m-polar fuzzy topological space, then

1. Cr and 1Cr are RCmPFOSs.
2. The R-union of any (finite/infinite) number of RCmPFOSs is an RCmPFOS.
3. The R-intersection of finite RCmPFOSs is an RCmPFOS.

Proof. The proof is the same as that for PCmPFOSs. �

Definition 4.8. The complement of RCmPFOSs are called RCmPFCSs in (k,TCr).

Theorem 4.9. If (k,TCr) is any R-cubic m-polar fuzzy topological space, then

1. Cr and 1Cr are RCmPFCSs.
2. The R-intersection of any (finite/infinite) number of RCmPFCSs is an RCmPFCS.
3. The R-union of finite RCmPFCSs is an RCmPFCS.

Proof. The proof is the same as that for PCmPFCSs. �
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Definition 4.10. Let (k,TCr1) and (k,TCr2) be two CmPFTrSs in k. Two CmPFTrSs are said to be
comparable if,

TCr1 ⊆R TCr2 or TCr2 ⊆R TCr1 .

Furthermore if, TCr1 ⊆R TCr2 , then TCr1 becomes R-cubic m-polar fuzzy coarser than TCr2 . Similarly,
TCr2 becomes R-cubic m-polar fuzzy finer than TCr1 .

Example 4.11. Let k , φ; then from Example 4.3,

TCr1 =

{
Cr, 1Cr, Cr, 1Cr,Cr1,Cpr2 ,Cr3,Cr4,Cr

}
,

TCr2 =

{
Cr, 1Cr, Cr, 1Cr

}
,

are cubic 3-polar fuzzy topologies on k. Since TCr2 ⊆R TCr1 . So that, TCr2 is R-cubic m-polar coarser
then TCr1 .

4.1. Sub spaces of CmPFTr

Definition 4.12. Let (k,TCrk) be a CmPFTrS. LetY ⊆ k andTCrY be a CmPFTr onY with the following
RCmPFOSs:

CrY = TCrk uR Y̆

where Crk are RCmPFOSs of TCrk , TCrY represents the RCmPFOSs of TCrY , and Y̆ is an absolute
RCmPFS on Y. Then, TCrY is the R-cubic m-polar fuzzy subspace of TCrk i.e.,

TCrY =

{
CrY : CrY = Crk uR Y̆, Crk ∈ TCrk

}
Example 4.13. Let k = {k1} be a non-empty set. From Example 4.3,

TCr =

{
Cr, 1Cr, Cr, 1Cr,Cr1,Crr2 ,Cr3,Cr4,Cr

}
is a cubic 3-polar fuzzy topology with R-order on k.

Now, the absolute cubic 3-polar fuzzy set on Y = {k1} ⊆ k is

Y̆ =

{
(k1, [1, 1], [1, 1], [1, 1], 1, 1, 1)

}
Since

Y̆ uR Cr = Cr = Ćr,

Y̆ uR
1
Cr = 1

Cr = Y̆,

Y̆ uR Cr = Cr = Ćr,

Y̆ uR
1Cr = 1

Cr = Y̆,

Y̆ uR Cr1 = Cr = Ćr,

Y̆ uR Cr2 = Cr = Ćr,

Y̆ uR Cr3 = 1
Cr = Y̆,

Y̆ uR Cr4 = Cr = Ćr,
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Y̆ uR Cr = Cr = Ćr,

it follows that
TCrY = {Ćr, Y̆, Ćr}

is a cubic 3-polar fuzzy relative topology of TCrk .

Let (k,TCrk) be a CmPFTrS. LetY ⊆ k and TCrY be a CmPFTr onY with the following RCmPFOSs:

CrY = TCrk uR Y

where Crk represents the RCmPFOSs of TCrk , TCrY are RCmPFOSs of TCRY and Y is any subset of an
RCmPFS on Y. Then, TCrY is an R-cubic m-polar fuzzy subspace of TCrk i.e.,

TCrY =

{
CrY : CrY = Crk uR Y, Crk ∈ TCrk

}
Example 4.14. Let k = {k1} be a non-empty set. From Example 4.3

TCr =

{
Cr, 1Cr, Cr, 1Cr,Cr1,Crr2 ,Cr3,Cr4,Cr

}
is a cubic 3-polar fuzzy topology with R-order on k.
Now, the absolute cubic 3-polar fuzzy set on Y = {k1} ⊆ k is

Y =

{
(k1, [0.31, 0.52], [0.43, 0.62], [0.54, 0.70], 0.8, 0.7, 0.6)

}
Since

Y̆ uR Cr =

{
(k1, [0, 0], [0, 0], [0, 0], 0.8, 0.7, 0.6)

}
= Ćr,

Y uR
1
Cr =

{
(k1, [0.31, 0.52], [0.43, 0.62], [0.54, 0.70], 1, 1, 1)

}
= Ćr,

Y uR Cr =

{
(k1, [0, 0], [0, 0], [0, 0], 1, 1, 1)

}
= Ćr,

Y uR
1Cr =

{
(k1, [0.31, 0.52], [0.43, 0.62], [0.54, 0.70], 0.8, 0.7, 0.6)

}
= Y,

Y uR Cr1 =

{
(k1, [0.2, 0.41], [0.33, 0.50], [0.44, 0.60], 0.9, 0.8, 0.7)

}
= Ćr1,

Y uR Cr2 =

{
(k1, [0, 0], [0, 0], [0, 0], 0.9, 0.8, 0.7)

}
= Ćr2,

Y uR Cr3 =

{
(k1, [0.31, 0.52], [0.43, 0.62], [0.54, 0.70], 0.9, 0.8, 0.7)

}
= Ćr3,

Y uR Cr4 =

{
(k1, [0.2, 0.41], [0.33, 0.50], [0.44, 0.60], 0.8, 0.7, 0.6)

}
= ´Cr4,

Y uR Cr =

{
(k1, [0.2, 0.41], [0.33, 0.50], [0.44, 0.60], 1, 1, 1)

}
= Ćr,

it follows that
TCrY =

{
Ćr,Y, Ćr1, Ćr2, Ćr3, ´Cr4, Ćr, Ćr, Ćr

}
is a cubic 3-polar fuzzy relative topology of TCrk .
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4.2. Interior, closure, frontier and exterior of RCmPFSs

Definition 4.15. Let (k,TCr) be a CmPFTrS and Cr ∈ cmp(k) then the interior of Cr is denoted as Cr
and is defined as the union of all open cubic m-polar fuzzy subsets contained in Cr. It is the greatest
open CmPFS contained in Cr.

Example 4.16. Consider the cubic 3-polar topological space as constructed in Example 4.3. Let Cr6 ∈

cmp(k): given as

Cr6 =

{
(k1, [0.33, 0.50], [0.42, 0.69], [0.52, 0.73], 0.8, 0.7, 0.6),

(k2, [0.38, 0.49], [0.51, 0.64], [0.63, 0.82], 0.7, 0.6, 0.5)
}
.

So,
Cr0

6 = Cr tR Cr1 tR Cr2 tR Cr = Cr1

is open CmPFS.

Theorem 4.17. Let (k,TCr) be a CmPFTrS and Cr ∈ cmp(k). Then, Cr is an open CmPFS if, and only
if, (Cr)0 = Cr.

Proof. The proof is obvious. �

Definition 4.18. Let (k,TCr) be a CmPFTrS and Cr ∈ cmp(k) then the closure of Cr is denoted as Cr
and is defined as the intersection of all closed cubic m-polar fuzzy supersets of Cr. It is the smallest
closed cubic m-polar fuzzy superset of Cr.

Example 4.19. Consider the cubic 3-polar topological space constructed in Example 4.3. Then, the
closed CmPFSs are
(Cp)c = 1Cp , (1Cp)c = Cp , (Cr)c = 1Cr , (Cr)c = Cr

(Cr1)c =

{(
k1, [0.59, 0.8], [0.0.50, 0.67], [0.40, 0.56], 0.1, 0.2, 0.3

)
,(

k2, [0.58, 0.76], [0.40, 0.65], [0.35, 0.55], 0.2, 0.3, 0.4
)}

(Cr2)c =

{(
k1, [1, 1], [1, 1], [1, 1], 0.1, 0.2, 0.3

)
,(

k2, [1, 1], [1, 1], [1, 1], 0.2, 0.3, 0.4
)}

(Cr3)c =

{(
k1, [0, 0], [0, 0], [0, 0], 0.1, 0.2, 0.3

)
,(

k2, [0, 0], [0, 0], [0, 0], 0.2, 0.3, 0.4
)}

(Cr4)c =

{(
k1, [0.59, 0.8], [0.0.50, 0.67], [0.40, 0.56], 1, 1, 1

)
,(

k2, [0.58, 0.76], [0.40, 0.65], [0.35, 0.55], 1, 1, 1
)}

(Cr4)c =

{(
k1, [0.59, 0.8], [0.50, 0.67], [0.40, 0.56], 0, 0, 0

)
,(

k2, [0.58, 0.76], [0.40, 0.65], [0.35, 0.55], 0, 0, 0
)}
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Let Cr7 ∈ cmp(k) be given as

Cr7 =

{(
k1, [0.43, 0.76], [0.47, 0.53], [0.29, 0.42], 0.2, 0.3, 0.4

)
,(

k2, [0.49, 0.72], [0.38, 0.58], [0.30, 0.49], 0.3, 0.4, 0.5
)}

Then,
Cr = (Cr)c uR (Cr1)c uR (Cr2)c uR (Cr)c = (Cr1)c

is closed a CmPFS.

Theorem 4.20. Let (k,TCr) be a CmPFTrS and Cr ∈ cmp(k). Then, Cr is a closed CmPFS ⇔ Cr = Cr.

Proof. The proof is obvious. �

Definition 4.21. Let Cr be an R-cubic m-polar fuzzy subset of (k,TCr); then, its frontier or boundary
is denoted by

Fr(Cr) = Cr uR

(
Cr

)c

Definition 4.22. Let Cr be an R-cubic m-polar fuzzy subset of (k,TCr); then, its exterior is denoted by

Ext(Cr) =

(
Cr

)c

=

(
Crc

)0

Example 4.23. Consider the cubic 3-polar topological space given in Example 4.3 and Cr from
Example 4.19. Then
Cr0

7 = (Cr1)c , Cr7 = (Cr1)c

Fr(Cr7) = (Cr1)c , Ext(Cr7) = (Cr1)c

Remark. For a CmPFTrS, the law of contradiction, Crup (Cr)c = Cr, and the law of excluded middle,
Cr tR (Cr)c = 1Cr do not hold in general. From Example 4.19
Cr uR (Cr)c , Cr

Cr tR (Cr)c , 1Cr

Definition 4.24. An RCmPFS is said to be dense in a universal set k if

Cr = 1
Cr

Definition 4.25. An RCmPF number Cγ = ([A−j , A
+
j ], A j)m

j=1 belong RCmPFS if, and only if,
A−i (λ) ≤ A−j (λ) , A+

i (λ) ≤ A+
j (λ) and Ai(λ) ≥ A j(λ) j = 1, 2, ...,m and l ∈ k

Let (k,TCr) be a CmPFTrS. An RCmPFS Ćr of k which contains an RCmPF number Cγ ∈ k is said to
be a neighborhood of Cγ if, there exists an RCmPFOS Cr containing Cγ, such that

Cγ ∈ Cr ⊆R Ćr
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Example 4.26. From Example 4.3, an R-cubic m-polar fuzzy number

Cγ =

{
k1, [0.20, 0.41], [0.33, 0.50], [0.44, 0.60], 0.9, 0.8, 0.7

}
belongs to the RPCmPFOS Cr1 which is an R-cubic m-polar fuzzy subset of Cr3. From this, we can
say that Cr3 is a neighborhood of Cγ.

4.3. R-Cubic m-polar fuzzy basis

Definition 4.27. Let (k,TCr) be a CmPFTrS. Then, B ⊆ TCr is said to be the R-cubic m-polar fuzzy
basis for TCr if, for each Cr ∈ TCr, ∃ B ∈ B such that

Cr = tRB

Example 4.28. From Example 4.3,

TCr =

{
Cr, 1Cr, Cr, 1Cr,Cr1,Cpr2 ,Cr3,Cr4,Cr

}
is an R-cubic 3-polar fuzzy topology on k. Then,

B =

{
1
Cr, 1Cr,Cr1,Cpr2 ,Cr3,Cr4,Cr

}
is the R-cubic 3-polar fuzzy basis for TCr.

5. Extension of VIKOR method to CmPFSs

As a sample, in this section, we first discuss several types of CKD by providing a brief but
comprehensive overview of this fatal disease, including its types and symptoms, and then use the
established VIKOR methodology to diagnose those who are affected.
Case Study
Kidneys have very important positions for human beings. They work as channels for your blood,
eliminating waste, poisons, and surplus liquids. They also help to manage circulatory strain and
synthetic compounds in the blood, keep bones sound and animate red platelet creation. If you have
CKD, your kidneys have been damaged for more than a few months. Diseased kidneys also do not
channel blood properly, which can prompt an assortment of genuine human concerns. There are five
stages to CKD. The phases are determined by the results of an eGFR test and how successfully your
kidneys filter waste and excess fluid from your blood. Kidney disease worsens as the stages progress
and your kidneys become less effective. The stages of CKD*,† ,‡ are summarized below.
Stage 1 of CKD
An eGFR of 90 or higher indicates that your kidneys are healthy, but you might have other symptoms
of kidney damage. Protein in your urine or physical harm to your kidneys could be signs of kidney
damage. When the kidneys function at a 90 or higher eGFR, there are usually no symptoms. Here are

*https://www.freseniuskidneycare.com/kidney-disease/stages
†https://www.healthline.com/health/ckd-stages
‡https://www.cdc.gov/kidneydisease/prevention-risk.html
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some things one can do to help slow the harm to the kidneys in Stage 1. In the case of diabetes, keep
the blood sugar under control and maintain the blood pressure. Consume a nutritious diet. Do not use
tobacco or smoke. Engage in physical activity for 30 minutes five days a week and maintain a healthy
weight.
Stage 2 of CKD
If you have Stage 2 CKD kidney problem, it is slight, and corresponds to an eGFR between 60 and
89. Almost all of the time, an eGFR between 60 and 89 indicates that your kidneys are healthy and
operating correctly. However, if you do have Stage 2 kidney disease, you have some other symptoms
of kidney damage even if your eGFR is normal. You may still be symptom-free at this point. Or the
symptoms are general, such as fatigue, appetite loss, sleep issues and weakness.
Stage 3 of CKD
If your eGFR is between 30 and 59, you have Stage 3 CKD. An eGFR of 30 to 59 implies that your
kidneys have been harmed and are not operating correctly. There are two stages in Stage 3; if your
eGFR is between 45 and 59, you are at Stage 3a and if your eGFR is between 30 and 44, you are in
Stage 3b. The kidneys are not filtering waste, poisons, or fluids efficiently, and they are starting to pile
up. Many persons with kidney disease in Stage 3 do not show any noticeable symptoms. However, if
symptoms exist, they may include hand and foot swelling, pain in the back, and more or less urination
than usual.
Stage 4 of CKD
You have Stage 4 CKD if your eGFR is between 15 and 29. An eGFR between 15 and 30 indicates that
your kidneys are relatively or badly damaged and are not operating normally. Stage 4 kidney disease
must be taken seriously because it is the final step before kidney failure. Many people with Stage 4
CKD experience symptoms such as swelling of the hands and feet, back pain and more or less urination
than usual. At Stage 4, you will most likely experience medical complications as waste piles up in your
kidneys and your body fails to function properly, such as excessively high blood pressure, anemia and
a disease of the bones.
Stage 5 of CKD
You have Stage 5 CKD if your eGFR is below 15. An eGFR less than 15 indicates that the kidneys are
nearing failure or have failed completely. When your kidneys fail, waste accumulates in your blood,
making you very sick. The following are some of the symptoms of kidney failure: itching, cramps in
the muscles, throwing up, swelling of the hands and feet, back pain, more or less urination than usual,
breathing difficulties and sleeping problems. Once your kidneys fail, you will need dialysis or a kidney
transplant to survive.

We show, in this part, how the VIKOR might be applied to CmPFSs. Right away, we will apply
VIKOR to the CmPFS and later apply it to deal with an issue from life sciences. We start by
expounding the recommended strategy stage by stage as described below. The linguistic terms for
weighing choices are given in Table 8.

Algorithm (VIKOR)
Suppose there are  number of DMs, that is, D1,D2, · · · ,D , subject to ’ı’ number of criteria
µ1, µ2, · · · , µı and ’λ’ number of alternatives ν1, ν2, · · · , νλ.
Step 1. In the first step: the DMs have to allocate the preference weights to the criteria. Let ω jk be the
weight allocated by jth DM to the kth criteria. We set the weights in the matrix form ℘ = [ω jk] ×ı for
convenience.
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Table 8. Linguistic terms for weighing choices.

Linguistic terms Fuzzy weights
Stage 0: Healthy kidney (S0) 0.10
Stage 1: Beginning of kidney damage (S1) 0.30
Stage 2: Moderate kidney damage (S2) 0.50
Stage 3: Severe kidney damage (S3) 0.70
Stage 4: Kidney failure (S4) 0.90

Step 2. The weights assigned by DMs must be normalized. Suppose that the weights ω jk for the criteria
are not normal, so they must be normalized by utilizing the formula ω̄ jk =

ω jk√∑
i ω

2
jk

. Then, the weights

are gathered asW = (ω1, ω2, · · · , ωı), where ωi = 1


∑
i ω̄ jk∑
j ω̄ jk

.
Step 3. Every model of a DM is a PCmPF matrix Dx = (ζ x

jk)λ×ı, x = 1, 2, · · · , , where ζ x
jk is the value

that is allotted by the DM X to the criteria K corresponding the alternative J.
Step 4. Compute the PCmPFS decision matrix by taking the average. The matrix that is obtained can
be named A = (ζ jk)λ×ı.
Step 5. Construct the PCmPF weighted matrix to be B = (ς jk)λ×ı, where ς jk = ωkζ jk.
Step 6. Positive ideal solutions (PIS) and negative ideal solutions (NIS) with P-order (R-order) for
CmPFSs are respectively obtained by using the relations given as
PCmpF-PIS: ζ+

k = max j
P ς jk or ζ+

k = max j
R ς jk

PCmPF-NIS: ζ−k = min j
P ς jk or ζ−k = min j

R ς jk.
Step 7. To find the strategic value of VIKOR, the utility value Si, regret value Ri and compromise
value Qi are calculated by using following formula

S i = Σm
j=1ω j

( d(ζ̈ j
+
, ζ̈ j)

d(ζ̈ j
+
, ζ̈ j
−)

)
Ri =

m
max

j=1
ω j

( d(ζ̈ j
+
, ζ̈ j)

d(ζ̈ j
+
, ζ̈ j
−)

)
Qi = χ

( S i − S −

S + − S −

)
+ (1 − χ)

( Ri − R−

R+ − R−

)

Here, S + = ∨iS i, S − = ∧iS i, R+ = ∨iRi and R− = ∧iR. The parameter χ is coefficient of decision
analysis. If, in decision making, the majority selects the compromise solution, then we take χ > 0.5,
where χ > 0.5 denotes a veto and, for agreement, χ = 0.5
Note that the distance between two CmPFNs,
C1 = 〈[A−1 , A

+
1 ], [A−2 , A

+
2 ], · · · , [A−m, A

+
m], A1, A2, · · · , Am〉 = 〈[A−j , A

+
j ], A j〉

m
j=1, and

C2 = 〈[B−1 , B
+
1 ], [B−2 , B

+
2 ], · · · , [B−m, B

+
m], B1, ν2, · · · , Bm〉 = 〈[B−j , B

+
j ], B j〉

m
j=1, is defined as

d(C1,C2) =

 m∑
j=1

∣∣∣∣∣∣A−j + A+
j

2
−

B−j + B+
j

2

∣∣∣∣∣∣
m

+

m∑
j=1

|A j − B j|
m


1/m
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Step 8. We rank Si, Ri and Qi by arranging them in ascending order. The alternative %a considered as
a compromise solution if it holds the highest ranking (minimum value) and satisfies the following two
conditions at the same time.
C-1 If %a1 and %a1 are the top two alternatives having minimum values in Qi, then
Q(%a2) − Q(%a1) ≥

1
ı−1

where ı is the number of criteria.
C-2 The alternative %a1 must also be supreme ranked by at least one of the Si or Ri.
If the above two conditions are not satisfied at a time, then we have multiple compromise solutions. In
this case, the conditions are given as follows:

• If C-1 is satisfied, then %a1 and %a2 are both compromise solutions.
• If C-1 is not satisfied and

Q(%ak) − Q(%a1) <
1

ı − 1
then, %a1 , %a2 , ..., %ak should act as multiple compromise solutions.

5.1. Numerical example

Step 1. Suppose D = {Di : i = 1, · · ·, 4} is the set of medical experts, P = {% j : j = 1, · · ·, 4} is the set
of patients and C = {ξk : k = 1, · · ·, 4} for a set of criteria, where ξ1 =vomitting, ξ2 = nausea, ξ3 = loss
of appetite and ξ4 = fatigue and weakness.
Step 2. The matrix ℘ of the weighted criteria is

℘ = [ωi j]4×4

℘ =


S2 S3 S0 S1

S3 S4 S1 S2

S1 S0 S2 S3

S4 S2 S0 S1



℘ =


0.50 0.70 0.10 0.30
0.70 0.90 0.30 0.50
0.30 0.10 0.50 0.70
0.90 0.50 0.10 0.30


where ωi j represents the weights assigned by the DMs to criteria.
Step 3. The normalized weighted matrix appears to be

℘ =


0.39 0.56 0.16 0.31
0.54 0.72 0.50 0.52
0.23 0.08 0.83 0.72
0.70 0.40 0.16 0.31


and thus the weight vectors comes out to beW = {0.26, 0.24, 0.23, 0.26}
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Step 7. By selecting χ = 0.5, we calculated the values of Si, Ri and Qi for each alternative by making
use of following formula

S i = Σ4
j=1ω j

( d(ζ̈ j
+
, ζ̈ j)

d(ζ̈ j
+
, ζ̈ j
−)

)
Ri =

4
max

j=1
ω j

( d(ζ̈ j
+
, ζ̈ j)

d(ζ̈ j
+
, ζ̈ j
−)

)
Qi = χ

( S i − S −

S + − S −

)
+ 1 − χ

( Ri − R−

R+ − R−

)

They are given in Table 9.

Table 9. Values of Si, Ri and Qi for each alternative.

Alternatives Si Ri Qi
%1 0.6217 0.2487 0.6894
%1 0.8013 0.2258 0.8271
%1 0.5164 0.1836 0.000
%1 0.5350 0.2209 0.3192

Step 8. The ranking of choices are as follows:
By Qi : %3 < %4 < %1 < %2

By Si : %3 < %4 < %1 < %2

By Ri : %3 < %4 < %2 < %1

Since, Q(%4) − Q(%3) � 1
3

So, by Q(%4) − Q(%3) > 1
3 , we infer that both %4 and %3 serve as multiple compromise solutions.

Comparative analysis:
The advantages of using a CmPFS are described in Table 10.

Table 10. Advantages of the CmPFS.

Fuzzy models Advantages and limitations
Cubic set (CS) It describes information in terms of a fuzzy interval and a
(Jun et. al. [18]) fuzzy number. It can not handel multi-polarity.
m-Polar fuzzy set (mPFS) It describes the multi-polarity of objects with m grades.
(Chen et al. [10]) It can not deal with fuzzy intervals.
Cubic m-polar fuzzy set A strong hybrid model for the CS and mPFS to address the cubic
(Riaz and Hashmi [19]) environment and multi-polarity of objects.

To comparatively analyze the method of the ranking of alternatives and an optimal alternative, we
solve the above problem by applying the TOPSIS approach to the same data. The first six steps of
TOPSIS is the same as VIKOR. In Step 7, we find the the closeness of each alternative from the
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PCmP-PIS and PCmP-NIS. In Step 8, we find the relative closeness of each alternative. In Step 9, we
rank the alternatives.
Step 7 and 8. The distance of each alternative from the PCmP-PIS and PCmP-NIS and their relative
closeness are given in Table 11.

Table 11. Distance and coefficient of closeness of each patient.

Alternatives d+
i d−i C∗i

%1 0.1114 0.0781 0.4123
%2 0.1274 0.0445 0.2590
%3 0.0958 0.0788 0.4566
%4 0.0917 0.0907 0.4973

Step 9. Thus, the ranking of each patient is

%4 > %3 > %1 > %2

This ranking shows that Patient %4 is in a more critical situation. So this is optimal decision for the
VIKOR and TOPSIS approaches.

6. Conclusions

When applied in MCDM techniques, a CmPFS is an effective model for
coping with uncertain information. A CS is a two-component system that can describe information in
terms of a fuzzy interval and a fuzzy number. Alternatively, an mPFS describes multi-polarity with
m degrees. To take advantages of a CS and mPFS, we focused on a hybrid model of CmPFS and
introduced the idea of a topological structure of CmPFSs and CmPF topology with P-order (R-order).
We defined certain concepts of a CmPF topology such as, open sets, closed sets, subspaces and dense
sets, as well as the interior, exterior, frontier, neighborhood, and basis with P-order (R-order). A CmPF
topology is a robust approach for modeling big data, data analysis, and diagnosis, etc. An extension
of the VIKOR method for MCGDM with a CmPF topology was designed and its application to CKD
diagnosis is presented. A comparative analysis of the proposed approach and TOPSIS method was
also performed to seek the optimal decision.
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