In this paper, we introduce the complex valued Cp-class function, a type of Geraghty contraction and a type of JS contraction in complete partially ordered complex valued Gb-metric spaces, prove three fixed point theorems in this space, and also we give some examples to support our results.
Citation: Yiquan Li, Chuanxi Zhu, Yingying Xiao, Li Zhou. A note on three different contractions in partially ordered complex valued Gb-metric spaces[J]. AIMS Mathematics, 2022, 7(7): 12322-12341. doi: 10.3934/math.2022684
[1] | Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172 |
[2] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Leyla Sağ Dönmez, Abdurrahman Büyükkaya, Mahpeyker Öztürk . Fixed-point results via αji-(DC(PˆE))-contractions in partial ♭-metric spaces. AIMS Mathematics, 2023, 8(10): 23674-23706. doi: 10.3934/math.20231204 |
[5] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[6] | Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278 |
[7] | I. Eroǧlu, E. Güner, H. Aygün, O. Valero . A fixed point principle in ordered metric spaces and applications to rational type contractions. AIMS Mathematics, 2022, 7(7): 13573-13594. doi: 10.3934/math.2022750 |
[8] | Ahmed Alamer, Faizan Ahmad Khan . Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems. AIMS Mathematics, 2024, 9(3): 6266-6280. doi: 10.3934/math.2024305 |
[9] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[10] | Talat Nazir, Zakaria Ali, Shahin Nosrat Jogan, Manuel de la Sen . On a class of fixed points for set contractions on partial metric spaces with a digraph. AIMS Mathematics, 2023, 8(1): 1304-1328. doi: 10.3934/math.2023065 |
In this paper, we introduce the complex valued Cp-class function, a type of Geraghty contraction and a type of JS contraction in complete partially ordered complex valued Gb-metric spaces, prove three fixed point theorems in this space, and also we give some examples to support our results.
Fixed point theory in metric spaces occupies an extremely important position in modern mathematics, it has been generalized in various aspects. For example, G-metric spaces [1] were introduced and Gb-metric spaces were reported in [2], which successfully popularized the general metric and promoted the research of various types of fixed point theorems. These theorems are accompanied with different contractive conditions (see [3,4,5,6,7,8,9,10,11,12,21,22,23,24,25,26,27]), especially the new Geraghty contraction was given in [13] and the JS contraction was given in [14].
Recently, Shoaib et al. [15] introduced the ordered dislocated quasi G-metric spaces, and obtained some new fixed point results for a dominated mapping on a close ball in this space. On the other hand, Ege [16] also proposed the complex valued Gb-metric spaces as a new notion, the Banach contraction principle and Kannan's fixed point theorem were proved for this space. Moreover, there are also other interesting fixed point theorems in this space (see [17,18,19,20]).
In this work, we study some problems about the common solutions of the operator equations Fnx=ux(u≥1,n∈N∗) in complete partially ordered complex valued Gb-metric spaces, introduce the complex valued Cp-class function and a type of Geraghty contraction to this space respectively, and we obtain the common solutions in a closed ball. Furthermore, we also introduce a type of JS contraction to this space and investigate a new theorem.
Firstly, we recall some basic concepts, which will be used later. For a real Banach space E, a nonempty closed subset Q⊂E is called a cone, if
(a) for all ζ∈Q and τ≥0, τζ∈Q;
(b) for all ζ1,ζ2∈Q, ζ1+ζ2∈Q;
(c) Q∩(−Q)=0.
For ξ1,ξ2∈E, given a cone Q, we define a partial order ⪯ on E, which is induced by Q, i.e., ξ1⪯ξ2 iff ξ2−ξ1∈Q. Furthermore, ξ1,ξ2 are said to be comparable if ξ1⪯ξ2 or ξ2⪯ξ1.
On the other hand, for all ξ1,ξ2∈C, the partial order ≾ on C is defined as follows:
ξ1≾ξ2⇔Re(ξ1)≤Re(ξ2)andIm(ξ1)≤Im(ξ2). |
Therefore, ξ1≾ξ2 if one of the following conditions holds:
(C1) Re(ξ1)=Re(ξ2) and Im(ξ1)=Im(ξ2);
(C2) Re(ξ1)=Re(ξ2) and Im(ξ1)<Im(ξ2);
(C3) Re(ξ1)<Re(ξ2) and Im(ξ1)=Im(ξ2);
(C4) Re(ξ1)<Re(ξ2) and Im(ξ1)<Im(ξ2).
Moreover, we denote ξ1≺ξ2 if only (C4) holds. Obviously, 0≾ξ1≾ξ2⇒|ξ1|≤|ξ2|, where |ξi| is the magnitude of ξi, i=1,2. For more details, see [25].
Definition 1.1. ([16]) Let X be a nonempty set, for a real number s≥1, if the mapping Gb:X×X×X→C satisfies:
(CGb1) Gb(ζ1,ζ2,ζ3)=0 if ζ1=ζ2=ζ3;
(CGb2) Gb(ζ1,ζ1,ζ2)≻0 for all ζ1,ζ2∈X with ζ1≠ζ2;
(CGb3) Gb(ζ1,ζ1,ζ2)≾Gb(ζ1,ζ2,ζ3) for all ζ1,ζ2,ζ3∈X with ζ3≠ζ2;
(CGb4) Gb(ζ1,ζ2,ζ3)=Gb(R{ζ1,ζ2,ζ3}), where R is an arbitrary permutation of {ζ1,ζ2,ζ3};
(CGb5) Gb(ζ1,ζ2,ζ3)≾s[Gb(ζ1,υ,υ)+Gb(υ,ζ2,ζ3)] for all ζ1,ζ2,ζ3,υ∈X.
Then the function Gb is called a complex valued Gb-metric on X, the pair (X,Gb) is called a complex valued Gb-metric space.
Proposition 1.1. ([16]) For a complex valued Gb-metric space (X,Gb) and all ζ1,ζ2,ζ3∈X, we have
(1) Gb(ζ1,ζ2,ζ3)≾s[Gb(ζ1,ζ1,ζ2)+Gb(ζ1,ζ1,ζ3)];
(2) Gb(ζ1,ζ2,ζ2)≾2s[Gb(ζ1,ζ1,ζ2)].
Definition 1.2. ([16]) Let {xn} be a sequence in a complex valued Gb-metric space (X,Gb),
(1) {xn} is called complex valued Gb-convergent to ζ∈X, if for any ϵ∈C with ϵ≻0, there exists ξ∈N such that Gb(ζ,xn,xm)≺ϵ for all n,m≥ξ. We write xn→ζ as n→∞, or limn→∞xn=ζ;
(2) {xn} is called complex valued Gb-Cauchy, if for any ϵ∈C with ϵ≻0, there exists ξ∈N such that Gb(xn,xm,xl)≺ϵ for all n,m,l≥ξ;
(3) (X,Gb) is said to be complex valued Gb-complete, if any complex valued Gb-Cauchy sequence {xn} is complex valued Gb-convergent.
Theorem 1.1. ([16]) Let {xn} be a sequence in a complex valued Gb-metric space (X,Gb), and ζ∈X, the following are equivalent:
(1) {xn} is complex valued Gb-convergent to ζ;
(2) |Gb(xn,xm,ζ)|→0 as n,m→∞;
(3) |Gb(xn,ζ,ζ)|→0 as n→∞;
(4) |Gb(xn,xn,ζ)|→0 as n→∞.
Theorem 1.2. ([16]) A sequence {xn} is complex valued Gb-Cauchy sequence is equivalent to |Gb(xn,xm,xl)|→0 as n,m,l→∞.
Definition 1.3. ([28]) Let Q⊂Rm be a cone, a mapping S:Q→Rm is said to be dominated if Sx⪯x for all x∈Q.
Theorem 1.3. ([15]) Let (X,⪯,G) be an ordered complete dislocated quasi G-metric space, S:X→X be a mapping and x0 be an arbitrary point in X. Suppose there exists k∈[0,12) with
G(Sx,Sy,Sz)≤k(G(x,Sx,Sx)+G(y,Sy,Sy)+G(z,Sz,Sz)) |
for all comparable elements x,y,z∈¯B(x0,r), and
G(x0,Sx0,Sx0)≤(1−θ)r, |
where θ=k1−2k. If for nonincreasing sequence {xn}→u implies that u⪯xn. Then there exists a point x⋆ in ¯B(x0,r) such that x⋆=Sx⋆ and G(x⋆,x⋆,x⋆)=0. Moreover, if for any three points x,y,z∈¯B(x0,r), there exists a point v in ¯B(x0,r) such that v⪯x and v⪯y, v⪯z, where
G(x0,Sx0,Sx0)+G(v,Sv,Sv)+G(v,Sv,Sv)≤G(x0,v,v)+G(Sx0,Sv,Sv)+G(Sx0,Sv,Sv), |
then the point x⋆ is unique.
In this section, let X=RN, Ω1={Z1∈C:0≾Z1}, Ω2={Z2∈C:0≺Z2}, Ω3={Z3∈C:1≺Z3}. (X,Gb,⪯) is called a partially ordered complex valued Gb-metric space, which shows (X,Gb) is a complex valued Gb-metric space and (X,⪯) is a partially ordered set.
Let (X,Gb) be a complex valued Gb-metric space, for any x0∈X, r∈C and r≻0, the Gb-ball with ball center x0 is ¯B(x0,r)={x∈X|Gb(x0,x,x)≾r}. Moreover, for all n∈N∗ and x1,x2,...,xn∈C, the function max{x1,x2,...,xn}≿xj, j=1,2,...,n.
Definition 2.1. A continuous mapping P:Ω31→C is called complex valued Cp-class function, if it satisfies r≾P(r,s,t) for all r,s,t∈Ω1.
Example 2.1. Some examples of complex valued Cp-class function are given as follows:
(1) P(r,s,t)=r+s+t, where r,s,t∈Ω1;
(2) P(r,s,t)=mr, where m∈[1,∞) and r,s,t∈Ω1;
(3) P(r,s,t)=η(r)r, where η:Ω1→[1,∞) and r,s,t∈Ω1.
Theorem 2.1. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, x0 be an arbitrary element in Q, {Sn:X→X,n∈N∗} be a dominated mapping sequence. If there exist r∈Ω2, and nonnegative numbers α,β,γ satisfy α−2sγ≠0,βα−2γ∈[0,δ],δ<1s, such that
P[ψ(αGb(Six,Sjy,Sjy)),φ(αGb(Six,Sjy,Sjy)),φ(αGb(Six,Sjy,Sjy))]≾ψ[βGb(x,Six,Six)+γGb(y,Sjy,Sjz)+γGb(z,Sjz,Sjy)] | (2.1) |
for any comparable elements x,y,z in ¯B(x0,r), where ¯B(x0,r)⊂Q,i,j∈N∗, P is a complex valued Cp-class function, ψ:Ω1→Ω1 is a nondecreasing function, φ:Ω1→C is a continuous function. And
Gb(x0,S1x0,S1x0)≾1−sδsr. | (2.2) |
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in ¯B(x0,r). Moreover, if there exists an element v in ¯B(x0,r) such that v⪯x∗, and
βGb(x0,S1x0,S1x0)+2γGb(v,Sjv,Sjv)≾βGb(x0,v,v)+2γGb(S1x0,Sjv,Sjv), | (2.3) |
then the operator equations have an unique solution.
Proof. By selecting the ball centre x0 in ¯B(x0,r), we construct a sequence {xn}, where xn+1=Sn+1xn⪯xn,n∈N. From (2.2), we obtain x1∈¯B(x0,r). Using (2.1), we have
ψ(αGb(S1x0,S2x1,S2x1))≾P[ψ(αGb(S1x0,S2x1,S2x1)),φ(αGb(S1x0,S2x1,S2x1)),φ(αGb(S1x0,S2x1,S2x1))]≾ψ[βGb(x0,S1x0,S1x0)+2γGb(x1,S2x1,S2x1)]. |
Since the function ψ is nondecreasing, we can easily get
Gb(x1,x2,x2)≾βα−2γGb(x0,x1,x1)≾δGb(x0,x1,x1). |
Hence, Gb(x0,x2,x2)≾s[Gb(x0,x1,x1)+Gb(x1,x2,x2)]≾s(1+δ)Gb(x0,x1,x1). Using (2.2), we get Gb(x0,x2,x2)≾(1−δ2)r≺r, that is x2∈¯B(x0,r).
Now we prove {xn}⊂¯B(x0,r). Suppose that x3,x4,...,xk∈¯B(x0,r), according to (2.1), we have
ψ(αGb(Skxk−1,Sk+1xk,Sk+1xk))≾P[ψ(αGb(Skxk−1,Sk+1xk,Sk+1xk)),φ(αGb(Skxk−1,Sk+1xk,Sk+1xk)),φ(αGb(Skxk−1,Sk+1xk,Sk+1xk))]≾ψ[βGb(xk−1,Skxk−1,Skxk−1)+2γGb(xk,Sk+1xk,Sk+1xk)]. |
Thus Gb(xk,xk+1,xk+1)≾βα−2γGb(xk−1,xk,xk)≾δGb(xk−1,xk,xk), it can easily get that
Gb(xk,xk+1,xk+1)≾δkGb(x0,x1,x1). | (2.4) |
By using (CGb5) and (2.4), it follows that
Gb(x0,xk+1,xk+1)≾sGb(x0,x1,x1)+s2Gb(x1,x2,x2)+...+sk+1Gb(xk,xk+1,xk+1)≾(s+s2δ+...+sk+1δk)Gb(x0,x1,x1)≾s⋅11−sδ1−sδsr=r, |
i.e., xk+1∈¯B(x0,r), therefore, {xn}⊂¯B(x0,r).
Now we show that {xn} is a complex valued Gb-Cauchy sequence, from (2.4), we obtain
Gb(xn,xn+1,xn+1)≾δnGb(x0,x1,x1), | (2.5) |
thus for all n,m∈N∗,n<m, we have
Gb(xn,xm,xm)≾sGb(xn,xn+1,xn+1)+s2Gb(xn+1,xn+2,xn+2)+...+sm−nGb(xm−1,xm,xm)≾(sδn+s2δn+1+...+sm−nδm−1)Gb(x0,x1,x1)≾sδn⋅11−sδGb(x0,x1,x1), |
which implies that
limn,m→∞Gb(xn,xm,xm)=0. |
Therefore, {xn} is a complex valued Gb-Cauchy sequence, and there exists an element x∗ in ¯B(x0,r) such that xn→x∗.
Next we prove x∗ is the common solution of the operator equations. For any j∈N∗, we have
Gb(x∗,Sjx∗,Sjx∗)≾s[Gb(x∗,xn,xn)+Gb(xn,Sjx∗,Sjx∗)]. |
Furthermore, since Sjx∗⪯x∗⪯xn⪯xn−1, using (2.1), it can be easily get that
αGb(xn,Sjx∗,Sjx∗)≾βGb(xn−1,xn,xn)+2γGb(x∗,Sjx∗,Sjx∗). |
Hence,
αGb(x∗,Sjx∗,Sjx∗)≾sαGb(x∗,xn,xn)+sαGb(xn,Sjx∗,Sjx∗)≾sαGb(x∗,xn,xn)+sβGb(xn−1,xn,xn)+2sγGb(x∗,Sjx∗,Sjx∗). |
That is,
Gb(x∗,Sjx∗,Sjx∗)≾1α−2sγ[sαGb(x∗,xn,xn)+sβGb(xn−1,xn,xn)]. |
Let n→∞ at both sides of the above inequality, we obtain limn→∞Gb(x∗,Sjx∗,Sjx∗)=0, i.e. x∗=Sjx∗. According to the arbitrariness of j, we get x∗ is a common solution of the operator equations.
Uniqueness. Assume that y∗ is another solution of the operator equations, y∗≠x∗ and y∗∈¯B(x0,r).
Case 1. If x∗ and y∗ are comparable, using (2.1), it follows that
αGb(x∗,y∗,y∗)=αGb(Six∗,Sjy∗,Sjy∗)≾βGb(x∗,Six∗,Six∗)+2γGb(y∗,Sjy∗,Sjy∗)=βGb(x∗,x∗,x∗)+2γGb(y∗,y∗,y∗)=0, |
as a result, x∗=y∗.
Case 2. If x∗ and y∗ are not comparable, then there exists an element v∈¯B(x0,r) such that v⪯x∗ and v⪯y∗, for any j∈N∗, we will show {Snjxn}⊂¯B(x0,r). Owing to (2.1) and (2.3), we have
αGb(S1x0,Sjv,Sjv)≾βGb(x0,S1x0,S1x0)+2γGb(v,Sjv,Sjv)≾βGb(x0,v,v)+2γGb(S1x0,Sjv,Sjv), |
i.e.,
Gb(S1x0,Sjv,Sjv)≾βα−2γGb(x0,v,v)≾δr. |
Hence,
Gb(x0,Sjv,Sjv)≾s[Gb(x0,x1,x1)+Gb(x1,Sjv,Sjv)]≾s(1−sδsr+δr)=r, |
that is Sjv∈¯B(x0,r). Suppose that S2jv,S3jv,...,Skjv∈¯B(x0,r), obviously, Skjv⪯Sk−1jv⪯...⪯S2jv⪯Sjv⪯v⪯x∗⪯xn⪯...⪯x0. From (2.1), we can immediately obtain
αGb(Skjv,Sk+1jv,Sk+1jv)≾βGb(Sk−1jv,Skjv,Skjv)+2γGb(Skjv,Sk+1jv,Sk+1jv), |
so we have
Gb(Skjv,Sk+1jv,Sk+1jv)≾βα−2γGb(Sk−1jv,Skjv,Skjv)≾δGb(Sk−1jv,Skjv,Skjv), |
as a result,
Gb(Skjv,Sk+1jv,Sk+1jv)≾δGb(Sk−1jv,Skjv,Skjv)≾...≾δkGb(v,Sjv,Sjv). | (2.6) |
In addition, using (2.1), (2.3), (2.5) and (2.6), we can also immediately obtain
αGb(xk+1,Sk+1jv,Sk+1jv)≾βGb(xk,xk+1,xk+1)+2γGb(Skjv,Sk+1jv,Sk+1jv)≾βδkGb(x0,x1,x1)+2γδkGb(v,Sjv,Sjv)≾βδkGb(x0,v,v)+2γδkGb(S1x0,Sjv,Sjv)≾βδkGb(x0,v,v)+2γδkβα−2γGb(x0,v,v)≾(βδk+2γδk+1)Gb(x0,v,v), |
i.e.,
Gb(xk+1,Sk+1jv,Sk+1jv)≾(βδk+2γδk+1)αGb(x0,v,v)≾(α−2γ)δk+1+2γδk+1αGb(x0,v,v)=δk+1Gb(x0,v,v). |
Thus,
Gb(x0,Sk+1jv,Sk+1jv)≾sGb(x0,x1,x1)+...+sk+1Gb(xk,xk+1,xk+1)+sk+1Gb(xk+1,Sk+1jv,Sk+1jv)≾(s+s2δ+...+sk+1δk)Gb(x0,x1,x1)+sk+1δk+1Gb(x0,v,v)≾s⋅1−(sδ)k+11−sδ⋅1−sδsr+(sδ)k+1⋅r=[1−(sδ)k+1+(sδ)k+1]r=r, |
which implies Sk+1jv∈¯B(x0,r), so {Snjxn}⊂¯B(x0,r). From (2.6), we obtain
Gb(Snjv,Sn+1jv,Sn+1jv)≾δnGb(v,Sjv,Sjv), |
and
limn→∞Gb(Snjv,Sn+1jv,Sn+1jv)=0. | (2.7) |
From (2.1), we can easily get
αGb(x∗,Snjv,Snjv)=αGb(Six∗,Snjv,Snjv)≾βGb(x∗,Six∗,Six∗)+2γGb(Sn−1jv,Snjv,Snjv)=2γGb(Sn−1jv,Snjv,Snjv). |
Owing to (2.7), we have
limn→∞Gb(x∗,Snjv,Snjv)=0. | (2.8) |
Similarly,
αGb(Snjv,y∗,y∗)=αGb(Snjv,Siy∗,Siy∗)≾βGb(Sn−1jv,Snjv,Snjv)+2γGb(y∗,Siy∗,Siy∗)=βGb(Sn−1jv,Snjv,Snjv). |
According to (2.7), we also have
limn→∞Gb(Snjv,y∗,y∗)=0. | (2.9) |
Since Gb(x∗,y∗,y∗)≾s[Gb(x∗,Snjv,Snjv)+Gb(Snjv,y∗,y∗)], using (2.8) and (2.9), we obtain
Gb(x∗,y∗,y∗)=limn→∞Gb(x∗,y∗,y∗)≾0. |
Therefore, x∗=y∗, the proof is completed.
Following the proof process of Theorem 2.1, we can obtain the following corollary.
Corollary 2.1. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, {Sn:X→Q,n∈N∗} be a dominated mapping sequence. If there exist nonnegative numbers α,β,γ satisfy α−2sγ≠0,βα−2γ∈[0,1s), such that
η(ψ(αGb(Six,Sjy,Sjy)))ψ(αGb(Six,Sjy,Sjy))≾ψ[βGb(x,Six,Six)+γGb(y,Sjy,Sjz)+γGb(z,Sjz,Sjy)] |
for any comparable elements x,y,z in Q, where i,j∈N∗, η:Ω1→[1,∞), ψ:Ω1→Ω1 is a nondecreasing function.
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if there exists an element v in Q such that v⪯x∗, then the operator equations have an unique solution.
Example 2.2. Let X=R, Q=[0,∞), α=5,β=γ=1,δ=13, Gb:X×X×X→C be defined by Gb(ξ1,ξ2,ξ3)=max{|ξ1−ξ2|2,|ξ2−ξ3|2,|ξ1−ξ3|2}+max{|ξ1−ξ2|2,|ξ2−ξ3|2,|ξ1−ξ3|2}i with s=2, and ψ(r)=η(r)r=r for any r in Ω1.
For any ξ in X, 0<νn≤14 and n∈N∗, take Snξ=νnξ and Fn=uSn, where u≥1. The partial order ⪯ on X is the usual order ≤ of R, for any ξ1,ξ2,ξ3 in Q, we have
αGb(Snξ1,Snξ2,Snξ2)=5ν2n(ξ1−ξ2)2+5ν2n(ξ1−ξ2)2i, |
and
β|ξ1−νnξ1|2+γ|ξ2−νnξ2|2+γ|ξ3−νnξ3|2=(1−νn)2(ξ21+ξ22+ξ23). |
Hence,
αGb(Snξ1,Snξ2,Snξ2)≾β|ξ1−νnξ1|2+γ|ξ2−νnξ2|2+γ|ξ3−νnξ3|2+[β|ξ1−νnξ1|2+γ|ξ2−νnξ2|2+γ|ξ3−νnξ3|2]i≾βGb(ξ1,Snξ1,Snξ1)+γGb(ξ2,Snξ2,Snξ3)+γGb(ξ3,Snξ3,Snξ2). |
It follows that the operator equations Fnξ=uξ have a common solution ξ∗=0 in Q, and there exists an element v=0 in Q such that v≤ξ∗. Therefore, all conditions of Corollary 2.1 are satisfied, the operator equations Fnξ=uξ have an unique solution ξ∗=0.
Let B be the set of functions β:Ω1→[0,1s), which satisfies if limn→∞β(xn)=1s, then limn→∞xn=0.
Theorem 2.2. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, x0 be an arbitrary element in Q, {Sn:X→X,n∈N∗} be a dominated mapping sequence. Suppose that there exist β∈B, i,j∈N∗ and r∈Ω2, such that
Gb(Six,Sjy,Sjz)≾β(M(x,y,z))M(x,y,z) | (2.10) |
for any comparable elements x,y,z in ¯B(x0,r), where ¯B(x0,r)⊂Q,
M(x,y,z)=max{Gb(x,y,z),Gb(x,Six,Six)Gb(y,Sjy,Sjz)1+Gb(x,y,z),Gb(x,Six,Six)Gb(x,Sjy,Sjz)1+s[Gb(x,y,z)+Gb(Six,Sjy,Sjz)]}, | (2.11) |
and
Gb(x0,S1x0,S1x0)≾1−sδsr, | (2.12) |
where δ∈(0,1s).
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in ¯B(x0,r).
Proof. By selecting the ball centre x0 in ¯B(x0,r), we construct a sequence {xn}, where xn+1=Sn+1xn⪯xn,n∈N. From (2.12), we know x1∈¯B(x0,r). Using (2.10), we have
Gb(x1,x2,x2)=Gb(S1x0,S2x1,S2x1)≾β(M(x0,x1,x1))M(x0,x1,x1), | (2.13) |
where
M(x0,x1,x1)=max{Gb(x0,x1,x1),Gb(x0,S1x0,S1x0)Gb(x1,S2x1,S2x1)1+Gb(x0,x1,x1),Gb(x0,S1x0,S1x0)Gb(x0,S2x1,S2x1)1+s[Gb(x0,x1,x1)+Gb(S1x0,S2x1,S2x1)]}. |
Since
Gb(x0,S1x0,S1x0)Gb(x1,S2x1,S2x1)1+Gb(x0,x1,x1)≾Gb(x1,S2x1,S2x1)=Gb(x1,x2,x2), |
and
Gb(x0,S1x0,S1x0)Gb(x0,S2x1,S2x1)1+s[Gb(x0,x1,x1)+Gb(S1x0,S2x1,S2x1)]≾s[Gb(x0,x1,x1)+Gb(x1,S2x1,S2x1)]Gb(x0,S1x0,S1x0)1+s[Gb(x0,x1,x1)+Gb(S1x0,S2x1,S2x1)]≾Gb(x0,S1x0,S1x0)=Gb(x0,x1,x1), |
thus M(x0,x1,x1)≾max{Gb(x0,x1,x1),Gb(x1,x2,x2)}.
If max{Gb(x0,x1,x1),Gb(x1,x2,x2)}=Gb(x1,x2,x2), then we have
Gb(x1,x2,x2)≾β(M(x0,x1,x1))M(x0,x1,x1)≺1sGb(x1,x2,x2), |
which is a contradiction, thus
max{Gb(x0,x1,x1),Gb(x1,x2,x2)}=Gb(x0,x1,x1), |
and
Gb(x1,x2,x2)≾β(M(x0,x1,x1))M(x0,x1,x1)≾δGb(x0,x1,x1). |
So we have
Gb(x0,x2,x2)≾s[Gb(x0,x1,x1)+Gb(x1,x2,x2)]≾s(1+δ)⋅1−sδsr≾(1−δ2)r≺r, |
as a result, x2∈¯B(x0,r).
Now we will show {xn}⊂¯B(x0,r). Assume that x3,x4,...,xk∈¯B(x0,r), owing to (2.10), we get
Gb(xk,xk+1,xk+1)=Gb(Skxk−1,Sk+1xk,Sk+1xk)≾β(M(xk−1,xk,xk))M(xk−1,xk,xk). |
Following the above proof process, we can obtain
M(xk−1,xk,xk)≾max{Gb(xk−1,xk,xk),Gb(xk,xk+1,xk+1)}=Gb(xk−1,xk,xk). | (2.14) |
Thus,
Gb(xk,xk+1,xk+1)≾δGb(xk−1,xk,xk)≾δ2Gb(xk−2,xk−1,xk−1)≾...≾δkGb(x0,x1,x1). | (2.15) |
By using (CGb5) and (2.15), it follows that
Gb(x0,xk+1,xk+1)≾sGb(x0,x1,x1)+s2Gb(x1,x2,x2)+...+sk+1Gb(xk,xk+1,xk+1)≾(s+s2δ+...+sk+1δk)Gb(x0,x1,x1)≾s⋅1−(sδ)k+11−sδ⋅1−sδsr≺r. |
Hence, xk+1∈¯B(x0,r), so {xn}⊂¯B(x0,r). As a result, for all n∈N∗,
Gb(xn,xn+1,xn+1)=Gb(Snxn−1,Sn+1xn,Sn+1xn)≾β(M(xn−1,xn,xn))M(xn−1,xn,xn), | (2.16) |
thus we have Gb(xn,xn+1,xn+1)≺1sGb(xn−1,xn,xn).
If s>1, then Gb(xn,xn+1,xn+1)≺(1s)nGb(x0,x1,x1)→0 as n→∞.
If s=1, then Gb(xn,xn+1,xn+1)≺Gb(xn−1,xn,xn), which implies that {Gb(xn,xn+1,xn+1)} is a decreasing sequence.
Suppose that
limn→∞Gb(xn,xn+1,xn+1)=r≻0, |
owing to (2.14) and (2.16), we obtain
r=limn→∞Gb(xn,xn+1,xn+1)≾limn→∞β(M(xn−1,xn,xn))M(xn−1,xn,xn)≾limn→∞1sGb(xn−1,xn,xn)≾r, |
thus limn→∞β(M(xn−1,xn,xn))=1, which implies limn→∞Gb(xn−1,xn,xn)=0, contradiction. As a result, limn→∞Gb(xn,xn+1,xn+1)=0.
Now we prove {xn} is a complex valued Gb-Cauchy sequence. Suppose that contrary, then there exist ϵ≻0 and two subsequences xmk and xnk of xn, such that
Gb(xmk,xnk,xnk)≿ϵandGb(xmk,xnk−1,xnk−1)≺ϵ. |
So we have
ϵ≾Gb(xmk,xnk,xnk)≾s[Gb(xmk,xmk+1,xmk+1)+Gb(xmk+1,xnk,xnk)]. |
Let k→∞, we get
ϵ≾limk→∞infGb(xmk,xnk,xnk)≾slimk→∞infGb(xmk+1,xnk,xnk). |
Furthermore, using (2.10) and (2.14),
limk→∞infGb(xmk+1,xnk,xnk)≾limk→∞infβ(M(xmk,xnk−1,xnk−1))M(xmk,xnk−1,xnk−1)≾limk→∞infβ(M(xmk,xnk−1,xnk−1))Gb(xmk,xnk−1,xnk−1)≾limk→∞infβ(M(xmk,xnk−1,xnk−1))ϵ, |
thus we have
ϵs≾limk→∞infGb(xmk+1,xnk,xnk)≾limk→∞infβ(M(xmk,xnk−1,xnk−1))ϵ≾limk→∞supβ(M(xmk,xnk−1,xnk−1))ϵ≾ϵs. |
Therefore, limk→∞β(M(xmk,xnk−1,xnk−1))=1s, thus limk→∞Gb(xmk,xnk−1,xnk−1)=0. As a result,
ϵ≾Gb(xmk,xnk,xnk)≾s[Gb(xmk,xnk−1,xnk−1)+Gb(xnk−1,xnk,xnk)]→0ask→∞, |
which is a contradiction. Therefore, {xn} is a complex valued Gb-Cauchy sequence, and there exists an element x∗ in ¯B(x0,r) such that xn→x∗.
Finally, we show that x∗ is a common solution of the operator equations. Let x=xi−1,y=z=x∗ in (2.10), we have
limi→∞Gb(Sixi−1,Sjx∗,Sjx∗)≾limi→∞β(M(xi−1,x∗,x∗))M(xi−1,x∗,x∗)≾limi→∞1sM(xi−1,x∗,x∗), |
where
M(xi−1,x∗,x∗)=max{Gb(xi−1,x∗,x∗),Gb(xi−1,Sixi−1,Sixi−1)Gb(x∗,Sjx∗,Sjx∗)1+Gb(xi−1,x∗,x∗),Gb(xi−1,Sixi−1,Sixi−1)Gb(xi−1,Sjx∗,Sjx∗)1+s[Gb(xi−1,x∗,x∗)+Gb(Sixi−1,Sjx∗,Sjx∗)]}. |
It can be easily deduced that limi→∞M(xi−1,x∗,x∗)=0 and limi→∞Gb(Sixi−1,Sjx∗,Sjx∗)=0, thus
Gb(x∗,Sjx∗,Sjx∗)≾s[Gb(x∗,Sixi−1,Sixi−1)+Gb(Sixi−1,Sjx∗,Sjx∗)]→0asi→∞. |
As a result, x∗=Sjx∗, owing to the arbitrariness of j, we obtain that x∗ is a common solution of the operator equations, the proof is completed.
Similarly, following the proof process of Theorem 2.2, the following corollary will be established.
Corollary 2.2. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, {Sn:X→Q,n∈N∗} be a dominated mapping sequence. Suppose that there exist i,j∈N∗ such that
Gb(Six,Sjy,Sjz)≾λM(x,y,z) |
for any comparable elements x,y,z in Q, where λ∈[0,1s), and
M(x,y,z)=max{Gb(x,y,z),Gb(x,Six,Six)Gb(y,Sjy,Sjz)1+Gb(x,y,z),Gb(x,Six,Six)Gb(x,Sjy,Sjz)1+s[Gb(x,y,z)+Gb(Six,Sjy,Sjz)]}. |
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in Q.
Example 2.3. Let X=R, Q=[0,∞), Gb:X×X×X→C be defined by Gb(ξ1,ξ2,ξ3)=(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2+(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2i with s=2, δ=15, x0=1, r=4+4i. For all t∈Ω1, take
β(t)={13,t=0;12+|t|2,0<|t|≤1;152+12+e|t|,|t|>1. |
Obviously, 13≤β(t)<12, and
¯B(1,4+4i)={x|Gb(1,x,x)≾4+4i}={x|4|1−x|2+4|1−x|2i≾4+4i}=[0,2]. |
Moreover, for any ξ in X, let Snξ=|ξ|√3n,n∈N∗ and Fn=uSn, where u≥1. The partial order ⪯ on X is the usual order ≤ of R, for any ξ1,ξ2,ξ3 in ¯B(1,4+4i), we have
Gb(Snξ1,Snξ2,Snξ3)=13n2[(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2+(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2i], |
and
Gb(ξ1,ξ2,ξ3)=(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2+(|ξ1−ξ2|+|ξ2−ξ3|+|ξ1−ξ3|)2i. |
It follows that
Gb(Snξ1,Snξ2,Snξ3)≾13Gb(ξ1,ξ2,ξ3)≾13M(ξ1,ξ2,ξ3)≾β(M(ξ1,ξ2,ξ3))M(ξ1,ξ2,ξ3), |
and
Gb(1,√33,√33)=16−8√33+16−8√33i≺310(4+4i). |
It is clearly that all conditions of Theorem 2.2 are satisfied, as a result, the operator equations Fnξ=uξ have a common solution ξ∗=0 in ¯B(1,4+4i).
On the other hand, let Θ be the set of functions θ:Ω2→Ω3, which satisfies the following conditions:
Θ1: θ is continuous;
Θ2: θ is nondecreasing, i.e. θ(x1)≿θ(x2) if x1≿x2;
Θ3: limn→∞θ(xn)=1⇔limn→∞xn=0+, where {xn}⊂Ω2.
Theorem 2.3. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, {Sn:X→Q,n∈N∗} be a dominated mapping sequence. Suppose that there exist θ∈Θ, i,j∈N∗,k∈(0,1),α≥0 such that
|θ(Gb(Six,Sjy,Sjz))|≤|θ(1sM(x,y,z)−α)|k | (2.17) |
for any comparable elements x,y,z in Q, where Gb(Six,Sjy,Sjz)≠0, and
M(x,y,z)=max{Gb(x,Six,Six),Gb(y,Sjy,Sjz),Gb(z,Sjz,Sjy),Gb(x,y,z)}. | (2.18) |
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if there exists an element v in Q such that v⪯x∗, and
Gb(Sn−1jv,Snjv,Snjv)≾Gb(x∗,Sn−1jv,Sn−1jv), | (2.19) |
then the operator equations have an unique solution.
Proof. By selecting a point x0 in Q, we construct a sequence {xn}, where xn+1=Sn+1xn⪯xn,n∈N. Let x=xn−1,y=z=xn in (2.17), we have
|θ(1sGb(Snxn−1,Sn+1xn,Sn+1xn))|≤|θ(Gb(Snxn−1,Sn+1xn,Sn+1xn))|≤|θ(1sM(xn−1,xn,xn)−α)|k≤|θ(1sM(xn−1,xn,xn))|k, |
where
M(xn−1,xn,xn)=max{Gb(xn−1,Snxn−1,Snxn−1),Gb(xn,Sn+1xn,Sn+1xn),Gb(xn−1,xn,xn)}=max{Gb(xn−1,xn,xn),Gb(xn,xn+1,xn+1)}, |
thus we get
|θ(1sGb(xn,xn+1,xn+1))|≤|θ(1smax{Gb(xn−1,xn,xn),Gb(xn,xn+1,xn+1)})|k. |
If max{Gb(xn−1,xn,xn),Gb(xn,xn+1,xn+1)}=Gb(xn,xn+1,xn+1), then
|θ(1sGb(xn,xn+1,xn+1))|≤|θ(1sGb(xn,xn+1,xn+1))|k,which is contradiction withk∈(0,1), |
hence,
|θ(1sGb(xn,xn+1,xn+1))|≤|θ(Gb(xn,xn+1,xn+1))|≤|θ(1sGb(xn−1,xn,xn))|k. |
It follows that
|θ(1sGb(xn,xn+1,xn+1))|≤|θ(1sGb(xn−1,xn,xn))|k≤...≤|θ(1sGb(x0,x1,x1))|kn, |
and
limn→∞|θ(1sGb(xn,xn+1,xn+1))|≤limn→∞|θ(1sGb(x0,x1,x1))|kn=1, |
therefore,
limn→∞Gb(xn,xn+1,xn+1)=0andlimn→∞Gb(xn,xn,xn+1)=0. |
Now we show {xn} is a complex valued Gb-Cauchy sequence. If not, then there exist ϵ≻0 and two subsequences xmi and xni of xn, where i≤ni≤mi, such that
Gb(xni,xni,xmi)≿ϵandGb(xni,xni,xmi−1)≺ϵ. |
Using (CGb5), we have
ϵ≾Gb(xni,xni,xmi)≾s[Gb(xni,xni,xni+1)+Gb(xni+1,xni+1,xmi)], |
let i→∞ at the above inequality, we get
ϵs≾limi→∞Gb(xmi,xni+1,xni+1). | (2.20) |
In addition, owing to (2.17), we obtain
|θ(Gb(Smixmi−1,Sni+1xni,Sni+1xni))|≤|θ(1sM(xmi−1,xni,xni)−α)|k, |
i.e.,
|θ(1sGb(xmi,xni+1,xni+1))|≤|θ(Gb(xmi,xni+1,xni+1))|≤|θ(1sM(xmi−1,xni,xni)−α)|k≤|θ(1sM(xmi−1,xni,xni))|k, |
where
M(xmi−1,xni,xni)=max{Gb(xmi−1,xmi,xmi),Gb(xni,xni+1,xni+1),Gb(xni,xni,xmi−1)}. |
Since
limi→∞Gb(xmi−1,xmi,xmi)=limi→∞Gb(xni,xni+1,xni+1)=0, |
obviously, M(xmi−1,xni,xni)=Gb(xni,xni,xmi−1), it follows that
|θ(Gb(xmi,xni+1,xni+1))|≤|θ(1sGb(xni,xni,xmi−1))|k. | (2.21) |
Using (2.20) and (2.21), we have
|θ(ϵs)|≤limi→∞|θ(Gb(xmi,xni+1,xni+1))|≤limi→∞|θ(1sGb(xni,xni,xmi−1))|k<|θ(ϵs)|k, |
which is a contradiction with k∈(0,1). As a result, {xn} is a complex valued Gb-Cauchy sequence, and there exists an element x∗ in Q such that xn→x∗.
Now we prove that x∗ is a common solution of the operator equations. For all i,j∈N∗, we have
Gb(x∗,Sjx∗,Sjx∗)≾s[Gb(x∗,xi,xi)+Gb(xi,Sjx∗,Sjx∗)], |
and let i→∞ at the above inequality, we get
Gb(x∗,Sjx∗,Sjx∗)≾limi→∞sGb(xi,Sjx∗,Sjx∗). | (2.22) |
In addition, since x∗⪯xi−1, according to (2.17), we obtain
|θ(Gb(Sixi−1,Sjx∗,Sjx∗))|≤|θ(1sM(xi−1,x∗,x∗)−α)|k≤|θ(1sM(xi−1,x∗,x∗))|k, |
where
M(xi−1,x∗,x∗)=max{Gb(xi−1,xi,xi),Gb(x∗,Sjx∗,Sjx∗),Gb(xi−1,x∗,x∗)}. |
If M(xi−1,x∗,x∗)=Gb(x∗,Sjx∗,Sjx∗), using (2.22), it follows that
limi→∞|θ(Gb(xi,Sjx∗,Sjx∗))|≤limi→∞|θ(1sGb(x∗,Sjx∗,Sjx∗))|k≤limi→∞|θ(Gb(xi,Sjx∗,Sjx∗))|k, |
contradiction, thus we can easily get
|θ(Gb(xi,Sjx∗,Sjx∗))|≤|θ(1sGb(xi−1,xi,xi))|k→1asi→∞, |
or
|θ(Gb(xi,Sjx∗,Sjx∗))|≤|θ(1sGb(xi−1,x∗,x∗))|k→1asi→∞, |
hence,
limi→∞Gb(xi,Sjx∗,Sjx∗)=0. |
From (2.22), we have
Gb(x∗,Sjx∗,Sjx∗)≾limi→∞sGb(xi,Sjx∗,Sjx∗)=0. |
As a result, x∗=Sjx∗, owing to the arbitrariness of j, we obtain x∗ is a common solution of the operator equations.
Uniqueness. If y∗ is another solution of the operator equations, y∗≠x∗, then Gb(x∗,y∗,y∗)≠0.
Case 1. x∗ and y∗ are comparable, using (2.17), it follows that
|θ(Gb(x∗,y∗,y∗))|=|θ(Gb(Six∗,Sjy∗,Sjy∗))|≤|θ(1sM(x∗,y∗,y∗)−α)|k≤|θ(1sM(x∗,y∗,y∗))|k. |
Obviously, M(x∗,y∗,y∗)=Gb(x∗,y∗,y∗), so we have
|θ(Gb(x∗,y∗,y∗))|≤|θ(1sGb(x∗,y∗,y∗))|k, |
which is a contradiction. As a result, y∗=x∗.
Case 2. x∗ and y∗ are not comparable, then there exists an element v∈Q such that v⪯x∗ and v⪯y∗, for any i,j∈N∗, we have
x∗=Six∗=S2ix∗=...=Snix∗,y∗=Sjy∗=S2jy∗=...=Snjy∗, |
and
Snjv⪯...⪯Sjv⪯v⪯x∗,Snjv⪯...⪯Sjv⪯v⪯y∗. |
From (2.17), we get
|θ(Gb(Snix∗,Snjv,Snjv))|≤|θ(1sM(Sn−1ix∗,Sn−1jv,Sn−1jv)−α)|k≤|θ(1sM(Sn−1ix∗,Sn−1jv,Sn−1jv))|k, |
where
M(Sn−1ix∗,Sn−1jv,Sn−1jv)=max{Gb(Sn−1ix∗,Snix∗,Snix∗),Gb(Sn−1jv,Snjv,Snjv),Gb(Sn−1ix∗,Sn−1jv,Sn−1jv)}. |
According to (2.19), we obtain M(Sn−1ix∗,Sn−1jv,Sn−1jv)=Gb(Sn−1ix∗,Sn−1jv,Sn−1jv), and
|θ(Gb(Snix∗,Snjv,Snjv))|≤|θ(1sGb(Sn−1ix∗,Sn−1jv,Sn−1jv))|k≤|θ(Gb(Sn−1ix∗,Sn−1jv,Sn−1jv))|k, |
so that we have
|θ(Gb(Snix∗,Snjv,Snjv))|≤|θ(Gb(Sn−1ix∗,Sn−1jv,Sn−1jv))|k≤...≤|θ(Gb(x∗,v,v))|kn. |
It follows that
limn→∞|θ(Gb(Snix∗,Snjv,Snjv))|≤limn→∞|θ(Gb(x∗,v,v))|kn=1, |
hence,
limn→∞Gb(Snix∗,Snjv,Snjv)=0. | (2.23) |
Similarly, using (2.17) and (2.19), we get
|θ(Gb(Snjy∗,Snjv,Snjv))|≤|θ(1sM(Sn−1jy∗,Sn−1jv,Sn−1jv)−α)|k≤|θ(M(Sn−1jy∗,Sn−1jv,Sn−1jv))|k, |
where
M(Sn−1jy∗,Sn−1jv,Sn−1jv))=max{Gb(Sn−1jy∗,Snjy∗,Snjy∗),Gb(Sn−1jv,Snjv,Snjv),Gb(Sn−1jy∗,Sn−1jv,Sn−1jv)}=max{0,Gb(Sn−1jv,Snjv,Snjv),Gb(Sn−1jy∗,Sn−1jv,Sn−1jv)}=Gb(Sn−1jy∗,Sn−1jv,Sn−1jv). |
Therefore,
|θ(Gb(Snjy∗,Snjv,Snjv))|≤|θ(Gb(Sn−1jy∗,Sn−1jv,Sn−1jv))|k≤...≤|θ(Gb(y∗,v,v))|kn, |
let n→∞, we have
limn→∞|θ(Gb(Snjy∗,Snjv,Snjv))|≤limn→∞|θ(Gb(y∗,v,v))|kn=1, |
so we obtain
limn→∞Gb(Snjy∗,Snjv,Snjv)=0, |
and also
limn→∞Gb(Snjv,Snjy∗,Snjy∗)=0. | (2.24) |
Using (2.23) and (2.24), we also have
Gb(Snix∗,Snjy∗,Snjy∗)≾s[Gb(Snix∗,Snjv,Snjv)+Gb(Snjv,Snjy∗,Snjy∗)]→0asn→∞. |
Owing to Gb(x∗,y∗,y∗)=Gb(Snix∗,Snjy∗,Snjy∗), as a result, x∗=y∗, the proof is completed.
Example 2.4. Let X=R, Q=[0,∞), θ(t)=1+t, α=0, k=12, Gb:X×X×X→C be defined by Gb(ξ1,ξ2,ξ3)=max{|ξ1−ξ2|2,|ξ2−ξ3|2,|ξ1−ξ3|2}+max{|ξ1−ξ2|2,|ξ2−ξ3|2,|ξ1−ξ3|2}i with s=2. For any ξ in X, take Snξ=|ξ|4n and Fn=uSn, where u≥1,n∈N∗, the partial order ⪯ on X is the usual order ≤ of R.
Suppose that ξ1≥ξ2≥ξ3, if ξ1−ξ3≤1 for any ξ1,ξ2,ξ3 in Q, or ξ1,ξ2,ξ3∈[0,1], we can easily obtain
1+Gb(Snξ1,Snξ2,Snξ3)=1+(ξ1−ξ34n)2+(ξ1−ξ34n)2i, |
and
1+12Gb(ξ1,ξ2,ξ3)=1+12(ξ1−ξ3)2+12(ξ1−ξ3)2i. |
Hence,
|1+Gb(Snξ1,Snξ2,Snξ3)|4=[√(1+(ξ1−ξ34n)2)2+(ξ1−ξ34n)4]4=1+4(ξ1−ξ34n)2+8(ξ1−ξ34n)4+8(ξ1−ξ34n)6+4(ξ1−ξ34n)8≤1+12(ξ1−ξ34n)2+12(ξ1−ξ34n)4≤1+(ξ1−ξ3)2+12(ξ1−ξ3)4, |
and
|1+12Gb(ξ1,ξ2,ξ3)|2=1+(ξ1−ξ3)2+12(ξ1−ξ3)4. |
Thus we obtain
|1+Gb(Snξ1,Snξ2,Snξ3)|≤|1+12Gb(ξ1,ξ2,ξ3)|12≤|1+12M(ξ1,ξ2,ξ3)|12. |
It follows that the operator equations Fnξ=uξ have a common solution ξ∗=0 in Q and (2.19) is established with v=0. Therefore, all conditions of Theorem 2.3 are satisfied, the operator equations Fnξ=uξ have an unique solution ξ∗=0.
The following two corollaries can be easily obtained, if we let θ(t)=e|t|+t and θ(t)=2−2πarctan(1|t|γ) in Theorem 2.3 respectively.
Corollary 2.3. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, {Sn:X→Q,n∈N∗} be a dominated mapping sequence. Suppose that there exist i,j∈N∗,k∈(0,1),α≥0 such that
|e|Gb(Six,Sjy,Sjz)|+Gb(Six,Sjy,Sjz)|≤|e|1sM(x,y,z)−α|+1sM(x,y,z)−α|k |
for any comparable elements x,y,z in Q, where Gb(Six,Sjy,Sjz)≠0, and
M(x,y,z)=max{Gb(x,Six,Six),Gb(y,Sjy,Sjz),Gb(z,Sjz,Sjy),Gb(x,y,z)}. |
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if there exists an element v in Q such that v⪯x∗, and
Gb(Sn−1jv,Snjv,Snjv)≾Gb(x∗,Sn−1jv,Sn−1jv), |
then the operator equations have an unique solution.
Corollary 2.4. Let (X,Gb,⪯) be a complete partially ordered complex valued Gb-metric space with s≥1, Q⊂X be a cone, {Sn:X→Q,n∈N∗} be a dominated mapping sequence. Suppose that there exist i,j∈N∗,γ,k∈(0,1),α≥0 such that
2−2πarctan(1|Gb(Six,Sjy,Sjz)|γ)≤|2−2πarctan(1|1sM(x,y,z)−α|γ)|k |
for any comparable elements x,y,z in Q, where Gb(Six,Sjy,Sjz)≠0, and
M(x,y,z)=max{Gb(x,Six,Six),Gb(y,Sjy,Sjz),Gb(z,Sjz,Sjy),Gb(x,y,z)}. |
Define the operator equations Fnx=ux by Fn=uSn, u≥1. If a nonincreasing sequence {xn}→κ such that κ⪯xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if there exists an element v in Q such that v⪯x∗, and
Gb(Sn−1jv,Snjv,Snjv)≾Gb(x∗,Sn−1jv,Sn−1jv), |
then the operator equations have an unique solution.
In this paper, we have obtained some new theorems for the common solutions of the operator equations Fnx=ux(u≥1,n∈N∗) via complex valued Cp-class function, a type of Geraghty contraction and a type of JS contraction in complete partially ordered complex valued Gb-metric spaces, and some of which are established in a closed ball. These new results generalize many known results in complex valued Gb-metric spaces and Gb-metric spaces, in addition, it would be interesting and worthwhile to further investigate some similar problems in other types of spaces.
This work was supported by National Natural Science Foundation of China (Grant No. 11771198).
The authors declare no conflict of interest.
[1] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289-297. |
[2] |
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat, 28 (2014), 1087-1101. http://dx.doi.org/10.2298/FIL1406087A doi: 10.2298/FIL1406087A
![]() |
[3] |
L. Zhu, C. X. Zhu, C. F. Chen, Common fixed point theorems for fuzzy mappings in G-metric spaces, Fixed Point Theory A., 2012 (2012), 159. http://dx.doi.org/10.1186/1687-1812-2012-159 doi: 10.1186/1687-1812-2012-159
![]() |
[4] |
M. Asadi, E. Karapınar, P. Salimi, A new approach to G-metric and related fixed point theorems, J. Inequal. Appl., 2013 (2013), 454. http://dx.doi.org/10.1186/1029-242X-2013-454 doi: 10.1186/1029-242X-2013-454
![]() |
[5] |
J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenoviˊc, Common fixed point theorems for three maps in discontinuous Gb-metric spaces, Acta Math. Sci., 34 (2014), 1643-1654. http://dx.doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
![]() |
[6] |
J. Chen, C. X. Zhu, L. Zhu, A note on some fixed point theorems on G-metric spaces, J. Appl. Anal. Comput., 11 (2021), 101-112. http://dx.doi.org/10.11948/20190125 doi: 10.11948/20190125
![]() |
[7] |
Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl., 455 (2017), 528-537. http://dx.doi.org/10.1016/j.jmaa.2017.05.062 doi: 10.1016/j.jmaa.2017.05.062
![]() |
[8] |
M. Liang, C. X. Zhu, C. F. Chen, Z. Q. Wu, Some new theorems for cyclic contractions in Gb-metric spaces and some applications, Appl. Math. Comput., 346 (2019), 545-558. http://dx.doi.org/10.1016/j.amc.2018.10.028 doi: 10.1016/j.amc.2018.10.028
![]() |
[9] |
C. X. Zhu, J. Chen, C. F. Chen, J. H. Chen, H. P. Huang, A new generalization of F-metric spaces and some fixed point theorems and an application, J. Appl. Anal. Comput., 11 (2021), 2649-2663. http://dx.doi.org/10.11948/20210244 doi: 10.11948/20210244
![]() |
[10] | C. X. Zhu, J. Chen, X. J. Huang, J. H. Chen, Fixed point theorems in modular spaces with simulation functions and altering distance functions with applications, J. Nonlinear Convex A., 2020, 1403-1424. |
[11] | Y. X. Wang, C. F. Chen, Two new Geraghty type contractions in Gb-metric spaces, J. Funct. Space., 2019 (2019). http://dx.doi.org/10.1155/2019/7916486 |
[12] |
M. Jleli, E. Karapınar, B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 439. http://dx.doi.org/10.1186/1029-242X-2014-439 doi: 10.1186/1029-242X-2014-439
![]() |
[13] |
H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788. http://dx.doi.org/10.22436/jnsa.010.02.38 doi: 10.22436/jnsa.010.02.38
![]() |
[14] |
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. http://dx.doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
![]() |
[15] |
A. Shoaib, M. Arshad, T. Rasham, M. Abbas, Unique fixed point results on closed ball for dislocated quasi G-metric spaces, T. A. Razmadze Math. In., 171 (2017), 221-230. http://dx.doi.org/10.1016/j.trmi.2017.01.002 doi: 10.1016/j.trmi.2017.01.002
![]() |
[16] | O. Ege, Complex valued Gb-metric spaces, J. Comput. Anal. Appl., 21 (2016), 363-368. |
[17] | O. Ege, Some fixed point theorems in complex valued Gb-metric spaces, J. Nonlinear Convex A., 18 (2017), 1997-2005. |
[18] |
O. Ege, C. Park, A. H. Ansari, A different approach to complex valued Gb-metric spaces, Adv. Differ. Equ., 2020 (2020), 152. http://dx.doi.org/10.1186/s13662-020-02605-0 doi: 10.1186/s13662-020-02605-0
![]() |
[19] | O. Ege, I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai J. Math., 16 (2018), 775-787. |
[20] |
A. H. Ansari, O. Ege, S. Radenoviˊc, Some fixed point results on complex valued Gb-metric spaces, RACSAM Rev. R. Acad. A, 112 (2018), 463-472. http://dx.doi.org/10.1007/s13398-017-0391-x doi: 10.1007/s13398-017-0391-x
![]() |
[21] |
H. Afshari, Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces, Adv. Differ. Equ., 2019 (2019), 285. http://dx.doi.org/10.1186/s13662-019-2227-9 doi: 10.1186/s13662-019-2227-9
![]() |
[22] | H. Afshari, M. Atapour, E. Karapınar, A discussion on a generalized Geraghty multi-valued mappings and applications, Adv. Differ. Equ., 2020 (2020). http://dx.doi.org/10.1186/s13662-020-02819-2 |
[23] |
H. Afshari1, S. Kalantari, D. Baleanu, Solution of fractional differential equations via α-ψ-Geraghty type mappings, Adv. Differ. Equ., 2018 (2018), 347. https://doi.org/10.1186/s13662-018-1807-4 doi: 10.1186/s13662-018-1807-4
![]() |
[24] |
M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory A., 2012 (2012), 210. http://dx.doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210
![]() |
[25] | R. P. Agarwal, H. H. Alsulami, E. Karapınar, F. Khojasteh, Remarks on some recent fixed point results on quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014). http://dx.doi.org/10.1155/2014/171624 |
[26] | A. Shoaib, S. Mustafa, A. Shahzad, Common fixed point of multivalued mappings in ordered dislocated quasi G-metric spaces, Punjab Univ. J. Math., 52 (2020). |
[27] | A. E. Al-Mazrooei, A. Shoaib, J. Ahmad, Unique fixed-point results for β-admissible mapping under (β-ˇψ)-contraction in complete dislocated Gd-metric space, Mathematics, 8 (2020). http://dx.doi.org/10.3390/math8091584 |
[28] |
M. Abbas, S. Z. Németh, Finding solutions of implict complementarity problems by isotonicty of the metric projection, Nonlinear Anal., 75 (2012), 2349-2361. http://dx.doi.org/10.1016/j.na.2011.10.033 doi: 10.1016/j.na.2011.10.033
![]() |
1. |
Yiquan Li, Chuanxi Zhu, Yingying Xiao,
SOME COMMON FIXED-POINT RESULTS IN GENERALIZED |