Mathematics

Research article

A note on three different contractions in partially ordered complex valued G_{b}-metric spaces

Yiquan Li ${ }^{1}$, Chuanxi Zhu ${ }^{1, *}$, Yingying Xiao ${ }^{1,2}$ and $\mathbf{L i}$ Zhou ${ }^{1,2}$
${ }^{1}$ School of Mathematics and Computer Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
${ }^{2}$ Department of Basic discipline, Nanchang JiaoTong Institute, Nanchang, Jiangxi, 330031, China
* Correspondence: Email: chuanxizhu@126.com.

Abstract

In this paper, we introduce the complex valued C^{p}-class function, a type of Geraghty contraction and a type of JS contraction in complete partially ordered complex valued G_{b}-metric spaces, prove three fixed point theorems in this space, and also we give some examples to support our results.

Keywords: complex valued G_{b}-metric space; complex valued C^{p}-class function; Geraghty contraction; JS contraction; partially ordered
Mathematics Subject Classification: 47H10, 54H25, 54D99, 54E99

1. Introduction

Fixed point theory in metric spaces occupies an extremely important position in modern mathematics, it has been generalized in various aspects. For example, G-metric spaces [1] were introduced and G_{b}-metric spaces were reported in [2], which successfully popularized the general metric and promoted the research of various types of fixed point theorems. These theorems are accompanied with different contractive conditions (see [3-12,21-27]), especially the new Geraghty contraction was given in [13] and the JS contraction was given in [14].

Recently, Shoaib et al. [15] introduced the ordered dislocated quasi G-metric spaces, and obtained some new fixed point results for a dominated mapping on a close ball in this space. On the other hand, Ege [16] also proposed the complex valued G_{b}-metric spaces as a new notion, the Banach contraction principle and Kannan's fixed point theorem were proved for this space. Moreover, there are also other interesting fixed point theorems in this space (see [17-20]).

In this work, we study some problems about the common solutions of the operator equations $F_{n} x=$ $u x\left(u \geq 1, n \in \mathbb{N}^{*}\right)$ in complete partially ordered complex valued G_{b}-metric spaces, introduce the
complex valued C^{p}-class function and a type of Geraghty contraction to this space respectively, and we obtain the common solutions in a closed ball. Furthermore, we also introduce a type of JS contraction to this space and investigate a new theorem.

Firstly, we recall some basic concepts, which will be used later. For a real Banach space E, a nonempty closed subset $Q \subset E$ is called a cone, if
(a) for all $\zeta \in Q$ and $\tau \geq 0, \tau \zeta \in Q$;
(b) for all $\zeta_{1}, \zeta_{2} \in Q, \zeta_{1}+\zeta_{2} \in Q$;
(c) $Q \cap(-Q)=0$.

For $\xi_{1}, \xi_{2} \in E$, given a cone Q, we define a partial order \leq on E, which is induced by Q, i.e., $\xi_{1} \leq \xi_{2}$ iff $\xi_{2}-\xi_{1} \in Q$. Furthermore, ξ_{1}, ξ_{2} are said to be comparable if $\xi_{1} \leq \xi_{2}$ or $\xi_{2} \leq \xi_{1}$.

On the other hand, for all $\xi_{1}, \xi_{2} \in \mathbb{C}$, the partial order \precsim on \mathbb{C} is defined as follows:

$$
\xi_{1} \precsim \xi_{2} \Leftrightarrow \operatorname{Re}\left(\xi_{1}\right) \leq \operatorname{Re}\left(\xi_{2}\right) \text { and } \operatorname{Im}\left(\xi_{1}\right) \leq \operatorname{Im}\left(\xi_{2}\right) .
$$

Therefore, ξ_{1} § ξ_{2} if one of the following conditions holds:
$\left(C_{1}\right) \operatorname{Re}\left(\xi_{1}\right)=\operatorname{Re}\left(\xi_{2}\right)$ and $\operatorname{Im}\left(\xi_{1}\right)=\operatorname{Im}\left(\xi_{2}\right)$;
$\left(C_{2}\right) \operatorname{Re}\left(\xi_{1}\right)=\operatorname{Re}\left(\xi_{2}\right)$ and $\operatorname{Im}\left(\xi_{1}\right)<\operatorname{Im}\left(\xi_{2}\right)$;
$\left(C_{3}\right) \operatorname{Re}\left(\xi_{1}\right)<\operatorname{Re}\left(\xi_{2}\right)$ and $\operatorname{Im}\left(\xi_{1}\right)=\operatorname{Im}\left(\xi_{2}\right)$;
$\left(C_{4}\right) \operatorname{Re}\left(\xi_{1}\right)<\operatorname{Re}\left(\xi_{2}\right)$ and $\operatorname{Im}\left(\xi_{1}\right)<\operatorname{Im}\left(\xi_{2}\right)$.
Moreover, we denote $\xi_{1}<\xi_{2}$ if only $\left(C_{4}\right)$ holds. Obviously, $0 \precsim \xi_{1} \precsim \xi_{2} \Rightarrow\left|\xi_{1}\right| \leq\left|\xi_{2}\right|$, where $\left|\xi_{i}\right|$ is the magnitude of $\xi_{i}, i=1,2$. For more details, see [25].
Definition 1.1. ([16]) Let X be a nonempty set, for a real number $s \geq 1$, if the mapping $G_{b}: X \times X \times X \rightarrow$ \mathbb{C} satisfies:
$\left(C G_{b} 1\right) G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=0$ if $\zeta_{1}=\zeta_{2}=\zeta_{3}$;
$\left(C G_{b} 2\right) G_{b}\left(\zeta_{1}, \zeta_{1}, \zeta_{2}\right)>0$ for all $\zeta_{1}, \zeta_{2} \in X$ with $\zeta_{1} \neq \zeta_{2}$;
$\left(C G_{b} 3\right) G_{b}\left(\zeta_{1}, \zeta_{1}, \zeta_{2}\right) \precsim G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ for all $\zeta_{1}, \zeta_{2}, \zeta_{3} \in X$ with $\zeta_{3} \neq \zeta_{2}$;
$\left(C G_{b} 4\right) G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=G_{b}\left(R\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}\right)$, where R is an arbitrary permutation of $\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}$;
$\left(C G_{b} 5\right) G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right) \precsim s\left[G_{b}\left(\zeta_{1}, v, v\right)+G_{b}\left(v, \zeta_{2}, \zeta_{3}\right)\right]$ for all $\zeta_{1}, \zeta_{2}, \zeta_{3}, v \in X$.
Then the function G_{b} is called a complex valued G_{b}-metric on X, the pair $\left(X, G_{b}\right)$ is called a complex valued G_{b}-metric space.
Proposition 1.1. ([16]) For a complex valued G_{b}-metric space (X, G_{b}) and all $\zeta_{1}, \zeta_{2}, \zeta_{3} \in X$, we have
(1) $G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right) \precsim s\left[G_{b}\left(\zeta_{1}, \zeta_{1}, \zeta_{2}\right)+G_{b}\left(\zeta_{1}, \zeta_{1}, \zeta_{3}\right)\right]$;
(2) $G_{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{2}\right) \precsim 2 s\left[G_{b}\left(\zeta_{1}, \zeta_{1}, \zeta_{2}\right)\right]$.

Definition 1.2. ([16]) Let $\left\{x_{n}\right\}$ be a sequence in a complex valued G_{b}-metric space $\left(X, G_{b}\right)$,
(1) $\left\{x_{n}\right\}$ is called complex valued G_{b}-convergent to $\zeta \in X$, if for any $\epsilon \in \mathbb{C}$ with $\epsilon>0$, there exists $\xi \in \mathbb{N}$ such that $G_{b}\left(\zeta, x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq \xi$. We write $x_{n} \rightarrow \zeta$ as $n \rightarrow \infty$, or $\lim _{n \rightarrow \infty} x_{n}=\zeta$;
(2) $\left\{x_{n}\right\}$ is called complex valued G_{b}-Cauchy, if for any $\epsilon \in \mathbb{C}$ with $\epsilon>0$, there exists $\xi \in \mathbb{N}$ such that $G_{b}\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$ for all $n, m, l \geq \xi$;
(3) (X, G_{b}) is said to be complex valued G_{b}-complete, if any complex valued G_{b}-Cauchy sequence $\left\{x_{n}\right\}$ is complex valued G_{b}-convergent.
Theorem 1.1. ([16]) Let $\left\{x_{n}\right\}$ be a sequence in a complex valued G_{b}-metric space (X, G_{b}), and $\zeta \in X$, the following are equivalent:
(1) $\left\{x_{n}\right\}$ is complex valued G_{b}-convergent to ζ;
(2) $\left|G_{b}\left(x_{n}, x_{m}, \zeta\right)\right| \rightarrow 0$ as $n, m \rightarrow \infty$;
(3) $\left|G_{b}\left(x_{n}, \zeta, \zeta\right)\right| \rightarrow 0$ as $n \rightarrow \infty$;
(4) $\left|G_{b}\left(x_{n}, x_{n}, \zeta\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 1.2. ([16]) A sequence $\left\{x_{n}\right\}$ is complex valued G_{b}-Cauchy sequence is equivalent to $\left|G_{b}\left(x_{n}, x_{m}, x_{l}\right)\right| \rightarrow 0$ as $n, m, l \rightarrow \infty$.
Definition 1.3. ([28]) Let $Q \subset \mathbb{R}^{m}$ be a cone, a mapping $S: Q \rightarrow \mathbb{R}^{m}$ is said to be dominated if $S x \leq x$ for all $x \in Q$.
Theorem 1.3. ([15]) Let (X, \leq, G) be an ordered complete dislocated quasi G-metric space, $S: X \rightarrow X$ be a mapping and x_{0} be an arbitrary point in X. Suppose there exists $k \in\left[0, \frac{1}{2}\right)$ with

$$
G(S x, S y, S z) \leq k(G(x, S x, S x)+G(y, S y, S y)+G(z, S z, S z))
$$

for all comparable elements $x, y, z \in \overline{B\left(x_{0}, r\right)}$, and

$$
G\left(x_{0}, S x_{0}, S x_{0}\right) \leq(1-\theta) r
$$

where $\theta=\frac{k}{1-2 k}$. If for nonincreasing sequence $\left\{x_{n}\right\} \rightarrow u$ implies that $u \leq x_{n}$. Then there exists a point $\overline{x^{\star}}$ in $\overline{B\left(x_{0}, r\right)}$ such that $x^{\star}=S x^{\star}$ and $G\left(x^{\star}, x^{\star}, x^{\star}\right)=0$. Moreover, if for any three points $x, y, z \in \overline{B\left(x_{0}, r\right)}$, there exists a point v in $\overline{B\left(x_{0}, r\right)}$ such that $v \leq x$ and $v \leq y, v \leq z$, where

$$
G\left(x_{0}, S x_{0}, S x_{0}\right)+G(v, S v, S v)+G(v, S v, S v) \leq G\left(x_{0}, v, v\right)+G\left(S x_{0}, S v, S v\right)+G\left(S x_{0}, S v, S v\right)
$$

then the point x^{\star} is unique.

2. Results and examples

In this section, let $X=\mathbb{R}^{N}, \Omega_{1}=\left\{Z_{1} \in \mathbb{C}: 0 \precsim Z_{1}\right\}, \Omega_{2}=\left\{Z_{2} \in \mathbb{C}: 0<Z_{2}\right\}, \Omega_{3}=\left\{Z_{3} \in \mathbb{C}: 1 \prec\right.$ $\left.Z_{3}\right\}$. $\left(X, G_{b}, \leq\right)$ is called a partially ordered complex valued G_{b}-metric space, which shows (X, G_{b}) is a complex valued G_{b}-metric space and (X, \leq) is a partially ordered set.

Let $\left(X, G_{b}\right)$ be a complex valued G_{b}-metric space, for any $x_{0} \in X, r \in \mathbb{C}$ and $r>0$, the G_{b}-ball with ball center x_{0} is $\overline{B\left(x_{0}, r\right)}=\left\{x \in X \mid G_{b}\left(x_{0}, x, x\right) \precsim r\right\}$. Moreover, for all $n \in \mathbb{N}^{*}$ and $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$, the function $\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \gtrsim x_{j}, j=1,2, \ldots, n$.
Definition 2.1. A continuous mapping $P: \Omega_{1}^{3} \rightarrow \mathbb{C}$ is called complex valued C^{p}-class function, if it satisfies $r \precsim P(r, s, t)$ for all $r, s, t \in \Omega_{1}$.
Example 2.1. Some examples of complex valued C^{p}-class function are given as follows:
(1) $P(r, s, t)=r+s+t$, where $r, s, t \in \Omega_{1}$;
(2) $P(r, s, t)=m r$, where $m \in[1, \infty)$ and $r, s, t \in \Omega_{1}$;
(3) $P(r, s, t)=\eta(r) r$, where $\eta: \Omega_{1} \rightarrow[1, \infty)$ and $r, s, t \in \Omega_{1}$.

Theorem 2.1. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, x_{0} be an arbitrary element in $Q,\left\{S_{n}: X \rightarrow X, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. If there exist $r \in \Omega_{2}$, and nonnegative numbers α, β, γ satisfy $\alpha-2 s \gamma \neq 0, \frac{\beta}{\alpha-2 \gamma} \in$ $[0, \delta], \delta<\frac{1}{s}$, such that

$$
\begin{align*}
& P\left[\psi\left(\alpha G_{b}\left(S_{i} x, S_{j} y, S_{j} y\right)\right), \varphi\left(\alpha G_{b}\left(S_{i} x, S_{j} y, S_{j} y\right)\right), \varphi\left(\alpha G_{b}\left(S_{i} x, S_{j} y, S_{j} y\right)\right)\right] \\
& \lesssim \psi\left[\beta G_{b}\left(x, S_{i} x, S_{i} x\right)+\gamma G_{b}\left(y, S_{j} y, S_{j} z\right)+\gamma G_{b}\left(z, S_{j} z, S_{j} y\right)\right] \tag{2.1}
\end{align*}
$$

for any comparable elements x, y, z in $\overline{B\left(x_{0}, r\right)}$, where $\overline{B\left(x_{0}, r\right)} \subset Q, i, j \in \mathbb{N}^{*}, P$ is a complex valued C^{p}-class function, $\psi: \Omega_{1} \rightarrow \Omega_{1}$ is a nondecreasing function, $\varphi: \Omega_{1} \rightarrow \mathbb{C}$ is a continuous function. And

$$
\begin{equation*}
G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) \precsim \frac{1-s \delta}{s} r . \tag{2.2}
\end{equation*}
$$

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in $\overline{B\left(x_{0}, r\right)}$. Moreover, if there exists an element v in $\overline{B\left(x_{0}, r\right)}$ such that $v \leq x^{*}$, and

$$
\begin{equation*}
\beta G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right)+2 \gamma G_{b}\left(v, S_{j} v, S_{j} v\right) \precsim \beta G_{b}\left(x_{0}, v, v\right)+2 \gamma G_{b}\left(S_{1} x_{0}, S_{j} v, S_{j} v\right), \tag{2.3}
\end{equation*}
$$

then the operator equations have an unique solution.
Proof. By selecting the ball centre x_{0} in $\overline{B\left(x_{0}, r\right)}$, we construct a sequence $\left\{x_{n}\right\}$, where $x_{n+1}=S_{n+1} x_{n} \leq$ $x_{n}, n \in \mathbb{N}$. From (2.2), we obtain $x_{1} \in \overline{B\left(x_{0}, r\right)}$. Using (2.1), we have

$$
\begin{aligned}
& \psi\left(\alpha G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right) \\
& \precsim P\left[\psi\left(\alpha G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right), \varphi\left(\alpha G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right), \varphi\left(\alpha G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right)\right] \\
& \precsim \psi\left[\beta G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right)+2 \gamma G_{b}\left(x_{1}, S_{2} x_{1}, S_{2} x_{1}\right)\right] .
\end{aligned}
$$

Since the function ψ is nondecreasing, we can easily get

$$
G_{b}\left(x_{1}, x_{2}, x_{2}\right) \precsim \frac{\beta}{\alpha-2 \gamma} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \precsim \delta G_{b}\left(x_{0}, x_{1}, x_{1}\right) .
$$

Hence, $G_{b}\left(x_{0}, x_{2}, x_{2}\right) \precsim s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+\underline{\left.G_{b}\left(x_{1}, x_{2}, x_{2}\right)\right]} s(1+\delta) G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right.$. Using (2.2), we get $G_{b}\left(x_{0}, x_{2}, x_{2}\right) \precsim\left(1-\delta^{2}\right) r<r$, that is $x_{2} \in \overline{B\left(x_{0}, r\right)}$.

Now we prove $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$. Suppose that $x_{3}, x_{4}, \ldots, x_{k} \in \overline{B\left(x_{0}, r\right)}$, according to (2.1), we have

$$
\begin{aligned}
& \psi\left(\alpha G_{b}\left(S_{k} x_{k-1}, S_{k+1} x_{k}, S_{k+1} x_{k}\right)\right) \\
& \precsim P\left[\psi\left(\alpha G_{b}\left(S_{k} x_{k-1}, S_{k+1} x_{k}, S_{k+1} x_{k}\right)\right), \varphi\left(\alpha G_{b}\left(S_{k} x_{k-1}, S_{k+1} x_{k}, S_{k+1} x_{k}\right)\right), \varphi\left(\alpha G_{b}\left(S_{k} x_{k-1}, S_{k+1} x_{k}, S_{k+1} x_{k}\right)\right)\right] \\
& \precsim \psi\left[\beta G_{b}\left(x_{k-1}, S_{k} x_{k-1}, S_{k} x_{k-1}\right)+2 \gamma G_{b}\left(x_{k}, S_{k+1} x_{k}, S_{k+1} x_{k}\right)\right] .
\end{aligned}
$$

Thus $G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right) \precsim \frac{\beta}{\alpha-2 \gamma} G_{b}\left(x_{k-1}, x_{k}, x_{k}\right) \precsim \delta G_{b}\left(x_{k-1}, x_{k}, x_{k}\right)$, it can easily get that

$$
\begin{equation*}
G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right) \precsim \delta^{k} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \tag{2.4}
\end{equation*}
$$

By using $\left(C G_{b} 5\right)$ and (2.4), it follows that

$$
\begin{aligned}
G_{b}\left(x_{0}, x_{k+1}, x_{k+1}\right) & \lesssim s G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} G_{b}\left(x_{1}, x_{2}, x_{2}\right)+\ldots+s^{k+1} G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right) \\
& \lesssim\left(s+s^{2} \delta+\ldots+s^{k+1} \delta^{k}\right) G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& \lesssim s \cdot \frac{1}{1-s \delta} \frac{1-s \delta}{s} r \\
& =r
\end{aligned}
$$

i.e., $x_{k+1} \in \overline{B\left(x_{0}, r\right)}$, therefore, $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$.

Now we show that $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence, from (2.4), we obtain

$$
\begin{equation*}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \precsim \delta^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right), \tag{2.5}
\end{equation*}
$$

thus for all $n, m \in \mathbb{N}^{*}, n<m$, we have

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{m}, x_{m}\right) & \lesssim s G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+s^{2} G_{b}\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+\ldots+s^{m-n} G_{b}\left(x_{m-1}, x_{m}, x_{m}\right) \\
& \precsim\left(s \delta^{n}+s^{2} \delta^{n+1}+\ldots+s^{m-n} \delta^{m-1}\right) G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& \precsim s \delta^{n} \cdot \frac{1}{1-s \delta} G_{b}\left(x_{0}, x_{1}, x_{1}\right),
\end{aligned}
$$

which implies that

$$
\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{m}\right)=0 .
$$

Therefore, $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence, and there exists an element x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $x_{n} \rightarrow x^{*}$.

Next we prove x^{*} is the common solution of the operator equations. For any $j \in \mathbb{N}^{*}$, we have

$$
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim s\left[G_{b}\left(x^{*}, x^{n}, x^{n}\right)+G_{b}\left(x^{n}, S_{j} x^{*}, S_{j} x^{*}\right)\right] .
$$

Furthermore, since $S_{j} x^{*} \leq x^{*} \leq x_{n} \leq x_{n-1}$, using (2.1), it can be easily get that

$$
\alpha G_{b}\left(x^{n}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim \beta G_{b}\left(x^{n-1}, x^{n}, x^{n}\right)+2 \gamma G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) .
$$

Hence,

$$
\begin{aligned}
\alpha G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) & \lesssim s \alpha G_{b}\left(x^{*}, x^{n}, x^{n}\right)+s \alpha G_{b}\left(x^{n}, S_{j} x^{*}, S_{j} x^{*}\right) \\
& \lesssim \operatorname{si\alpha } G_{b}\left(x^{*}, x^{n}, x^{n}\right)+s \beta G_{b}\left(x^{n-1}, x^{n}, x^{n}\right)+2 s \gamma G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) .
\end{aligned}
$$

That is,

$$
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim \frac{1}{\alpha-2 s \gamma}\left[s \alpha G_{b}\left(x^{*}, x^{n}, x^{n}\right)+s \beta G_{b}\left(x^{n-1}, x^{n}, x^{n}\right)\right] .
$$

Let $n \rightarrow \infty$ at both sides of the above inequality, we obtain $\lim _{n \rightarrow \infty} G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right)=0$, i.e. $x^{*}=$ $S_{j} x^{*}$. According to the arbitrariness of j, we get x^{*} is a common solution of the operator equations.

Uniqueness. Assume that y^{*} is another solution of the operator equations, $y^{*} \neq x^{*}$ and $y^{*} \in \overline{B\left(x_{0}, r\right)}$. Case 1. If x^{*} and y^{*} are comparable, using (2.1), it follows that

$$
\begin{aligned}
\alpha G_{b}\left(x^{*}, y^{*}, y^{*}\right) & =\alpha G_{b}\left(S_{i} x^{*}, S_{j} y^{*}, S_{j} y^{*}\right) \\
& \precsim \beta G_{b}\left(x^{*}, S_{i} x^{*}, S_{i} x^{*}\right)+2 \gamma G_{b}\left(y^{*}, S_{j} y^{*}, S_{j} y^{*}\right) \\
& =\beta G_{b}\left(x^{*}, x^{*}, x^{*}\right)+2 \gamma G_{b}\left(y^{*}, y^{*}, y^{*}\right) \\
& =0,
\end{aligned}
$$

as a result, $x^{*}=y^{*}$.
Case 2. If x^{*} and y^{*} are not comparable, then there exists an element $v \in \overline{B\left(x_{0}, r\right)}$ such that $v \leq x^{*}$ and $v \leq y^{*}$, for any $j \in \mathbb{N}^{*}$, we will show $\left\{S_{j}^{n} x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$. Owing to (2.1) and (2.3), we have

$$
\begin{aligned}
\alpha G_{b}\left(S_{1} x_{0}, S_{j} v, S_{j} v\right) & \precsim \beta G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right)+2 \gamma G_{b}\left(v, S_{j} v, S_{j} v\right) \\
& \precsim \beta G_{b}\left(x_{0}, v, v\right)+2 \gamma G_{b}\left(S_{1} x_{0}, S_{j} v, S_{j} v\right),
\end{aligned}
$$

i.e.,

$$
G_{b}\left(S_{1} x_{0}, S_{j} v, S_{j} v\right) \precsim \frac{\beta}{\alpha-2 \gamma} G_{b}\left(x_{0}, v, v\right) \precsim \delta r .
$$

Hence,

$$
\begin{aligned}
G_{b}\left(x_{0}, S_{j} v, S_{j} v\right) & \lesssim s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{1}, S_{j} v, S_{j} v\right)\right] \\
& \precsim s\left(\frac{1-s \delta}{s} r+\delta r\right) \\
& =r,
\end{aligned}
$$

that is $S_{j} v \in \overline{B\left(x_{0}, r\right)}$. Suppose that $S_{j}^{2} v, S_{j}^{3} v, \ldots, S_{j}^{k} v \in \overline{B\left(x_{0}, r\right)}$, obviously, $S_{j}^{k} v \leq S_{j}^{k-1} v \leq \ldots \leq S_{j}^{2} v \leq$ $S_{j} v \leq v \leq x^{*} \leq x_{n} \leq \ldots \leq x_{0}$. From (2.1), we can immediately obtain

$$
\alpha G_{b}\left(S_{j}^{k} v, S_{j}^{k+1} v, S_{j}^{k+1} v\right) \lesssim \beta G_{b}\left(S_{j}^{k-1} v, S_{j}^{k} v, S_{j}^{k} v\right)+2 \gamma G_{b}\left(S_{j}^{k} v, S_{j}^{k+1} v, S_{j}^{k+1} v\right),
$$

so we have

$$
G_{b}\left(S_{j}^{k} v, S_{j}^{k+1} v, S_{j}^{k+1} v\right) \precsim \frac{\beta}{\alpha-2 \gamma} G_{b}\left(S_{j}^{k-1} v, S_{j}^{k} v, S_{j}^{k} v\right) \precsim \delta G_{b}\left(S_{j}^{k-1} v, S_{j}^{k} v, S_{j}^{k} v\right),
$$

as a result,

$$
\begin{align*}
G_{b}\left(S_{j}^{k} v, S_{j}^{k+1} v, S_{j}^{k+1} v\right) & \lesssim \delta G_{b}\left(S_{j}^{k-1} v, S_{j}^{k} v, S_{j}^{k} v\right) \\
& \precsim \ldots \tag{2.6}\\
& \precsim \delta^{k} G_{b}\left(v, S_{j} v, S_{j} v\right) .
\end{align*}
$$

In addition, using (2.1), (2.3), (2.5) and (2.6), we can also immediately obtain

$$
\begin{aligned}
\alpha G_{b}\left(x_{k+1}, S_{j}^{k+1} v, S_{j}^{k+1} v\right) & \lesssim \beta G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right)+2 \gamma G_{b}\left(S_{j}^{k} v, S_{j}^{k+1} v, S_{j}^{k+1} v\right) \\
& \precsim \beta \delta^{k} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+2 \gamma \delta^{k} G_{b}\left(v, S_{j} v, S_{j} v\right) \\
& \precsim \beta \delta^{k} G_{b}\left(x_{0}, v, v\right)+2 \gamma \delta^{k} G_{b}\left(S_{1} x_{0}, S_{j} v, S_{j} v\right) \\
& \precsim \beta \delta^{k} G_{b}\left(x_{0}, v, v\right)+2 \gamma \delta^{k} \frac{\beta}{\alpha-2 \gamma} G_{b}\left(x_{0}, v, v\right) \\
& \precsim\left(\beta \delta^{k}+2 \gamma \delta^{k+1}\right) G_{b}\left(x_{0}, v, v\right),
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
G_{b}\left(x_{k+1}, S_{j}^{k+1} v, S_{j}^{k+1} v\right) & \precsim \frac{\left(\beta \delta^{k}+2 \gamma \delta^{k+1}\right)}{\alpha} G_{b}\left(x_{0}, v, v\right) \\
& \precsim \frac{(\alpha-2 \gamma) \delta^{k+1}+2 \gamma \delta^{k+1}}{\alpha} G_{b}\left(x_{0}, v, v\right) \\
& =\delta^{k+1} G_{b}\left(x_{0}, v, v\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
G_{b}\left(x_{0}, S_{j}^{k+1} v, S_{j}^{k+1} v\right) & \lesssim s G_{b}\left(x_{0}, x_{1}, x_{1}\right)+\ldots+s^{k+1} G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right)+s^{k+1} G_{b}\left(x_{k+1}, S_{j}^{k+1} v, S_{j}^{k+1} v\right) \\
& \precsim\left(s+s^{2} \delta+\ldots+s^{k+1} \delta^{k}\right) G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{k+1} \delta^{k+1} G_{b}\left(x_{0}, v, v\right) \\
& \precsim s \cdot \frac{1-(s \delta)^{k+1}}{1-s \delta} \cdot \frac{1-s \delta}{s} r+(s \delta)^{k+1} \cdot r \\
& =\left[1-(s \delta)^{k+1}+(s \delta)^{k+1}\right] r \\
& =r,
\end{aligned}
$$

which implies $S_{j}^{k+1} v \in \overline{B\left(x_{0}, r\right)}$, so $\left\{S_{j}^{n} x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$. From (2.6), we obtain

$$
G_{b}\left(S_{j}^{n} v, S_{j}^{n+1} v, S_{j}^{n+1} v\right) \precsim \delta^{n} G_{b}\left(v, S_{j} v, S_{j} v\right),
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(S_{j}^{n} v, S_{j}^{n+1} v, S_{j}^{n+1} v\right)=0 \tag{2.7}
\end{equation*}
$$

From (2.1), we can easily get

$$
\begin{aligned}
\alpha G_{b}\left(x^{*}, S_{j}^{n} v, S_{j}^{n} v\right) & =\alpha G_{b}\left(S_{i} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right) \\
& \precsim \beta G_{b}\left(x^{*}, S_{i} x^{*}, S_{i} x^{*}\right)+2 \gamma G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) \\
& =2 \gamma G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) .
\end{aligned}
$$

Owing to (2.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)=0 \tag{2.8}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\alpha G_{b}\left(S_{j}^{n} v, y^{*}, y^{*}\right) & =\alpha G_{b}\left(S_{j}^{n} v, S_{i} y^{*}, S_{i} y^{*}\right) \\
& \precsim \beta G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right)+2 \gamma G_{b}\left(y^{*}, S_{i} y^{*}, S_{i} y^{*}\right) \\
& =\beta G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) .
\end{aligned}
$$

According to (2.7), we also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(S_{j}^{n} v, y^{*}, y^{*}\right)=0 . \tag{2.9}
\end{equation*}
$$

Since $G_{b}\left(x^{*}, y^{*}, y^{*}\right) \precsim s\left[G_{b}\left(x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)+G_{b}\left(S_{j}^{n} v, y^{*}, y^{*}\right)\right]$, using (2.8) and (2.9), we obtain

$$
G_{b}\left(x^{*}, y^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} G_{b}\left(x^{*}, y^{*}, y^{*}\right) \precsim 0 .
$$

Therefore, $x^{*}=y^{*}$, the proof is completed.
Following the proof process of Theorem 2.1, we can obtain the following corollary.
Corollary 2.1. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, $\left\{S_{n}: X \rightarrow Q, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. If there exist nonnegative numbers α, β, γ satisfy $\alpha-2 s \gamma \neq 0, \frac{\beta}{\alpha-2 \gamma} \in\left[0, \frac{1}{s}\right.$), such that

$$
\begin{aligned}
& \eta\left(\psi\left(\alpha G_{b}\left(S_{i} x, S_{j} y, S_{j} y\right)\right)\right) \psi\left(\alpha G_{b}\left(S_{i} x, S_{j} y, S_{j} y\right)\right) \\
& \precsim \psi\left[\beta G_{b}\left(x, S_{i} x, S_{i} x\right)+\gamma G_{b}\left(y, S_{j} y, S_{j} z\right)+\gamma G_{b}\left(z, S_{j} z, S_{j} y\right)\right]
\end{aligned}
$$

for any comparable elements x, y, z in Q, where $i, j \in \mathbb{N}^{*}, \eta: \Omega_{1} \rightarrow[1, \infty), \psi: \Omega_{1} \rightarrow \Omega_{1}$ is a nondecreasing function.

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in Q. Moreover, if there exists an element v in Q such that $v \leq x^{*}$, then the operator equations have an unique solution.
Example 2.2. Let $X=R, Q=[0, \infty), \alpha=5, \beta=\gamma=1, \delta=\frac{1}{3}, G_{b}: X \times X \times X \rightarrow \mathbb{C}$ be defined by $G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\max \left\{\left|\xi_{1}-\xi_{2}\right|^{2},\left|\xi_{2}-\xi_{3}\right|^{2},\left|\xi_{1}-\xi_{3}\right|^{2}\right\}+\max \left\{\left|\xi_{1}-\xi_{2}\right|^{2},\left|\xi_{2}-\xi_{3}\right|^{2},\left|\xi_{1}-\xi_{3}\right|^{2}\right\} i$ with $s=2$, and $\psi(r)=\eta(r) r=r$ for any r in Ω_{1}.

For any ξ in $X, 0<v^{n} \leq \frac{1}{4}$ and $n \in \mathbb{N}^{*}$, take $S_{n} \xi=v^{n} \xi$ and $F_{n}=u S_{n}$, where $u \geq 1$. The partial order \leq on X is the usual order \leq of R, for any $\xi_{1}, \xi_{2}, \xi_{3}$ in Q, we have

$$
\alpha G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{2}\right)=5 v^{2 n}\left(\xi_{1}-\xi_{2}\right)^{2}+5 v^{2 n}\left(\xi_{1}-\xi_{2}\right)^{2} i,
$$

and

$$
\beta\left|\xi_{1}-v^{n} \xi_{1}\right|^{2}+\gamma\left|\xi_{2}-v^{n} \xi_{2}\right|^{2}+\gamma\left|\xi_{3}-v^{n} \xi_{3}\right|^{2}=\left(1-v^{n}\right)^{2}\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right) .
$$

Hence,

$$
\begin{aligned}
& \alpha G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{2}\right) \\
& \precsim \beta\left|\xi_{1}-v^{n} \xi_{1}\right|^{2}+\gamma\left|\xi_{2}-v^{n} \xi_{2}\right|^{2}+\gamma\left|\xi_{3}-v^{n} \xi_{3}\right|^{2}+\left[\beta\left|\xi_{1}-v^{n} \xi_{1}\right|^{2}+\gamma\left|\xi_{2}-v^{n} \xi_{2}\right|^{2}+\gamma\left|\xi_{3}-v^{n} \xi_{3}\right|^{2}\right] i \\
& \precsim \beta G_{b}\left(\xi_{1}, S_{n} \xi_{1}, S_{n} \xi_{1}\right)+\gamma G_{b}\left(\xi_{2}, S_{n} \xi_{2}, S_{n} \xi_{3}\right)+\gamma G_{b}\left(\xi_{3}, S_{n} \xi_{3}, S_{n} \xi_{2}\right) .
\end{aligned}
$$

It follows that the operator equations $F_{n} \xi=u \xi$ have a common solution $\xi^{*}=0$ in Q, and there exists an element $v=0$ in Q such that $v \leq \xi^{*}$. Therefore, all conditions of Corollary 2.1 are satisfied, the operator equations $F_{n} \xi=u \xi$ have an unique solution $\xi^{*}=0$.

Let \mathscr{B} be the set of functions $\beta: \Omega_{1} \rightarrow\left[0, \frac{1}{s}\right.$, which satisfies if $\lim _{n \rightarrow \infty} \beta\left(x_{n}\right)=\frac{1}{s}$, then $\lim _{n \rightarrow \infty} x_{n}=0$.
Theorem 2.2. Let $\left(X, G_{b}, \leq\right)$ be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, x_{0} be an arbitrary element in $Q,\left\{S_{n}: X \rightarrow X, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. Suppose that there exist $\beta \in \mathscr{B}, i, j \in \mathbb{N}^{*}$ and $r \in \Omega_{2}$, such that

$$
\begin{equation*}
G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right) \precsim \beta(M(x, y, z)) M(x, y, z) \tag{2.10}
\end{equation*}
$$

for any comparable elements x, y, z in $\overline{B\left(x_{0}, r\right)}$, where $\overline{B\left(x_{0}, r\right)} \subset Q$,

$$
\begin{equation*}
M(x, y, z)=\max \left\{G_{b}(x, y, z), \frac{G_{b}\left(x, S_{i} x, S_{i} x\right) G_{b}\left(y, S_{j} y, S_{j} z\right)}{1+G_{b}(x, y, z)}, \frac{G_{b}\left(x, S_{i} x, S_{i} x\right) G_{b}\left(x, S_{j} y, S_{j} z\right)}{1+s\left[G_{b}(x, y, z)+G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right)\right]}\right\} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) \precsim \frac{1-s \delta}{s} r, \tag{2.12}
\end{equation*}
$$

where $\delta \in\left(0, \frac{1}{s}\right)$.
Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in $\overline{B\left(x_{0}, r\right)}$.
Proof. By selecting the ball centre x_{0} in $\overline{B\left(x_{0}, r\right)}$, we construct a sequence $\left\{x_{n}\right\}$, where $x_{n+1}=S_{n+1} x_{n} \leq$ $x_{n}, n \in \mathbb{N}$. From (2.12), we know $x_{1} \in \overline{B\left(x_{0}, r\right)}$. Using (2.10), we have

$$
\begin{equation*}
G_{b}\left(x_{1}, x_{2}, x_{2}\right)=G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right) \precsim \beta\left(M\left(x_{0}, x_{1}, x_{1}\right)\right) M\left(x_{0}, x_{1}, x_{1}\right), \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& M\left(x_{0}, x_{1}, x_{1}\right)=\max \left\{G_{b}\left(x_{0}, x_{1}, x_{1}\right),\right. \\
& \\
& \left.\quad \frac{G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) G_{b}\left(x_{1}, S_{2} x_{1}, S_{2} x_{1}\right)}{1+G_{b}\left(x_{0}, x_{1}, x_{1}\right)}, \frac{G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) G_{b}\left(x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)}{1+s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right]}\right\} .
\end{aligned}
$$

Since

$$
\frac{G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) G_{b}\left(x_{1}, S_{2} x_{1}, S_{2} x_{1}\right)}{1+G_{b}\left(x_{0}, x_{1}, x_{1}\right)} \precsim G_{b}\left(x_{1}, S_{2} x_{1}, S_{2} x_{1}\right)=G_{b}\left(x_{1}, x_{2}, x_{2}\right),
$$

and

$$
\begin{aligned}
\frac{G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) G_{b}\left(x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)}{1+s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right]} & \precsim \frac{s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{1}, S_{2} x_{1}, S_{2} x_{1}\right)\right] G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right)}{1+s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(S_{1} x_{0}, S_{2} x_{1}, S_{2} x_{1}\right)\right]} \\
& \precsim G_{b}\left(x_{0}, S_{1} x_{0}, S_{1} x_{0}\right) \\
& =G_{b}\left(x_{0}, x_{1}, x_{1}\right),
\end{aligned}
$$

thus $M\left(x_{0}, x_{1}, x_{1}\right) \precsim \max \left\{G_{b}\left(x_{0}, x_{1}, x_{1}\right), G_{b}\left(x_{1}, x_{2}, x_{2}\right)\right\}$.
If $\max \left\{G_{b}\left(x_{0}, x_{1}, x_{1}\right), G_{b}\left(x_{1}, x_{2}, x_{2}\right)\right\}=G_{b}\left(x_{1}, x_{2}, x_{2}\right)$, then we have

$$
G_{b}\left(x_{1}, x_{2}, x_{2}\right) \precsim \beta\left(M\left(x_{0}, x_{1}, x_{1}\right)\right) M\left(x_{0}, x_{1}, x_{1}\right)<\frac{1}{s} G_{b}\left(x_{1}, x_{2}, x_{2}\right),
$$

which is a contradiction, thus

$$
\max \left\{G_{b}\left(x_{0}, x_{1}, x_{1}\right), G_{b}\left(x_{1}, x_{2}, x_{2}\right)\right\}=G_{b}\left(x_{0}, x_{1}, x_{1}\right),
$$

and

$$
G_{b}\left(x_{1}, x_{2}, x_{2}\right) \precsim \beta\left(M\left(x_{0}, x_{1}, x_{1}\right)\right) M\left(x_{0}, x_{1}, x_{1}\right) \precsim \delta G_{b}\left(x_{0}, x_{1}, x_{1}\right) .
$$

So we have

$$
\begin{aligned}
G_{b}\left(x_{0}, x_{2}, x_{2}\right) & \precsim s\left[G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{1}, x_{2}, x_{2}\right)\right] \\
& \precsim s(1+\delta) \cdot \frac{1-s \delta}{s} r \\
& \precsim\left(1-\delta^{2}\right) r \\
& <r
\end{aligned}
$$

as a result, $x_{2} \in \overline{B\left(x_{0}, r\right)}$.
Now we will show $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$. Assume that $x_{3}, x_{4}, \ldots, x_{k} \in \overline{B\left(x_{0}, r\right)}$, owing to (2.10), we get

$$
G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right)=G_{b}\left(S_{k} x_{k-1}, S_{k+1} x_{k}, S_{k+1} x_{k}\right) \precsim \beta\left(M\left(x_{k-1}, x_{k}, x_{k}\right)\right) M\left(x_{k-1}, x_{k}, x_{k}\right) .
$$

Following the above proof process, we can obtain

$$
\begin{equation*}
M\left(x_{k-1}, x_{k}, x_{k}\right) \precsim \max \left\{G_{b}\left(x_{k-1}, x_{k}, x_{k}\right), G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right)\right\}=G_{b}\left(x_{k-1}, x_{k}, x_{k}\right) \tag{2.14}
\end{equation*}
$$

Thus,

$$
\begin{align*}
G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right) & \precsim \delta G_{b}\left(x_{k-1}, x_{k}, x_{k}\right) \\
& \precsim \delta^{2} G_{b}\left(x_{k-2}, x_{k-1}, x_{k-1}\right) \tag{2.15}\\
& \precsim \ldots \\
& \precsim \delta^{k} G_{b}\left(x_{0}, x_{1}, x_{1}\right) .
\end{align*}
$$

By using ($C G_{b} 5$) and (2.15), it follows that

$$
\begin{aligned}
G_{b}\left(x_{0}, x_{k+1}, x_{k+1}\right) & \lesssim s G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} G_{b}\left(x_{1}, x_{2}, x_{2}\right)+\ldots+s^{k+1} G_{b}\left(x_{k}, x_{k+1}, x_{k+1}\right) \\
& \lesssim\left(s+s^{2} \delta+\ldots+s^{k+1} \delta^{k}\right) G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& \lesssim s \cdot \frac{1-(s \delta)^{k+1}}{1-s \delta} \cdot \frac{1-s \delta}{s} r \\
& \prec r .
\end{aligned}
$$

Hence, $x_{k+1} \in \overline{B\left(x_{0}, r\right)}$, so $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$. As a result, for all $n \in \mathbb{N}^{*}$,

$$
\begin{equation*}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)=G_{b}\left(S_{n} x_{n-1}, S_{n+1} x_{n}, S_{n+1} x_{n}\right) \preccurlyeq \beta\left(M\left(x_{n-1}, x_{n}, x_{n}\right)\right) M\left(x_{n-1}, x_{n}, x_{n}\right), \tag{2.16}
\end{equation*}
$$

thus we have $G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)<\frac{1}{s} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)$.
If $s>1$, then $G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)<\left(\frac{1}{s}\right)^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
If $s=1$, then $G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \prec G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)$, which implies that $\left\{G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}$ is a decreasing sequence.

Suppose that

$$
\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)=r>0,
$$

owing to (2.14) and (2.16), we obtain

$$
\begin{aligned}
r & =\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
& \precsim \lim _{n \rightarrow \infty} \beta\left(M\left(x_{n-1}, x_{n}, x_{n}\right)\right) M\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \precsim \lim _{n \rightarrow \infty} \frac{1}{s} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \precsim r,
\end{aligned}
$$

thus $\lim _{n \rightarrow \infty} \beta\left(M\left(x_{n-1}, x_{n}, x_{n}\right)\right)=1$, which implies $\lim _{n \rightarrow \infty} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)=0$, contradiction. As a result, $\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$.

Now we prove $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence. Suppose that contrary, then there exist $\epsilon>0$ and two subsequences $x_{m_{k}}$ and $x_{n_{k}}$ of x_{n}, such that

$$
G_{b}\left(x_{m_{k}}, x_{n_{k}}, x_{n_{k}}\right) \gtrsim \epsilon \text { and } G_{b}\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)<\epsilon .
$$

So we have

$$
\epsilon \precsim G_{b}\left(x_{m_{k}}, x_{n_{k}}, x_{n_{k}}\right) \precsim s\left[G_{b}\left(x_{m_{k}}, x_{m_{k+1}}, x_{m_{k+1}}\right)+G_{b}\left(x_{m_{k+1}}, x_{n_{k}}, x_{n_{k}}\right)\right] .
$$

Let $k \rightarrow \infty$, we get

$$
\epsilon \precsim \lim _{k \rightarrow \infty} \inf G_{b}\left(x_{m_{k}}, x_{n_{k}}, x_{n_{k}}\right) \precsim s \lim _{k \rightarrow \infty} \inf G_{b}\left(x_{m_{k+1}}, x_{n_{k}}, x_{n_{k}}\right) .
$$

Furthermore, using (2.10) and (2.14),

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \inf G_{b}\left(x_{m_{k}+1}, x_{n_{k}}, x_{n_{k}}\right) & \precsim \lim _{k \rightarrow \infty} \inf \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right) M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right) \\
& \precsim \lim _{k \rightarrow \infty} \inf \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right) G_{b}\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right) \\
& \precsim \lim _{k \rightarrow \infty} \inf \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right) \epsilon,
\end{aligned}
$$

thus we have

$$
\begin{aligned}
\frac{\epsilon}{s} & \precsim \lim _{k \rightarrow \infty} \inf G_{b}\left(x_{m_{k+1}}, x_{n_{k}}, x_{n_{k}}\right) \\
& \precsim \lim _{k \rightarrow \infty} \inf \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right) \epsilon \\
& \precsim \lim _{k \rightarrow \infty} \sup \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right) \epsilon \\
& \precsim \frac{\epsilon}{s} .
\end{aligned}
$$

Therefore, $\lim _{k \rightarrow \infty} \beta\left(M\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)\right)=\frac{1}{s}$, thus $\lim _{k \rightarrow \infty} G_{b}\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)=0$. As a result,

$$
\epsilon \precsim G_{b}\left(x_{m_{k}}, x_{n_{k}}, x_{n_{k}}\right) \precsim s\left[G_{b}\left(x_{m_{k}}, x_{n_{k}-1}, x_{n_{k}-1}\right)+G_{b}\left(x_{n_{k}-1}, x_{n_{k}}, x_{n_{k}}\right)\right] \rightarrow 0 \text { as } k \rightarrow \infty,
$$

which is a contradiction. Therefore, $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence, and there exists an element x^{*} in $\overline{B\left(x_{0}, r\right)}$ such that $x_{n} \rightarrow x^{*}$.

Finally, we show that x^{*} is a common solution of the operator equations. Let $x=x_{i-1}, y=z=x^{*}$ in (2.10), we have

$$
\lim _{i \rightarrow \infty} G_{b}\left(S_{i} x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim \lim _{i \rightarrow \infty} \beta\left(M\left(x_{i-1}, x^{*}, x^{*}\right)\right) M\left(x_{i-1}, x^{*}, x^{*}\right) \precsim \lim _{i \rightarrow \infty} \frac{1}{s} M\left(x_{i-1}, x^{*}, x^{*}\right),
$$

where

$$
\begin{gathered}
M\left(x_{i-1}, x^{*}, x^{*}\right)=\max \left\{G_{b}\left(x_{i-1}, x^{*}, x^{*}\right), \frac{G_{b}\left(x_{i-1}, S_{i} x_{i-1}, S_{i} x_{i-1}\right) G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right)}{1+G_{b}\left(x_{i-1}, x^{*}, x^{*}\right)},\right. \\
\left.\frac{G_{b}\left(x_{i-1}, S_{i} x_{i-1}, S_{i} x_{i-1}\right) G_{b}\left(x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right)}{1+s\left[G_{b}\left(x_{i-1}, x^{*}, x^{*}\right)+G_{b}\left(S_{i} x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right)\right]}\right\} .
\end{gathered}
$$

It can be easily deduced that $\lim _{i \rightarrow \infty} M\left(x_{i-1}, x^{*}, x^{*}\right)=0$ and $\lim _{i \rightarrow \infty} G_{b}\left(S_{i} x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right)=0$, thus

$$
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim s\left[G_{b}\left(x^{*}, S_{i} x_{i-1}, S_{i} x_{i-1}\right)+G_{b}\left(S_{i} x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right)\right] \rightarrow 0 \text { as } i \rightarrow \infty .
$$

As a result, $x^{*}=S_{j} x^{*}$, owing to the arbitrariness of j, we obtain that x^{*} is a common solution of the operator equations, the proof is completed.

Similarly, following the proof process of Theorem 2.2, the following corollary will be established. Corollary 2.2. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, $\left\{S_{n}: X \rightarrow Q, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. Suppose that there exist $i, j \in \mathbb{N}^{*}$ such that

$$
G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right) \precsim \lambda M(x, y, z)
$$

for any comparable elements x, y, z in Q, where $\lambda \in\left[0, \frac{1}{s}\right.$), and

$$
M(x, y, z)=\max \left\{G_{b}(x, y, z), \frac{G_{b}\left(x, S_{i} x, S_{i} x\right) G_{b}\left(y, S_{j} y, S_{j} z\right)}{1+G_{b}(x, y, z)}, \frac{G_{b}\left(x, S_{i} x, S_{i} x\right) G_{b}\left(x, S_{j} y, S_{j} z\right)}{1+s\left[G_{b}(x, y, z)+G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right)\right]}\right\} .
$$

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in Q.

Example 2.3. Let $X=R, Q=[0, \infty), G_{b}: X \times X \times X \rightarrow \mathbb{C}$ be defined by $G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\left(\left|\xi_{1}-\xi_{2}\right|+\right.$ $\left.\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2}+\left(\left|\xi_{1}-\xi_{2}\right|+\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2} i$ with $s=2, \delta=\frac{1}{5}, x_{0}=1, r=4+4 i$. For all $t \in \Omega_{1}$, take

$$
\beta(t)=\left\{\begin{array}{lr}
\frac{1}{3}, & t=0 \\
\frac{1}{2+\frac{|t|}{2}}, & 0<|t| \leq 1 \\
\frac{1}{\frac{5}{2}+\frac{1}{2+e^{|f|}},} & |t|>1
\end{array}\right.
$$

Obviously, $\frac{1}{3} \leq \beta(t)<\frac{1}{2}$, and

$$
\overline{B(1,4+4 i)}=\left\{x \mid G_{b}(1, x, x) \precsim 4+4 i\right\}=\left\{x|4| 1-\left.x\right|^{2}+4|1-x|^{2} i \precsim 4+4 i\right\}=[0,2] .
$$

Moreover, for any ξ in X, let $S_{n} \xi=\frac{|\xi|}{\sqrt{3} n}, n \in \mathbb{N}^{*}$ and $F_{n}=u S_{n}$, where $u \geq 1$. The partial order \leq on X is the usual order \leq of R, for any $\xi_{1}, \xi_{2}, \xi_{3}$ in $\overline{B(1,4+4 i)}$, we have

$$
G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{3}\right)=\frac{1}{3 n^{2}}\left[\left(\left|\xi_{1}-\xi_{2}\right|+\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2}+\left(\left|\xi_{1}-\xi_{2}\right|+\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2} i\right]
$$

and

$$
G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\left(\left|\xi_{1}-\xi_{2}\right|+\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2}+\left(\left|\xi_{1}-\xi_{2}\right|+\left|\xi_{2}-\xi_{3}\right|+\left|\xi_{1}-\xi_{3}\right|\right)^{2} i
$$

It follows that

$$
\begin{aligned}
G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{3}\right) & \precsim \frac{1}{3} G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \\
& \precsim \frac{1}{3} M\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \\
& \lesssim \beta\left(M\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right) M\left(\xi_{1}, \xi_{2}, \xi_{3}\right),
\end{aligned}
$$

and

$$
G_{b}\left(1, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)=\frac{16-8 \sqrt{3}}{3}+\frac{16-8 \sqrt{3}}{3} i<\frac{3}{10}(4+4 i) .
$$

It is clearly that all conditions of Theorem 2.2 are satisfied, as a result, the operator equations $F_{n} \xi=u \xi$ have a common solution $\xi^{*}=0$ in $\overline{B(1,4+4 i)}$.

On the other hand, let Θ be the set of functions $\theta: \Omega_{2} \rightarrow \Omega_{3}$, which satisfies the following conditions:
$\Theta_{1}: \theta$ is continuous;
$\Theta_{2}: \theta$ is nondecreasing, i.e. $\theta\left(x_{1}\right) \gtrsim \theta\left(x_{2}\right)$ if $x_{1} \gtrsim x_{2}$;
$\Theta_{3}: \lim _{n \rightarrow \infty} \theta\left(x_{n}\right)=1 \Leftrightarrow \lim _{n \rightarrow \infty} x_{n}=0^{+}$, where $\left\{x_{n}\right\} \subset \Omega_{2}$.
Theorem 2.3. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, $\left\{S_{n}: X \rightarrow Q, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. Suppose that there exist $\theta \in \Theta, i, j \in \mathbb{N}^{*}, k \in(0,1), \alpha \geq 0$ such that

$$
\begin{equation*}
\left|\theta\left(G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} M(x, y, z)-\alpha\right)\right|^{k} \tag{2.17}
\end{equation*}
$$

for any comparable elements x, y, z in Q, where $G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right) \neq 0$, and

$$
\begin{equation*}
M(x, y, z)=\max \left\{G_{b}\left(x, S_{i} x, S_{i} x\right), G_{b}\left(y, S_{j} y, S_{j} z\right), G_{b}\left(z, S_{j} z, S_{j} y\right), G_{b}(x, y, z)\right\} \tag{2.18}
\end{equation*}
$$

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in Q. Moreover, if there exists an element v in Q such that $v \leq x^{*}$, and

$$
\begin{equation*}
G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) \precsim G_{b}\left(x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right), \tag{2.19}
\end{equation*}
$$

then the operator equations have an unique solution.
Proof. By selecting a point x_{0} in Q, we construct a sequence $\left\{x_{n}\right\}$, where $x_{n+1}=S_{n+1} x_{n} \leq x_{n}, n \in \mathbb{N}$. Let $x=x_{n-1}, y=z=x_{n}$ in (2.17), we have

$$
\begin{aligned}
\left|\theta\left(\frac{1}{s} G_{b}\left(S_{n} x_{n-1}, S_{n+1} x_{n}, S_{n+1} x_{n}\right)\right)\right| & \leq\left|\theta\left(G_{b}\left(S_{n} x_{n-1}, S_{n+1} x_{n}, S_{n+1} x_{n}\right)\right)\right| \\
& \leq\left|\theta\left(\frac{1}{s} M\left(x_{n-1}, x_{n}, x_{n}\right)-\alpha\right)\right|^{k} \\
& \leq\left|\theta\left(\frac{1}{s} M\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right|^{k},
\end{aligned}
$$

where

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}, x_{n}\right) & =\max \left\{G_{b}\left(x_{n-1}, S_{n} x_{n-1}, S_{n} x_{n-1}\right), G_{b}\left(x_{n}, S_{n+1} x_{n}, S_{n+1} x_{n}\right), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right\} \\
& =\max \left\{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\},
\end{aligned}
$$

thus we get

$$
\left|\theta\left(\frac{1}{s} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} \max \left\{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}\right)\right|^{k} .
$$

If $\max \left\{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}=G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)$, then

$$
\left|\theta\left(\frac{1}{S} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right|^{k}, \text { which is contradiction with } k \in(0,1),
$$

hence,

$$
\left|\theta\left(\frac{1}{s} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq\left|\theta\left(G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right|^{k} .
$$

It follows that

$$
\left|\theta\left(\frac{1}{S} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right)\right|^{k} \leq \ldots \leq\left|\theta\left(\frac{1}{S} G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right)\right|^{k^{n}},
$$

and

$$
\lim _{n \rightarrow \infty}\left|\theta\left(\frac{1}{s} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)\right| \leq \lim _{n \rightarrow \infty}\left|\theta\left(\frac{1}{s} G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right)\right|^{k^{n}}=1,
$$

therefore,

$$
\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)=0 \text { and } \lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n}, x_{n+1}\right)=0 .
$$

Now we show $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence. If not, then there exist $\epsilon>0$ and two subsequences $x_{m_{i}}$ and $x_{n_{i}}$ of x_{n}, where $i \leq n_{i} \leq m_{i}$, such that

$$
G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i}}\right) \gtrsim \epsilon \text { and } G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i}-1}\right)<\epsilon .
$$

Using ($C G_{b} 5$), we have

$$
\epsilon \precsim G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i}}\right) \preccurlyeq s\left[G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{n_{i}+1}\right)+G_{b}\left(x_{n_{i}+1}, x_{n_{i}+1}, x_{m_{i}}\right)\right],
$$

let $i \rightarrow \infty$ at the above inequality, we get

$$
\begin{equation*}
\frac{\epsilon}{s} \precsim \lim _{i \rightarrow \infty} G_{b}\left(x_{m_{i}}, x_{n_{i}+1}, x_{n_{i}+1}\right) . \tag{2.20}
\end{equation*}
$$

In addition, owing to (2.17), we obtain

$$
\left|\theta\left(G_{b}\left(S_{m_{i}} x_{m_{i-1}}, S_{n_{i}+1} x_{n_{i}}, S_{n_{i}+1} x_{n_{i}}\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} M\left(x_{m_{i-1}}, x_{n_{i}}, x_{n_{i}}\right)-\alpha\right)\right|^{k},
$$

i.e.,

$$
\begin{aligned}
\left|\theta\left(\frac{1}{S} G_{b}\left(x_{m_{i}}, x_{n_{i}+1}, x_{n_{i}+1}\right)\right)\right| & \leq\left|\theta\left(G_{b}\left(x_{m_{i}}, x_{n_{i}+1}, x_{n_{i}+1}\right)\right)\right| \\
& \leq\left|\theta\left(\frac{1}{s} M\left(x_{m_{i-1}}, x_{n_{i}}, x_{n_{i}}\right)-\alpha\right)\right|^{k} \\
& \leq\left|\theta\left(\frac{1}{s} M\left(x_{m_{i-1}}, x_{n_{i}}, x_{n_{i}}\right)\right)\right|^{k},
\end{aligned}
$$

where

$$
M\left(x_{m_{i-1}}, x_{n_{i}}, x_{n_{i}}\right)=\max \left\{G_{b}\left(x_{m_{i-1}}, x_{m_{i}}, x_{m_{i}}\right), G_{b}\left(x_{n_{i}}, x_{n_{i+1}}, x_{n_{i+1}}\right), G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i-1}}\right)\right\} .
$$

Since

$$
\lim _{i \rightarrow \infty} G_{b}\left(x_{m_{i-1}}, x_{m_{i}}, x_{m_{i}}\right)=\lim _{i \rightarrow \infty} G_{b}\left(x_{n_{i}}, x_{n_{i+1}}, x_{n_{i+1}}\right)=0
$$

obviously, $M\left(x_{m_{i-1}}, x_{n_{i}}, x_{n_{i}}\right)=G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i-1}}\right)$, it follows that

$$
\begin{equation*}
\left|\theta\left(G_{b}\left(x_{m_{i}}, x_{n_{i}+1}, x_{n_{i}+1}\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i-1}}\right)\right)\right|^{k} . \tag{2.21}
\end{equation*}
$$

Using (2.20) and (2.21), we have

$$
\left|\theta\left(\frac{\epsilon}{s}\right)\right| \leq \lim _{i \rightarrow \infty}\left|\theta\left(G_{b}\left(x_{m_{i}}, x_{n_{i}+1}, x_{n_{i}+1}\right)\right)\right| \leq \lim _{i \rightarrow \infty}\left|\theta\left(\frac{1}{s} G_{b}\left(x_{n_{i}}, x_{n_{i}}, x_{m_{i-1}}\right)\right)\right|^{k}<\left|\theta\left(\frac{\epsilon}{s}\right)\right|^{k},
$$

which is a contradiction with $k \in(0,1)$. As a result, $\left\{x_{n}\right\}$ is a complex valued G_{b}-Cauchy sequence, and there exists an element x^{*} in Q such that $x_{n} \rightarrow x^{*}$.

Now we prove that x^{*} is a common solution of the operator equations. For all $i, j \in \mathbb{N}^{*}$, we have

$$
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim s\left[G_{b}\left(x^{*}, x_{i}, x_{i}\right)+G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)\right],
$$

and let $i \rightarrow \infty$ at the above inequality, we get

$$
\begin{equation*}
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim \lim _{i \rightarrow \infty} s G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right) \tag{2.22}
\end{equation*}
$$

In addition, since $x^{*} \leq x_{i-1}$, according to (2.17), we obtain

$$
\left|\theta\left(G_{b}\left(S_{i} x_{i-1}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} M\left(x_{i-1}, x^{*}, x^{*}\right)-\alpha\right)\right|^{k} \leq\left|\theta\left(\frac{1}{S} M\left(x_{i-1}, x^{*}, x^{*}\right)\right)\right|^{k},
$$

where

$$
M\left(x_{i-1}, x^{*}, x^{*}\right)=\max \left\{G_{b}\left(x_{i-1}, x_{i}, x_{i}\right), G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right), G_{b}\left(x_{i-1}, x^{*}, x^{*}\right)\right\} .
$$

If $M\left(x_{i-1}, x^{*}, x^{*}\right)=G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right)$, using (2.22), it follows that

$$
\lim _{i \rightarrow \infty}\left|\theta\left(G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right| \leq \lim _{i \rightarrow \infty}\left|\theta\left(\frac{1}{s} G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right|^{k} \leq \lim _{i \rightarrow \infty}\left|\theta\left(G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right|^{k}
$$

contradiction, thus we can easily get

$$
\left|\theta\left(G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right| \leq \left\lvert\, \theta\left(\left.\frac{1}{S} G_{b}\left(x_{i-1}, x_{i}, x_{i}\right)\right|^{k} \rightarrow 1 \text { as } i \rightarrow \infty,\right.\right.
$$

or

$$
\left|\theta\left(G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} G_{b}\left(x_{i-1}, x^{*}, x^{*}\right)\right)\right|^{k} \rightarrow 1 \quad \text { as } i \rightarrow \infty,
$$

hence,

$$
\lim _{i \rightarrow \infty} G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)=0
$$

From (2.22), we have

$$
G_{b}\left(x^{*}, S_{j} x^{*}, S_{j} x^{*}\right) \precsim \lim _{i \rightarrow \infty} s G_{b}\left(x_{i}, S_{j} x^{*}, S_{j} x^{*}\right)=0 .
$$

As a result, $x^{*}=S_{j} x^{*}$, owing to the arbitrariness of j, we obtain x^{*} is a common solution of the operator equations.

Uniqueness. If y^{*} is another solution of the operator equations, $y^{*} \neq x^{*}$, then $G_{b}\left(x^{*}, y^{*}, y^{*}\right) \neq 0$.
Case 1. x^{*} and y^{*} are comparable, using (2.17), it follows that

$$
\left|\theta\left(G_{b}\left(x^{*}, y^{*}, y^{*}\right)\right)\right|=\left|\theta\left(G_{b}\left(S_{i} x^{*}, S_{j} y^{*}, S_{j} y^{*}\right)\right)\right| \leq\left|\theta\left(\frac{1}{S} M\left(x^{*}, y^{*}, y^{*}\right)-\alpha\right)\right|^{k} \leq\left|\theta\left(\frac{1}{S} M\left(x^{*}, y^{*}, y^{*}\right)\right)\right|^{k} .
$$

Obviously, $M\left(x^{*}, y^{*}, y^{*}\right)=G_{b}\left(x^{*}, y^{*}, y^{*}\right)$, so we have

$$
\left|\theta\left(G_{b}\left(x^{*}, y^{*}, y^{*}\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} G_{b}\left(x^{*}, y^{*}, y^{*}\right)\right)\right|^{k},
$$

which is a contradiction. As a result, $y^{*}=x^{*}$.
Case 2. x^{*} and y^{*} are not comparable, then there exists an element $v \in Q$ such that $v \leq x^{*}$ and $v \leq y^{*}$, for any $i, j \in \mathbb{N}^{*}$, we have

$$
x^{*}=S_{i} x^{*}=S_{i}^{2} x^{*}=\ldots=S_{i}^{n} x^{*}, y^{*}=S_{j} y^{*}=S_{j}^{2} y^{*}=\ldots=S_{j}^{n} y^{*}
$$

and

$$
S_{j}^{n} v \leq \ldots \leq S_{j} v \leq v \leq x^{*}, S_{j}^{n} v \leq \ldots \leq S_{j} v \leq v \leq y^{*}
$$

From (2.17), we get

$$
\left|\theta\left(G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} M\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)-\alpha\right)\right|^{k} \leq\left|\theta\left(\frac{1}{s} M\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right)\right|^{k},
$$

where
$M\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)=\max \left\{G_{b}\left(S_{i}^{n-1} x^{*}, S_{i}^{n} x^{*}, S_{i}^{n} x^{*}\right), G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right), G_{b}\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right\}$.
According to (2.19), we obtain $M\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)=G_{b}\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)$, and

$$
\left|\theta\left(G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq\left|\theta\left(\frac{1}{s} G_{b}\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right)\right|^{k} \leq \mid \theta\left(\left.G_{b}\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right|^{k},\right.
$$

so that we have

$$
\left|\theta\left(G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq\left|\theta\left(G_{b}\left(S_{i}^{n-1} x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right)\right|^{k} \leq \ldots \leq\left|\theta\left(G_{b}\left(x^{*}, v, v\right)\right)\right|^{k^{n}}
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left|\theta\left(G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq \lim _{n \rightarrow \infty}\left|\theta\left(G_{b}\left(x^{*}, v, v\right)\right)\right|^{k^{n}}=1
$$

hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)=0 \tag{2.23}
\end{equation*}
$$

Similarly, using (2.17) and (2.19), we get

$$
\begin{aligned}
\left|\theta\left(G_{b}\left(S_{j}^{n} y^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| & \leq\left|\theta\left(\frac{1}{s} M\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)-\alpha\right)\right|^{k} \\
& \leq\left|\theta\left(M\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right)\right|^{k},
\end{aligned}
$$

where

$$
\begin{aligned}
\left.M\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right) & =\max \left\{G_{b}\left(S_{j}^{n-1} y^{*}, S_{j}^{n} y^{*}, S_{j}^{n} y^{*}\right), G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right), G_{b}\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right\} \\
& =\max \left\{0, G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right), G_{b}\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right\} \\
& =G_{b}\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right) .
\end{aligned}
$$

Therefore,

$$
\left|\theta\left(G_{b}\left(S_{j}^{n} y^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq\left|\theta\left(G_{b}\left(S_{j}^{n-1} y^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right)\right)\right|^{k} \leq \ldots \leq\left|\theta\left(G_{b}\left(y^{*}, v, v\right)\right)\right|^{k^{n}},
$$

let $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left|\theta\left(G_{b}\left(S_{j}^{n} y^{*}, S_{j}^{n} v, S_{j}^{n} v\right)\right)\right| \leq \lim _{n \rightarrow \infty}\left|\theta\left(G_{b}\left(y^{*}, v, v\right)\right)\right|^{k^{n}}=1
$$

so we obtain

$$
\lim _{n \rightarrow \infty} G_{b}\left(S_{j}^{n} y^{*}, S_{j}^{n} v, S_{j}^{n} v\right)=0
$$

and also

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(S_{j}^{n} v, S_{j}^{n} y^{*}, S_{j}^{n} y^{*}\right)=0 . \tag{2.24}
\end{equation*}
$$

Using (2.23) and (2.24), we also have

$$
G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} y^{*}, S_{j}^{n} y^{*}\right) \precsim s\left[G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} v, S_{j}^{n} v\right)+G_{b}\left(S_{j}^{n} v, S_{j}^{n} y^{*}, S_{j}^{n} y^{*}\right)\right] \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Owing to $G_{b}\left(x^{*}, y^{*}, y^{*}\right)=G_{b}\left(S_{i}^{n} x^{*}, S_{j}^{n} y^{*}, S_{j}^{n} y^{*}\right)$, as a result, $x^{*}=y^{*}$, the proof is completed.
Example 2.4. Let $X=R, Q=[0, \infty), \theta(t)=1+t, \alpha=0, k=\frac{1}{2}, G_{b}: X \times X \times X \rightarrow \mathbb{C}$ be defined by $G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\max \left\{\left|\xi_{1}-\xi_{2}\right|^{2},\left|\xi_{2}-\xi_{3}\right|^{2},\left|\xi_{1}-\xi_{3}\right|^{2}\right\}+\max \left\{\left|\xi_{1}-\xi_{2}\right|^{2},\left|\xi_{2}-\xi_{3}\right|^{2},\left|\xi_{1}-\xi_{3}\right|^{2}\right\} i$ with $s=2$. For any ξ in X, take $S_{n} \xi=\frac{|\xi|}{4 n}$ and $F_{n}=u S_{n}$, where $u \geq 1, n \in \mathbb{N}^{*}$, the partial order \leq on X is the usual order \leq of R.

Suppose that $\xi_{1} \geq \xi_{2} \geq \xi_{3}$, if $\xi_{1}-\xi_{3} \leq 1$ for any $\xi_{1}, \xi_{2}, \xi_{3}$ in Q, or $\xi_{1}, \xi_{2}, \xi_{3} \in[0,1]$, we can easily obtain

$$
1+G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{3}\right)=1+\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{2}+\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{2} i
$$

and

$$
1+\frac{1}{2} G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=1+\frac{1}{2}\left(\xi_{1}-\xi_{3}\right)^{2}+\frac{1}{2}\left(\xi_{1}-\xi_{3}\right)^{2} i
$$

Hence,

$$
\begin{aligned}
\left|1+G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{3}\right)\right|^{4} & =\left[\sqrt{\left(1+\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{2}\right)^{2}+\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{4}}\right]^{4} \\
& =1+4\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{2}+8\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{4}+8\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{6}+4\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{8} \\
& \leq 1+12\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{2}+12\left(\frac{\xi_{1}-\xi_{3}}{4 n}\right)^{4} \\
& \leq 1+\left(\xi_{1}-\xi_{3}\right)^{2}+\frac{1}{2}\left(\xi_{1}-\xi_{3}\right)^{4}
\end{aligned}
$$

and

$$
\left|1+\frac{1}{2} G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{2}=1+\left(\xi_{1}-\xi_{3}\right)^{2}+\frac{1}{2}\left(\xi_{1}-\xi_{3}\right)^{4}
$$

Thus we obtain

$$
\left|1+G_{b}\left(S_{n} \xi_{1}, S_{n} \xi_{2}, S_{n} \xi_{3}\right)\right| \leq\left|1+\frac{1}{2} G_{b}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{\frac{1}{2}} \leq\left|1+\frac{1}{2} M\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{\frac{1}{2}}
$$

It follows that the operator equations $F_{n} \xi=u \xi$ have a common solution $\xi^{*}=0$ in Q and (2.19) is established with $v=0$. Therefore, all conditions of Theorem 2.3 are satisfied, the operator equations $F_{n} \xi=u \xi$ have an unique solution $\xi^{*}=0$.

The following two corollaries can be easily obtained, if we let $\theta(t)=e^{|t|}+t$ and $\theta(t)=2-\frac{2}{\pi} \arctan \left(\frac{1}{|t| \gamma}\right)$ in Theorem 2.3 respectively.
Corollary 2.3. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, $\left\{S_{n}: X \rightarrow Q, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. Suppose that there exist $i, j \in \mathbb{N}^{*}, k \in(0,1), \alpha \geq 0$ such that

$$
\left|e^{\mid G_{b}\left(S_{i} x, S_{j} y, S_{j} z \mid\right.}+G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right)\right| \leq\left|e^{\left|\frac{1}{s} M(x, y, z)-\alpha\right|}+\frac{1}{s} M(x, y, z)-\alpha\right|^{k}
$$

for any comparable elements x, y, z in Q, where $G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right) \neq 0$, and

$$
M(x, y, z)=\max \left\{G_{b}\left(x, S_{i} x, S_{i} x\right), G_{b}\left(y, S_{j} y, S_{j} z\right), G_{b}\left(z, S_{j} z, S_{j} y\right), G_{b}(x, y, z)\right\}
$$

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in Q. Moreover, if there exists an element v in Q such that $v \leq x^{*}$, and

$$
G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) \precsim G_{b}\left(x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right),
$$

then the operator equations have an unique solution.
Corollary 2.4. Let (X, G_{b}, \leq) be a complete partially ordered complex valued G_{b}-metric space with $s \geq 1, Q \subset X$ be a cone, $\left\{S_{n}: X \rightarrow Q, n \in \mathbb{N}^{*}\right\}$ be a dominated mapping sequence. Suppose that there exist $i, j \in \mathbb{N}^{*}, \gamma, k \in(0,1), \alpha \geq 0$ such that

$$
2-\frac{2}{\pi} \arctan \left(\frac{1}{\left|G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right)\right|^{\gamma}}\right) \leq \left\lvert\, 2-\frac{2}{\pi} \arctan \left(\frac{1}{\left.\left|\frac{1}{s} M(x, y, z)-\alpha\right|^{\gamma}\right|^{k}}\right.\right.
$$

for any comparable elements x, y, z in Q, where $G_{b}\left(S_{i} x, S_{j} y, S_{j} z\right) \neq 0$, and

$$
M(x, y, z)=\max \left\{G_{b}\left(x, S_{i} x, S_{i} x\right), G_{b}\left(y, S_{j} y, S_{j} z\right), G_{b}\left(z, S_{j} z, S_{j} y\right), G_{b}(x, y, z)\right\}
$$

Define the operator equations $F_{n} x=u x$ by $F_{n}=u S_{n}, u \geq 1$. If a nonincreasing sequence $\left\{x_{n}\right\} \rightarrow \kappa$ such that $\kappa \leq x_{n}$, then the operator equations have at least a common solution x^{*} in Q. Moreover, if there exists an element v in Q such that $v \leq x^{*}$, and

$$
G_{b}\left(S_{j}^{n-1} v, S_{j}^{n} v, S_{j}^{n} v\right) \precsim G_{b}\left(x^{*}, S_{j}^{n-1} v, S_{j}^{n-1} v\right),
$$

then the operator equations have an unique solution.

3. Conclusions

In this paper, we have obtained some new theorems for the common solutions of the operator equations $F_{n} x=u x\left(u \geq 1, n \in \mathbb{N}^{*}\right)$ via complex valued C^{p}-class function, a type of Geraghty contraction and a type of JS contraction in complete partially ordered complex valued G_{b}-metric spaces, and some of which are established in a closed ball. These new results generalize many known results in complex valued G_{b}-metric spaces and G_{b}-metric spaces, in addition, it would be interesting and worthwhile to further investigate some similar problems in other types of spaces.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11771198).

Conflict of interest

The authors declare no conflict of interest.

References

1. Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289-297.
2. A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G_{b}-metric spaces, Filomat, 28 (2014), 1087-1101. http://dx.doi.org/10.2298/FIL1406087A
3. L. Zhu, C. X. Zhu, C. F. Chen, Common fixed point theorems for fuzzy mappings in G-metric spaces, Fixed Point Theory A., 2012 (2012), 159. http://dx.doi.org/10.1186/1687-1812-2012-159
4. M. Asadi, E. Karapınar, P. Salimi, A new approach to G-metric and related fixed point theorems, J. Inequal. Appl., 2013 (2013), 454. http://dx.doi.org/10.1186/1029-242X-2013-454
5. J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenović, Common fixed point theorems for three maps in discontinuous G_{b}-metric spaces, Acta Math. Sci., 34 (2014), 1643-1654. http://dx.doi.org/10.1016/S0252-9602(14)60110-7
6. J. Chen, C. X. Zhu, L. Zhu, A note on some fixed point theorems on G-metric spaces, J. Appl. Anal. Comput., 11 (2021), 101-112. http://dx.doi.org/10.11948/20190125
7. Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl., 455 (2017), 528-537. http://dx.doi.org/10.1016/j.jmaa.2017.05.062
8. M. Liang, C. X. Zhu, C. F. Chen, Z. Q. Wu, Some new theorems for cyclic contractions in G_{b}-metric spaces and some applications, Appl. Math. Comput., 346 (2019), 545-558. http://dx.doi.org/10.1016/j.amc.2018.10.028
9. C. X. Zhu, J. Chen, C. F. Chen, J. H. Chen, H. P. Huang, A new generalization of \mathcal{F}-metric spaces and some fixed point theorems and an application, J. Appl. Anal. Comput., 11 (2021), 2649-2663. http://dx.doi.org/10.11948/20210244
10. C. X. Zhu, J. Chen, X. J. Huang, J. H. Chen, Fixed point theorems in modular spaces with simulation functions and altering distance functions with applications, J. Nonlinear Convex A., 2020, 1403-1424.
11. Y. X. Wang, C. F. Chen, Two new Geraghty type contractions in G_{b}-metric spaces, J. Funct. Space., 2019 (2019). http://dx.doi.org/10.1155/2019/7916486
12. M. Jleli, E. Karapınar, B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 439. http://dx.doi.org/10.1186/1029-242X-2014-439
13. H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788. http://dx.doi.org/10.22436/jnsa.010.02.38
14. M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. http://dx.doi.org/10.1186/1029-242X-2014-38
15. A. Shoaib, M. Arshad, T. Rasham, M. Abbas, Unique fixed point results on closed ball for dislocated quasi G-metric spaces, T. A. Razmadze Math. In., 171 (2017), 221-230. http://dx.doi.org/10.1016/j.trmi.2017.01.002
16. O. Ege, Complex valued G_{b}-metric spaces, J. Comput. Anal. Appl., 21 (2016), 363-368.
17. O. Ege, Some fixed point theorems in complex valued G_{b}-metric spaces, J. Nonlinear Convex A., 18 (2017), 1997-2005.
18. O. Ege, C. Park, A. H. Ansari, A different approach to complex valued G_{b}-metric spaces, $A d v$. Differ. Equ., 2020 (2020), 152. http://dx.doi.org/10.1186/s13662-020-02605-0
19. O. Ege, I. Karaca, Common fixed point results on complex valued G_{b}-metric spaces, Thai J. Math., 16 (2018), 775-787.
20. A. H. Ansari, O. Ege, S. Radenović, Some fixed point results on complex valued G_{b}-metric spaces, RACSAM Rev. R. Acad. A, 112 (2018), 463-472. http://dx.doi.org/10.1007/s13398-017-0391-x
21. H. Afshari, Solution of fractional differential equations in quasi- b-metric and b-metric-like spaces, Adv. Differ. Equ., 2019 (2019), 285. http://dx.doi.org/10.1186/s13662-019-2227-9
22. H. Afshari, M. Atapour, E. Karapınar, A discussion on a generalized Geraghty multi-valued mappings and applications, Adv. Differ. Equ., 2020 (2020). http://dx.doi.org/10.1186/s13662-020-02819-2
23. H. Afshari1, S. Kalantari, D. Baleanu, Solution of fractional differential equations via $\alpha-\psi-$ Geraghty type mappings, Adv. Differ. Equ., 2018 (2018), 347. https://doi.org/10.1186/s13662-018-1807-4
24. M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory A., 2012 (2012), 210. http://dx.doi.org/10.1186/1687-1812-2012-210
25. R. P. Agarwal, H. H. Alsulami, E. Karapınar, F. Khojasteh, Remarks on some recent fixed point results on quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014). http://dx.doi.org/10.1155/2014/171624
26. A. Shoaib, S. Mustafa, A. Shahzad, Common fixed point of multivalued mappings in ordered dislocated quasi G-metric spaces, Punjab Univ. J. Math., 52 (2020).
27. A. E. Al-Mazrooei, A. Shoaib, J. Ahmad, Unique fixed-point results for β-admissible mapping under $(\beta-\breve{\psi})$-contraction in complete dislocated G_{d}-metric space, Mathematics, 8 (2020). http://dx.doi.org/10.3390/math8091584
28. M. Abbas, S. Z. Németh, Finding solutions of implict complementarity problems by isotonicty of the metric projection, Nonlinear Anal., 75 (2012), 2349-2361. http://dx.doi.org/10.1016/j.na.2011.10.033

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

