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1. Introduction

Fixed point theory in metric spaces occupies an extremely important position in modern
mathematics, it has been generalized in various aspects. For example, G-metric spaces [1] were
introduced and Gb-metric spaces were reported in [2], which successfully popularized the general
metric and promoted the research of various types of fixed point theorems. These theorems are
accompanied with different contractive conditions (see [3–12,21–27]), especially the new Geraghty
contraction was given in [13] and the JS contraction was given in [14].

Recently, Shoaib et al. [15] introduced the ordered dislocated quasi G-metric spaces, and obtained
some new fixed point results for a dominated mapping on a close ball in this space. On the other hand,
Ege [16] also proposed the complex valued Gb-metric spaces as a new notion, the Banach contraction
principle and Kannan’s fixed point theorem were proved for this space. Moreover, there are also other
interesting fixed point theorems in this space (see [17–20]).

In this work, we study some problems about the common solutions of the operator equations Fnx =

ux (u ≥ 1, n ∈ N∗) in complete partially ordered complex valued Gb-metric spaces, introduce the
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complex valued Cp-class function and a type of Geraghty contraction to this space respectively, and we
obtain the common solutions in a closed ball. Furthermore, we also introduce a type of JS contraction
to this space and investigate a new theorem.

Firstly, we recall some basic concepts, which will be used later. For a real Banach space E, a
nonempty closed subset Q ⊂ E is called a cone, if
(a) for all ζ ∈ Q and τ ≥ 0, τζ ∈ Q;
(b) for all ζ1, ζ2 ∈ Q, ζ1 + ζ2 ∈ Q;
(c) Q ∩ (−Q) = 0.

For ξ1, ξ2 ∈ E, given a cone Q, we define a partial order � on E, which is induced by Q, i.e., ξ1 � ξ2

iff ξ2 − ξ1 ∈ Q. Furthermore, ξ1, ξ2 are said to be comparable if ξ1 � ξ2 or ξ2 � ξ1.
On the other hand, for all ξ1, ξ2 ∈ C, the partial order - on C is defined as follows:

ξ1 - ξ2 ⇔ Re(ξ1) ≤ Re(ξ2) and Im(ξ1) ≤ Im(ξ2).

Therefore, ξ1 - ξ2 if one of the following conditions holds:
(C1) Re(ξ1) = Re(ξ2) and Im(ξ1) = Im(ξ2);
(C2) Re(ξ1) = Re(ξ2) and Im(ξ1) < Im(ξ2);
(C3) Re(ξ1) < Re(ξ2) and Im(ξ1) = Im(ξ2);
(C4) Re(ξ1) < Re(ξ2) and Im(ξ1) < Im(ξ2).

Moreover, we denote ξ1 ≺ ξ2 if only (C4) holds. Obviously, 0 - ξ1 - ξ2 ⇒ |ξ1| ≤ |ξ2|, where |ξi| is
the magnitude of ξi, i = 1, 2. For more details, see [25].
Definition 1.1. ([16]) Let X be a nonempty set, for a real number s ≥ 1, if the mapping Gb : X×X×X →
C satisfies:
(CGb1) Gb(ζ1, ζ2, ζ3) = 0 if ζ1 = ζ2 = ζ3;
(CGb2) Gb(ζ1, ζ1, ζ2) � 0 for all ζ1, ζ2 ∈ X with ζ1 , ζ2;
(CGb3) Gb(ζ1, ζ1, ζ2) - Gb(ζ1, ζ2, ζ3) for all ζ1, ζ2, ζ3 ∈ X with ζ3 , ζ2;
(CGb4) Gb(ζ1, ζ2, ζ3) = Gb(R{ζ1, ζ2, ζ3}), where R is an arbitrary permutation of {ζ1, ζ2, ζ3};
(CGb5) Gb(ζ1, ζ2, ζ3) - s[Gb(ζ1, υ, υ) + Gb(υ, ζ2, ζ3)] for all ζ1, ζ2, ζ3, υ ∈ X.

Then the function Gb is called a complex valued Gb-metric on X, the pair (X,Gb) is called a complex
valued Gb-metric space.
Proposition 1.1. ([16]) For a complex valued Gb-metric space (X,Gb) and all ζ1, ζ2, ζ3 ∈ X, we have
(1) Gb(ζ1, ζ2, ζ3) - s[Gb(ζ1, ζ1, ζ2) + Gb(ζ1, ζ1, ζ3)];
(2) Gb(ζ1, ζ2, ζ2) - 2s[Gb(ζ1, ζ1, ζ2)].
Definition 1.2. ([16]) Let {xn} be a sequence in a complex valued Gb-metric space (X,Gb),
(1) {xn} is called complex valued Gb-convergent to ζ ∈ X, if for any ε ∈ C with ε � 0, there exists
ξ ∈ N such that Gb(ζ, xn, xm) ≺ ε for all n,m ≥ ξ. We write xn → ζ as n→ ∞, or lim

n→∞
xn = ζ;

(2) {xn} is called complex valued Gb-Cauchy, if for any ε ∈ C with ε � 0, there exists ξ ∈ N such that
Gb(xn, xm, xl) ≺ ε for all n,m, l ≥ ξ;
(3) (X,Gb) is said to be complex valued Gb-complete, if any complex valued Gb-Cauchy sequence {xn}

is complex valued Gb-convergent.
Theorem 1.1. ([16]) Let {xn} be a sequence in a complex valued Gb-metric space (X,Gb), and ζ ∈ X,
the following are equivalent:

(1) {xn} is complex valued Gb-convergent to ζ;
(2) |Gb(xn, xm, ζ)| → 0 as n,m→ ∞;
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(3) |Gb(xn, ζ, ζ)| → 0 as n→ ∞;
(4) |Gb(xn, xn, ζ)| → 0 as n→ ∞.

Theorem 1.2. ([16]) A sequence {xn} is complex valued Gb-Cauchy sequence is equivalent to
|Gb(xn, xm, xl)| → 0 as n,m, l→ ∞.
Definition 1.3. ([28]) Let Q ⊂ Rm be a cone, a mapping S : Q→ Rm is said to be dominated if S x � x
for all x ∈ Q.
Theorem 1.3. ([15]) Let (X,�,G) be an ordered complete dislocated quasi G-metric space, S : X → X
be a mapping and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1

2 ) with

G(S x, S y, S z) ≤ k(G(x, S x, S x) + G(y, S y, S y) + G(z, S z, S z))

for all comparable elements x, y, z ∈ B(x0, r), and

G(x0, S x0, S x0) ≤ (1 − θ)r,

where θ = k
1−2k . If for nonincreasing sequence {xn} → u implies that u � xn. Then there exists

a point x? in B(x0, r) such that x? = S x? and G(x?, x?, x?) = 0. Moreover, if for any three points
x, y, z ∈ B(x0, r), there exists a point v in B(x0, r) such that v � x and v � y, v � z, where

G(x0, S x0, S x0) + G(v, S v, S v) + G(v, S v, S v) ≤ G(x0, v, v) + G(S x0, S v, S v) + G(S x0, S v, S v),

then the point x? is unique.

2. Results and examples

In this section, let X = RN , Ω1 = {Z1 ∈ C : 0 - Z1}, Ω2 = {Z2 ∈ C : 0 ≺ Z2}, Ω3 = {Z3 ∈ C : 1 ≺
Z3}. (X,Gb,�) is called a partially ordered complex valued Gb-metric space, which shows (X,Gb) is a
complex valued Gb-metric space and (X,�) is a partially ordered set.

Let (X,Gb) be a complex valued Gb-metric space, for any x0 ∈ X, r ∈ C and r � 0, the Gb-ball with
ball center x0 is B(x0, r) = {x ∈ X| Gb(x0, x, x) - r}. Moreover, for all n ∈ N∗ and x1, x2, ..., xn ∈ C,
the function max{x1, x2, ..., xn} % x j, j = 1, 2, ..., n.
Definition 2.1. A continuous mapping P : Ω3

1 → C is called complex valued Cp-class function, if it
satisfies r - P(r, s, t) for all r, s, t ∈ Ω1.
Example 2.1. Some examples of complex valued Cp-class function are given as follows:
(1) P(r, s, t) = r + s + t, where r, s, t ∈ Ω1;
(2) P(r, s, t) = mr, where m ∈ [1,∞) and r, s, t ∈ Ω1;
(3) P(r, s, t) = η(r)r, where η : Ω1 → [1,∞) and r, s, t ∈ Ω1.

Theorem 2.1. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, x0 be an arbitrary element in Q, {S n : X → X, n ∈ N∗} be a dominated
mapping sequence. If there exist r ∈ Ω2, and nonnegative numbers α, β, γ satisfy α − 2sγ , 0, β

α−2γ ∈

[0, δ], δ < 1
s , such that

P[ψ(αGb(S ix, S jy, S jy)), ϕ(αGb(S ix, S jy, S jy)), ϕ(αGb(S ix, S jy, S jy))]
- ψ[βGb(x, S ix, S ix) + γGb(y, S jy, S jz) + γGb(z, S jz, S jy)]

(2.1)
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for any comparable elements x, y, z in B(x0, r), where B(x0, r) ⊂ Q, i, j ∈ N∗, P is a complex valued
Cp-class function, ψ : Ω1 → Ω1 is a nondecreasing function, ϕ : Ω1 → C is a continuous function.
And

Gb(x0, S 1x0, S 1x0) -
1 − sδ

s
r. (2.2)

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in B(x0, r). Moreover,
if there exists an element v in B(x0, r) such that v � x∗, and

βGb(x0, S 1x0, S 1x0) + 2γGb(v, S jv, S jv) - βGb(x0, v, v) + 2γGb(S 1x0, S jv, S jv), (2.3)

then the operator equations have an unique solution.
Proof. By selecting the ball centre x0 in B(x0, r), we construct a sequence {xn}, where xn+1 = S n+1xn �

xn, n ∈ N. From (2.2), we obtain x1 ∈ B(x0, r). Using (2.1), we have

ψ(αGb(S 1x0, S 2x1, S 2x1))
- P[ψ(αGb(S 1x0, S 2x1, S 2x1)), ϕ(αGb(S 1x0, S 2x1, S 2x1)), ϕ(αGb(S 1x0, S 2x1, S 2x1))]
- ψ[βGb(x0, S 1x0, S 1x0) + 2γGb(x1, S 2x1, S 2x1)].

Since the function ψ is nondecreasing, we can easily get

Gb(x1, x2, x2) -
β

α − 2γ
Gb(x0, x1, x1) - δGb(x0, x1, x1).

Hence, Gb(x0, x2, x2) - s[Gb(x0, x1, x1) + Gb(x1, x2, x2)] - s(1 + δ)Gb(x0, x1, x1). Using (2.2), we get
Gb(x0, x2, x2) - (1 − δ2)r ≺ r, that is x2 ∈ B(x0, r).

Now we prove {xn} ⊂ B(x0, r). Suppose that x3, x4, ..., xk ∈ B(x0, r), according to (2.1), we have

ψ(αGb(S kxk−1, S k+1xk, S k+1xk))
- P[ψ(αGb(S kxk−1, S k+1xk, S k+1xk)), ϕ(αGb(S kxk−1, S k+1xk, S k+1xk)), ϕ(αGb(S kxk−1, S k+1xk, S k+1xk))]
- ψ[βGb(xk−1, S kxk−1, S kxk−1) + 2γGb(xk, S k+1xk, S k+1xk)].

Thus Gb(xk, xk+1, xk+1) - β

α−2γGb(xk−1, xk, xk) - δGb(xk−1, xk, xk), it can easily get that

Gb(xk, xk+1, xk+1) - δk Gb(x0, x1, x1). (2.4)

By using (CGb5) and (2.4), it follows that

Gb(x0, xk+1, xk+1) - sGb(x0, x1, x1) + s2Gb(x1, x2, x2) + ... + sk+1Gb(xk, xk+1, xk+1)
- (s + s2δ + ... + sk+1δk)Gb(x0, x1, x1)

- s ·
1

1 − sδ
1 − sδ

s
r

= r,

i.e., xk+1 ∈ B(x0, r), therefore, {xn} ⊂ B(x0, r).
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Now we show that {xn} is a complex valued Gb-Cauchy sequence, from (2.4), we obtain

Gb(xn, xn+1, xn+1) - δn Gb(x0, x1, x1), (2.5)

thus for all n,m ∈ N∗, n < m, we have

Gb(xn, xm, xm) - sGb(xn, xn+1, xn+1) + s2Gb(xn+1, xn+2, xn+2) + ... + sm−nGb(xm−1, xm, xm)
- (sδn + s2δn+1 + ... + sm−nδm−1)Gb(x0, x1, x1)

- sδn ·
1

1 − sδ
Gb(x0, x1, x1),

which implies that
lim

n,m→∞
Gb(xn, xm, xm) = 0.

Therefore, {xn} is a complex valued Gb-Cauchy sequence, and there exists an element x∗ in B(x0, r)
such that xn → x∗.

Next we prove x∗ is the common solution of the operator equations. For any j ∈ N∗, we have

Gb(x∗, S jx∗, S jx∗) - s[Gb(x∗, xn, xn) + Gb(xn, S jx∗, S jx∗)].

Furthermore, since S jx∗ � x∗ � xn � xn−1, using (2.1), it can be easily get that

αGb(xn, S jx∗, S jx∗) - βGb(xn−1, xn, xn) + 2γGb(x∗, S jx∗, S jx∗).

Hence,

αGb(x∗, S jx∗, S jx∗) - sαGb(x∗, xn, xn) + sαGb(xn, S jx∗, S jx∗)
- sαGb(x∗, xn, xn) + sβGb(xn−1, xn, xn) + 2sγGb(x∗, S jx∗, S jx∗).

That is,

Gb(x∗, S jx∗, S jx∗) -
1

α − 2sγ
[sαGb(x∗, xn, xn) + sβGb(xn−1, xn, xn)].

Let n → ∞ at both sides of the above inequality, we obtain lim
n→∞

Gb(x∗, S jx∗, S jx∗) = 0, i.e. x∗ =

S jx∗. According to the arbitrariness of j, we get x∗ is a common solution of the operator equations.
Uniqueness. Assume that y∗ is another solution of the operator equations, y∗ , x∗ and y∗ ∈ B(x0, r).

Case 1. If x∗ and y∗ are comparable, using (2.1), it follows that

αGb(x∗, y∗, y∗) = αGb(S ix∗, S jy∗, S jy∗)
- βGb(x∗, S ix∗, S ix∗) + 2γGb(y∗, S jy∗, S jy∗)
= βGb(x∗, x∗, x∗) + 2γGb(y∗, y∗, y∗)
= 0,

as a result, x∗ = y∗.
Case 2. If x∗ and y∗ are not comparable, then there exists an element v ∈ B(x0, r) such that v � x∗ and
v � y∗, for any j ∈ N∗, we will show {S n

j xn} ⊂ B(x0, r). Owing to (2.1) and (2.3), we have

αGb(S 1x0, S jv, S jv) - βGb(x0, S 1x0, S 1x0) + 2γGb(v, S jv, S jv)
- βGb(x0, v, v) + 2γGb(S 1x0, S jv, S jv),
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i.e.,

Gb(S 1x0, S jv, S jv) -
β

α − 2γ
Gb(x0, v, v) - δ r.

Hence,
Gb(x0, S jv, S jv) - s[Gb(x0, x1, x1) + Gb(x1, S jv, S jv)]

- s(
1 − sδ

s
r + δ r)

= r,

that is S jv ∈ B(x0, r). Suppose that S 2
jv, S

3
jv, ..., S

k
jv ∈ B(x0, r), obviously, S k

jv � S k−1
j v � ... � S 2

jv �
S jv � v � x∗ � xn � ... � x0. From (2.1), we can immediately obtain

αGb(S k
jv, S

k+1
j v, S k+1

j v) - βGb(S k−1
j v, S k

jv, S
k
jv) + 2γGb(S k

jv, S
k+1
j v, S k+1

j v),

so we have

Gb(S k
jv, S

k+1
j v, S k+1

j v) -
β

α − 2γ
Gb(S k−1

j v, S k
jv, S

k
jv) - δGb(S k−1

j v, S k
jv, S

k
jv),

as a result,
Gb(S k

jv, S
k+1
j v, S k+1

j v) - δGb(S k−1
j v, S k

jv, S
k
jv)

- ...

- δk Gb(v, S jv, S jv).

(2.6)

In addition, using (2.1), (2.3), (2.5) and (2.6), we can also immediately obtain

αGb(xk+1, S k+1
j v, S k+1

j v) - βGb(xk, xk+1, xk+1) + 2γGb(S k
jv, S

k+1
j v, S k+1

j v)

- βδkGb(x0, x1, x1) + 2γδkGb(v, S jv, S jv)
- βδkGb(x0, v, v) + 2γδkGb(S 1x0, S jv, S jv)

- βδkGb(x0, v, v) + 2γδk β

α − 2γ
Gb(x0, v, v)

- (βδk + 2γδk+1)Gb(x0, v, v),

i.e.,

Gb(xk+1, S k+1
j v, S k+1

j v) -
(βδk + 2γδk+1)

α
Gb(x0, v, v)

-
(α − 2γ)δk+1 + 2γδk+1

α
Gb(x0, v, v)

= δk+1Gb(x0, v, v).

Thus,

Gb(x0, S k+1
j v, S k+1

j v) - sGb(x0, x1, x1) + ... + sk+1Gb(xk, xk+1, xk+1) + sk+1Gb(xk+1, S k+1
j v, S k+1

j v)

- (s + s2δ + ... + sk+1δk)Gb(x0, x1, x1) + sk+1δk+1Gb(x0, v, v)

- s ·
1 − (sδ)k+1

1 − sδ
·

1 − sδ
s

r + (sδ)k+1 · r

= [1 − (sδ)k+1 + (sδ)k+1]r
= r,
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which implies S k+1
j v ∈ B(x0, r), so {S n

j xn} ⊂ B(x0, r). From (2.6), we obtain

Gb(S n
jv, S

n+1
j v, S n+1

j v) - δn Gb(v, S jv, S jv),

and
lim
n→∞

Gb(S n
jv, S

n+1
j v, S n+1

j v) = 0. (2.7)

From (2.1), we can easily get

αGb(x∗, S n
jv, S

n
jv) = αGb(S ix∗, S n

jv, S
n
jv)

- βGb(x∗, S ix∗, S ix∗) + 2γGb(S n−1
j v, S n

jv, S
n
jv)

= 2γGb(S n−1
j v, S n

jv, S
n
jv).

Owing to (2.7), we have
lim
n→∞

Gb(x∗, S n
jv, S

n
jv) = 0. (2.8)

Similarly,
αGb(S n

jv, y
∗, y∗) = αGb(S n

jv, S iy∗, S iy∗)

- βGb(S n−1
j v, S n

jv, S
n
jv) + 2γGb(y∗, S iy∗, S iy∗)

= βGb(S n−1
j v, S n

jv, S
n
jv).

According to (2.7), we also have
lim
n→∞

Gb(S n
jv, y

∗, y∗) = 0. (2.9)

Since Gb(x∗, y∗, y∗) - s[Gb(x∗, S n
jv, S

n
jv) + Gb(S n

jv, y
∗, y∗)], using (2.8) and (2.9), we obtain

Gb(x∗, y∗, y∗) = lim
n→∞

Gb(x∗, y∗, y∗) - 0.

Therefore, x∗ = y∗, the proof is completed.

Following the proof process of Theorem 2.1, we can obtain the following corollary.
Corollary 2.1. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, {S n : X → Q, n ∈ N∗} be a dominated mapping sequence. If there exist
nonnegative numbers α, β, γ satisfy α − 2sγ , 0, β

α−2γ ∈ [0, 1
s ), such that

η(ψ(αGb(S ix, S jy, S jy)))ψ(αGb(S ix, S jy, S jy))
- ψ[βGb(x, S ix, S ix) + γGb(y, S jy, S jz) + γGb(z, S jz, S jy)]

for any comparable elements x, y, z in Q, where i, j ∈ N∗, η : Ω1 → [1,∞), ψ : Ω1 → Ω1 is a
nondecreasing function.

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if
there exists an element v in Q such that v � x∗, then the operator equations have an unique solution.
Example 2.2. Let X = R, Q = [0,∞), α = 5, β = γ = 1, δ = 1

3 , Gb : X × X × X → C be defined by
Gb(ξ1, ξ2, ξ3) = max{|ξ1 − ξ2|

2, |ξ2 − ξ3|
2, |ξ1 − ξ3|

2} + max{|ξ1 − ξ2|
2, |ξ2 − ξ3|

2, |ξ1 − ξ3|
2}i with s = 2, and

ψ(r) = η(r)r = r for any r in Ω1.
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For any ξ in X, 0 < νn ≤ 1
4 and n ∈ N∗, take S nξ = νnξ and Fn = uS n, where u ≥ 1. The partial order

� on X is the usual order ≤ of R, for any ξ1, ξ2, ξ3 in Q, we have

αGb(S nξ1, S nξ2, S nξ2) = 5ν2n(ξ1 − ξ2)2 + 5ν2n(ξ1 − ξ2)2i,

and
β|ξ1 − ν

nξ1|
2 + γ|ξ2 − ν

nξ2|
2 + γ|ξ3 − ν

nξ3|
2 = (1 − νn)2(ξ2

1 + ξ2
2 + ξ2

3).

Hence,

αGb(S nξ1, S nξ2, S nξ2)
- β|ξ1 − ν

nξ1|
2 + γ|ξ2 − ν

nξ2|
2 + γ|ξ3 − ν

nξ3|
2 + [β|ξ1 − ν

nξ1|
2 + γ|ξ2 − ν

nξ2|
2 + γ|ξ3 − ν

nξ3|
2]i

- βGb(ξ1, S nξ1, S nξ1) + γGb(ξ2, S nξ2, S nξ3) + γGb(ξ3, S nξ3, S nξ2).

It follows that the operator equations Fnξ = uξ have a common solution ξ∗ = 0 in Q, and there
exists an element v = 0 in Q such that v ≤ ξ∗. Therefore, all conditions of Corollary 2.1 are satisfied,
the operator equations Fnξ = uξ have an unique solution ξ∗ = 0.

Let B be the set of functions β : Ω1 → [0, 1
s ), which satisfies if lim

n→∞
β(xn) = 1

s , then lim
n→∞

xn = 0.

Theorem 2.2. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, x0 be an arbitrary element in Q, {S n : X → X, n ∈ N∗} be a dominated
mapping sequence. Suppose that there exist β ∈ B, i, j ∈ N∗ and r ∈ Ω2, such that

Gb(S ix, S jy, S jz) - β(M(x, y, z))M(x, y, z) (2.10)

for any comparable elements x, y, z in B(x0, r), where B(x0, r) ⊂ Q,

M(x, y, z) = max{Gb(x, y, z),
Gb(x, S ix, S ix)Gb(y, S jy, S jz)

1 + Gb(x, y, z)
,

Gb(x, S ix, S ix)Gb(x, S jy, S jz)
1 + s[Gb(x, y, z) + Gb(S ix, S jy, S jz)]

},

(2.11)
and

Gb(x0, S 1x0, S 1x0) -
1 − sδ

s
r, (2.12)

where δ ∈ (0, 1
s ).

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in B(x0, r).
Proof. By selecting the ball centre x0 in B(x0, r), we construct a sequence {xn}, where xn+1 = S n+1xn �

xn, n ∈ N. From (2.12), we know x1 ∈ B(x0, r). Using (2.10), we have

Gb(x1, x2, x2) = Gb(S 1x0, S 2x1, S 2x1) - β(M(x0, x1, x1))M(x0, x1, x1), (2.13)

where

M(x0, x1, x1) = max{Gb(x0, x1, x1),
Gb(x0, S 1x0, S 1x0)Gb(x1, S 2x1, S 2x1)

1 + Gb(x0, x1, x1)
,

Gb(x0, S 1x0, S 1x0)Gb(x0, S 2x1, S 2x1)
1 + s[Gb(x0, x1, x1) + Gb(S 1x0, S 2x1, S 2x1)]

}.
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Since

Gb(x0, S 1x0, S 1x0)Gb(x1, S 2x1, S 2x1)
1 + Gb(x0, x1, x1)

- Gb(x1, S 2x1, S 2x1) = Gb(x1, x2, x2),

and

Gb(x0, S 1x0, S 1x0)Gb(x0, S 2x1, S 2x1)
1 + s[Gb(x0, x1, x1) + Gb(S 1x0, S 2x1, S 2x1)]

-
s[Gb(x0, x1, x1) + Gb(x1, S 2x1, S 2x1)]Gb(x0, S 1x0, S 1x0)

1 + s[Gb(x0, x1, x1) + Gb(S 1x0, S 2x1, S 2x1)]
- Gb(x0, S 1x0, S 1x0)
= Gb(x0, x1, x1),

thus M(x0, x1, x1) - max{Gb(x0, x1, x1), Gb(x1, x2, x2)}.
If max{Gb(x0, x1, x1), Gb(x1, x2, x2)} = Gb(x1, x2, x2), then we have

Gb(x1, x2, x2) - β(M(x0, x1, x1))M(x0, x1, x1) ≺
1
s
Gb(x1, x2, x2),

which is a contradiction, thus

max{Gb(x0, x1, x1), Gb(x1, x2, x2)} = Gb(x0, x1, x1),

and
Gb(x1, x2, x2) - β(M(x0, x1, x1))M(x0, x1, x1) - δGb(x0, x1, x1).

So we have
Gb(x0, x2, x2) - s[Gb(x0, x1, x1) + Gb(x1, x2, x2)]

- s(1 + δ) ·
1 − sδ

s
r

- (1 − δ2)r
≺ r,

as a result, x2 ∈ B(x0, r).
Now we will show {xn} ⊂ B(x0, r). Assume that x3, x4, ..., xk ∈ B(x0, r), owing to (2.10), we get

Gb(xk, xk+1, xk+1) = Gb(S kxk−1, S k+1xk, S k+1xk) - β(M(xk−1, xk, xk))M(xk−1, xk, xk).

Following the above proof process, we can obtain

M(xk−1, xk, xk) - max{Gb(xk−1, xk, xk),Gb(xk, xk+1, xk+1)} = Gb(xk−1, xk, xk). (2.14)

Thus,
Gb(xk, xk+1, xk+1) - δGb(xk−1, xk, xk)

- δ2 Gb(xk−2, xk−1, xk−1)
- ...

- δk Gb(x0, x1, x1).

(2.15)
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By using (CGb5) and (2.15), it follows that

Gb(x0, xk+1, xk+1) - sGb(x0, x1, x1) + s2Gb(x1, x2, x2) + ... + sk+1Gb(xk, xk+1, xk+1)
- (s + s2δ + ... + sk+1δk)Gb(x0, x1, x1)

- s ·
1 − (sδ)k+1

1 − sδ
·

1 − sδ
s

r

≺ r.

Hence, xk+1 ∈ B(x0, r), so {xn} ⊂ B(x0, r). As a result, for all n ∈ N∗,

Gb(xn, xn+1, xn+1) = Gb(S nxn−1, S n+1xn, S n+1xn) - β(M(xn−1, xn, xn))M(xn−1, xn, xn), (2.16)

thus we have Gb(xn, xn+1, xn+1) ≺ 1
sGb(xn−1, xn, xn).

If s > 1, then Gb(xn, xn+1, xn+1) ≺ ( 1
s )nGb(x0, x1, x1)→ 0 as n→ ∞.

If s = 1, then Gb(xn, xn+1, xn+1) ≺ Gb(xn−1, xn, xn), which implies that {Gb(xn, xn+1, xn+1)} is a
decreasing sequence.

Suppose that
lim
n→∞

Gb(xn, xn+1, xn+1) = r � 0,

owing to (2.14) and (2.16), we obtain

r = lim
n→∞

Gb(xn, xn+1, xn+1)

- lim
n→∞

β(M(xn−1, xn, xn))M(xn−1, xn, xn)

- lim
n→∞

1
s
Gb(xn−1, xn, xn)

- r,

thus lim
n→∞

β(M(xn−1, xn, xn)) = 1, which implies lim
n→∞

Gb(xn−1, xn, xn) = 0, contradiction. As a result,
lim
n→∞

Gb(xn, xn+1, xn+1) = 0.
Now we prove {xn} is a complex valued Gb-Cauchy sequence. Suppose that contrary, then there

exist ε � 0 and two subsequences xmk and xnk of xn, such that

Gb(xmk , xnk , xnk) % ε and Gb(xmk , xnk−1, xnk−1) ≺ ε.

So we have
ε - Gb(xmk , xnk , xnk) - s[Gb(xmk , xmk+1 , xmk+1) + Gb(xmk+1 , xnk , xnk)].

Let k → ∞, we get

ε - lim
k→∞

inf Gb(xmk , xnk , xnk) - s lim
k→∞

inf Gb(xmk+1 , xnk , xnk).

Furthermore, using (2.10) and (2.14),

lim
k→∞

inf Gb(xmk+1, xnk , xnk) - lim
k→∞

inf β(M(xmk , xnk−1, xnk−1))M(xmk , xnk−1, xnk−1)

- lim
k→∞

inf β(M(xmk , xnk−1, xnk−1))Gb(xmk , xnk−1, xnk−1)

- lim
k→∞

inf β(M(xmk , xnk−1, xnk−1))ε,
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thus we have
ε

s
- lim

k→∞
inf Gb(xmk+1 , xnk , xnk)

- lim
k→∞

inf β(M(xmk , xnk−1, xnk−1))ε

- lim
k→∞

sup β(M(xmk , xnk−1, xnk−1))ε

-
ε

s
.

Therefore, lim
k→∞

β(M(xmk , xnk−1, xnk−1)) = 1
s , thus lim

k→∞
Gb(xmk , xnk−1, xnk−1) = 0. As a result,

ε - Gb(xmk , xnk , xnk) - s[Gb(xmk , xnk−1, xnk−1) + Gb(xnk−1, xnk , xnk)]→ 0 as k → ∞,

which is a contradiction. Therefore, {xn} is a complex valued Gb-Cauchy sequence, and there exists an
element x∗ in B(x0, r) such that xn → x∗.

Finally, we show that x∗ is a common solution of the operator equations. Let x = xi−1, y = z = x∗

in (2.10), we have

lim
i→∞

Gb(S ixi−1, S jx∗, S jx∗) - lim
i→∞

β(M(xi−1, x∗, x∗))M(xi−1, x∗, x∗) - lim
i→∞

1
s

M(xi−1, x∗, x∗),

where

M(xi−1, x∗, x∗) = max{Gb(xi−1, x∗, x∗),
Gb(xi−1, S ixi−1, S ixi−1)Gb(x∗, S jx∗, S jx∗)

1 + Gb(xi−1, x∗, x∗)
,

Gb(xi−1, S ixi−1, S ixi−1)Gb(xi−1, S jx∗, S jx∗)
1 + s[Gb(xi−1, x∗, x∗) + Gb(S ixi−1, S jx∗, S jx∗)]

}.

It can be easily deduced that lim
i→∞

M(xi−1, x∗, x∗) = 0 and lim
i→∞

Gb(S ixi−1, S jx∗, S jx∗) = 0, thus

Gb(x∗, S jx∗, S jx∗) - s[Gb(x∗, S ixi−1, S ixi−1) + Gb(S ixi−1, S jx∗, S jx∗)]→ 0 as i→ ∞.

As a result, x∗ = S jx∗, owing to the arbitrariness of j, we obtain that x∗ is a common solution of the
operator equations, the proof is completed.

Similarly, following the proof process of Theorem 2.2, the following corollary will be established.
Corollary 2.2. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, {S n : X → Q, n ∈ N∗} be a dominated mapping sequence. Suppose that there
exist i, j ∈ N∗ such that

Gb(S ix, S jy, S jz) - λM(x, y, z)

for any comparable elements x, y, z in Q, where λ ∈ [0, 1
s ), and

M(x, y, z) = max{Gb(x, y, z),
Gb(x, S ix, S ix)Gb(y, S jy, S jz)

1 + Gb(x, y, z)
,

Gb(x, S ix, S ix)Gb(x, S jy, S jz)
1 + s[Gb(x, y, z) + Gb(S ix, S jy, S jz)]

}.

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in Q.
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Example 2.3. Let X = R, Q = [0,∞), Gb : X × X × X → C be defined by Gb(ξ1, ξ2, ξ3) = (|ξ1 − ξ2| +

|ξ2 − ξ3| + |ξ1 − ξ3|)2 + (|ξ1 − ξ2| + |ξ2 − ξ3| + |ξ1 − ξ3|)2i with s = 2, δ = 1
5 , x0 = 1, r = 4 + 4i. For all

t ∈ Ω1, take

β(t) =



1
3
, t = 0;

1

2 + |t|
2

, 0 < |t| ≤ 1;

1
5
2 + 1

2+e|t|
, |t| > 1.

Obviously, 1
3 ≤ β(t) < 1

2 , and

B(1, 4 + 4i) = {x|Gb(1, x, x) - 4 + 4i} = {x|4|1 − x|2 + 4|1 − x|2i - 4 + 4i} = [0, 2].

Moreover, for any ξ in X, let S nξ =
|ξ|
√

3n
, n ∈ N∗ and Fn = uS n, where u ≥ 1. The partial order � on

X is the usual order ≤ of R, for any ξ1, ξ2, ξ3 in B(1, 4 + 4i), we have

Gb(S nξ1, S nξ2, S nξ3) =
1

3n2 [(|ξ1 − ξ2| + |ξ2 − ξ3| + |ξ1 − ξ3|)2 + (|ξ1 − ξ2| + |ξ2 − ξ3| + |ξ1 − ξ3|)2i],

and
Gb(ξ1, ξ2, ξ3) = (|ξ1 − ξ2| + |ξ2 − ξ3| + |ξ1 − ξ3|)2 + (|ξ1 − ξ2| + |ξ2 − ξ3| + |ξ1 − ξ3|)2i.

It follows that
Gb(S nξ1, S nξ2, S nξ3) -

1
3

Gb(ξ1, ξ2, ξ3)

-
1
3

M(ξ1, ξ2, ξ3)

- β(M(ξ1, ξ2, ξ3))M(ξ1, ξ2, ξ3),

and

Gb(1,

√
3

3
,

√
3

3
) =

16 − 8
√

3
3

+
16 − 8

√
3

3
i ≺

3
10

(4 + 4i).

It is clearly that all conditions of Theorem 2.2 are satisfied, as a result, the operator equations
Fnξ = uξ have a common solution ξ∗ = 0 in B(1, 4 + 4i).

On the other hand, let Θ be the set of functions θ : Ω2 → Ω3, which satisfies the following
conditions:
Θ1 : θ is continuous;
Θ2 : θ is nondecreasing, i.e. θ(x1) % θ(x2) if x1 % x2;
Θ3 : lim

n→∞
θ(xn) = 1⇔ lim

n→∞
xn = 0+, where {xn} ⊂ Ω2.

Theorem 2.3. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, {S n : X → Q, n ∈ N∗} be a dominated mapping sequence. Suppose that there
exist θ ∈ Θ, i, j ∈ N∗, k ∈ (0, 1), α ≥ 0 such that

|θ(Gb(S ix, S jy, S jz))| ≤ |θ(
1
s

M(x, y, z) − α)|k (2.17)
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for any comparable elements x, y, z in Q, where Gb(S ix, S jy, S jz) , 0, and

M(x, y, z) = max{Gb(x, S ix, S ix),Gb(y, S jy, S jz),Gb(z, S jz, S jy),Gb(x, y, z)}. (2.18)

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if
there exists an element v in Q such that v � x∗, and

Gb(S n−1
j v, S n

jv, S
n
jv) - Gb(x∗, S n−1

j v, S n−1
j v), (2.19)

then the operator equations have an unique solution.
Proof. By selecting a point x0 in Q, we construct a sequence {xn}, where xn+1 = S n+1xn � xn, n ∈ N.
Let x = xn−1, y = z = xn in (2.17), we have

|θ(
1
s
Gb(S nxn−1, S n+1xn, S n+1xn))| ≤ |θ(Gb(S nxn−1, S n+1xn, S n+1xn))|

≤ |θ(
1
s

M(xn−1, xn, xn) − α)|k

≤ |θ(
1
s

M(xn−1, xn, xn))|k,

where

M(xn−1, xn, xn) = max{Gb(xn−1, S nxn−1, S nxn−1),Gb(xn, S n+1xn, S n+1xn),Gb(xn−1, xn, xn)}
= max{Gb(xn−1, xn, xn),Gb(xn, xn+1, xn+1)},

thus we get

|θ(
1
s
Gb(xn, xn+1, xn+1))| ≤ |θ(

1
s

max{Gb(xn−1, xn, xn),Gb(xn, xn+1, xn+1)})|k.

If max{Gb(xn−1, xn, xn),Gb(xn, xn+1, xn+1)} = Gb(xn, xn+1, xn+1), then

|θ(
1
s
Gb(xn, xn+1, xn+1))| ≤ |θ(

1
s
Gb(xn, xn+1, xn+1))|k, which is contradiction with k ∈ (0, 1),

hence,

|θ(
1
s
Gb(xn, xn+1, xn+1))| ≤ |θ(Gb(xn, xn+1, xn+1))| ≤ |θ(

1
s
Gb(xn−1, xn, xn))|k.

It follows that

|θ(
1
s
Gb(xn, xn+1, xn+1))| ≤ |θ(

1
s
Gb(xn−1, xn, xn))|k ≤ ... ≤ |θ(

1
s
Gb(x0, x1, x1))|k

n
,

and
lim
n→∞
|θ(

1
s
Gb(xn, xn+1, xn+1))| ≤ lim

n→∞
|θ(

1
s
Gb(x0, x1, x1))|k

n
= 1,

therefore,
lim
n→∞

Gb(xn, xn+1, xn+1) = 0 and lim
n→∞

Gb(xn, xn, xn+1) = 0.
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Now we show {xn} is a complex valued Gb-Cauchy sequence. If not, then there exist ε � 0 and two
subsequences xmi and xni of xn, where i ≤ ni ≤ mi, such that

Gb(xni , xni , xmi) % ε and Gb(xni , xni , xmi−1) ≺ ε.

Using (CGb5), we have

ε - Gb(xni , xni , xmi) - s[Gb(xni , xni , xni+1) + Gb(xni+1, xni+1, xmi)],

let i→ ∞ at the above inequality, we get

ε

s
- lim

i→∞
Gb(xmi , xni+1, xni+1). (2.20)

In addition, owing to (2.17), we obtain

|θ(Gb(S mi xmi−1 , S ni+1xni , S ni+1xni))| ≤ |θ(
1
s

M(xmi−1 , xni , xni) − α)|k,

i.e.,

|θ(
1
s
Gb(xmi , xni+1, xni+1))| ≤ |θ(Gb(xmi , xni+1, xni+1))|

≤ |θ(
1
s

M(xmi−1 , xni , xni) − α)|k

≤ |θ(
1
s

M(xmi−1 , xni , xni))|
k,

where
M(xmi−1 , xni , xni) = max{Gb(xmi−1 , xmi , xmi),Gb(xni , xni+1 , xni+1),Gb(xni , xni , xmi−1)}.

Since
lim
i→∞

Gb(xmi−1 , xmi , xmi) = lim
i→∞

Gb(xni , xni+1 , xni+1) = 0,

obviously, M(xmi−1 , xni , xni) = Gb(xni , xni , xmi−1), it follows that

|θ(Gb(xmi , xni+1, xni+1))| ≤ |θ(
1
s
Gb(xni , xni , xmi−1))|

k. (2.21)

Using (2.20) and (2.21), we have

|θ(
ε

s
)| ≤ lim

i→∞
|θ(Gb(xmi , xni+1, xni+1))| ≤ lim

i→∞
|θ(

1
s
Gb(xni , xni , xmi−1))|

k < |θ(
ε

s
)|k,

which is a contradiction with k ∈ (0, 1). As a result, {xn} is a complex valued Gb-Cauchy sequence, and
there exists an element x∗ in Q such that xn → x∗.

Now we prove that x∗ is a common solution of the operator equations. For all i, j ∈ N∗, we have

Gb(x∗, S jx∗, S jx∗) - s[Gb(x∗, xi, xi) + Gb(xi, S jx∗, S jx∗)],

and let i→ ∞ at the above inequality, we get

Gb(x∗, S jx∗, S jx∗) - lim
i→∞

sGb(xi, S jx∗, S jx∗). (2.22)
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In addition, since x∗ � xi−1, according to (2.17), we obtain

|θ(Gb(S ixi−1, S jx∗, S jx∗))| ≤ |θ(
1
s

M(xi−1, x∗, x∗) − α)|k ≤ |θ(
1
s

M(xi−1, x∗, x∗))|k,

where
M(xi−1, x∗, x∗) = max{Gb(xi−1, xi, xi),Gb(x∗, S jx∗, S jx∗),Gb(xi−1, x∗, x∗)}.

If M(xi−1, x∗, x∗) = Gb(x∗, S jx∗, S jx∗), using (2.22), it follows that

lim
i→∞
|θ(Gb(xi, S jx∗, S jx∗))| ≤ lim

i→∞
|θ(

1
s
Gb(x∗, S jx∗, S jx∗))|k ≤ lim

i→∞
|θ(Gb(xi, S jx∗, S jx∗))|k,

contradiction, thus we can easily get

|θ(Gb(xi, S jx∗, S jx∗))| ≤ |θ(
1
s
Gb(xi−1, xi, xi))|k → 1 as i→ ∞,

or
|θ(Gb(xi, S jx∗, S jx∗))| ≤ |θ(

1
s
Gb(xi−1, x∗, x∗))|k → 1 as i→ ∞,

hence,
lim
i→∞

Gb(xi, S jx∗, S jx∗) = 0.

From (2.22), we have

Gb(x∗, S jx∗, S jx∗) - lim
i→∞

sGb(xi, S jx∗, S jx∗) = 0.

As a result, x∗ = S jx∗, owing to the arbitrariness of j, we obtain x∗ is a common solution of the operator
equations.

Uniqueness. If y∗ is another solution of the operator equations, y∗ , x∗, then Gb(x∗, y∗, y∗) , 0.
Case 1. x∗ and y∗ are comparable, using (2.17), it follows that

|θ(Gb(x∗, y∗, y∗))| = |θ(Gb(S ix∗, S jy∗, S jy∗))| ≤ |θ(
1
s

M(x∗, y∗, y∗) − α)|k ≤ |θ(
1
s

M(x∗, y∗, y∗))|k.

Obviously, M(x∗, y∗, y∗) = Gb(x∗, y∗, y∗), so we have

|θ(Gb(x∗, y∗, y∗))| ≤ |θ(
1
s
Gb(x∗, y∗, y∗))|k,

which is a contradiction. As a result, y∗ = x∗.
Case 2. x∗ and y∗ are not comparable, then there exists an element v ∈ Q such that v � x∗ and v � y∗,
for any i, j ∈ N∗, we have

x∗ = S ix∗ = S 2
i x∗ = ... = S n

i x∗, y∗ = S jy∗ = S 2
jy
∗ = ... = S n

jy
∗,

and
S n

jv � ... � S jv � v � x∗, S n
jv � ... � S jv � v � y∗.
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From (2.17), we get

|θ(Gb(S n
i x∗, S n

jv, S
n
jv))| ≤ |θ(

1
s

M(S n−1
i x∗, S n−1

j v, S n−1
j v) − α)|k ≤ |θ(

1
s

M(S n−1
i x∗, S n−1

j v, S n−1
j v))|k,

where

M(S n−1
i x∗, S n−1

j v, S n−1
j v) = max{Gb(S n−1

i x∗, S n
i x∗, S n

i x∗),Gb(S n−1
j v, S n

jv, S
n
jv),Gb(S n−1

i x∗, S n−1
j v, S n−1

j v)}.

According to (2.19), we obtain M(S n−1
i x∗, S n−1

j v, S n−1
j v) = Gb(S n−1

i x∗, S n−1
j v, S n−1

j v), and

|θ(Gb(S n
i x∗, S n

jv, S
n
jv))| ≤ |θ(

1
s
Gb(S n−1

i x∗, S n−1
j v, S n−1

j v))|k ≤ |θ(Gb(S n−1
i x∗, S n−1

j v, S n−1
j v))|k,

so that we have

|θ(Gb(S n
i x∗, S n

jv, S
n
jv))| ≤ |θ(Gb(S n−1

i x∗, S n−1
j v, S n−1

j v))|k ≤ ... ≤ |θ(Gb(x∗, v, v))|k
n
.

It follows that
lim
n→∞
|θ(Gb(S n

i x∗, S n
jv, S

n
jv))| ≤ lim

n→∞
|θ(Gb(x∗, v, v))|k

n
= 1,

hence,
lim
n→∞

Gb(S n
i x∗, S n

jv, S
n
jv) = 0. (2.23)

Similarly, using (2.17) and (2.19), we get

|θ(Gb(S n
jy
∗, S n

jv, S
n
jv))| ≤ |θ(

1
s

M(S n−1
j y∗, S n−1

j v, S n−1
j v) − α)|k

≤ |θ(M(S n−1
j y∗, S n−1

j v, S n−1
j v))|k,

where

M(S n−1
j y∗, S n−1

j v, S n−1
j v)) = max{Gb(S n−1

j y∗, S n
jy
∗, S n

jy
∗),Gb(S n−1

j v, S n
jv, S

n
jv),Gb(S n−1

j y∗, S n−1
j v, S n−1

j v)}

= max{0,Gb(S n−1
j v, S n

jv, S
n
jv),Gb(S n−1

j y∗, S n−1
j v, S n−1

j v)}

= Gb(S n−1
j y∗, S n−1

j v, S n−1
j v).

Therefore,

|θ(Gb(S n
jy
∗, S n

jv, S
n
jv))| ≤ |θ(Gb(S n−1

j y∗, S n−1
j v, S n−1

j v))|k ≤ ... ≤ |θ(Gb(y∗, v, v))|k
n
,

let n→ ∞, we have

lim
n→∞
|θ(Gb(S n

jy
∗, S n

jv, S
n
jv))| ≤ lim

n→∞
|θ(Gb(y∗, v, v))|k

n
= 1,

so we obtain
lim
n→∞

Gb(S n
jy
∗, S n

jv, S
n
jv) = 0,

and also
lim
n→∞

Gb(S n
jv, S

n
jy
∗, S n

jy
∗) = 0. (2.24)
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Using (2.23) and (2.24), we also have

Gb(S n
i x∗, S n

jy
∗, S n

jy
∗) - s[Gb(S n

i x∗, S n
jv, S

n
jv) + Gb(S n

jv, S
n
jy
∗, S n

jy
∗)]→ 0 as n→ ∞.

Owing to Gb(x∗, y∗, y∗) = Gb(S n
i x∗, S n

jy
∗, S n

jy
∗), as a result, x∗ = y∗, the proof is completed.

Example 2.4. Let X = R, Q = [0,∞), θ(t) = 1 + t, α = 0, k = 1
2 , Gb : X × X × X → C be defined by

Gb(ξ1, ξ2, ξ3) = max{|ξ1 − ξ2|
2, |ξ2 − ξ3|

2, |ξ1 − ξ3|
2} + max{|ξ1 − ξ2|

2, |ξ2 − ξ3|
2, |ξ1 − ξ3|

2}i with s = 2. For
any ξ in X, take S nξ =

|ξ|

4n and Fn = uS n, where u ≥ 1, n ∈ N∗, the partial order � on X is the usual
order ≤ of R.

Suppose that ξ1 ≥ ξ2 ≥ ξ3, if ξ1 − ξ3 ≤ 1 for any ξ1, ξ2, ξ3 in Q, or ξ1, ξ2, ξ3 ∈ [0, 1], we can easily
obtain

1 + Gb(S nξ1, S nξ2, S nξ3) = 1 +

(
ξ1 − ξ3

4n

)2

+

(
ξ1 − ξ3

4n

)2

i,

and
1 +

1
2

Gb(ξ1, ξ2, ξ3) = 1 +
1
2

(ξ1 − ξ3)2 +
1
2

(ξ1 − ξ3)2i.

Hence,

|1 + Gb(S nξ1, S nξ2, S nξ3)|4 =


√(

1 +

(
ξ1 − ξ3

4n

)2)2

+

(
ξ1 − ξ3

4n

)4


4

= 1 + 4
(
ξ1 − ξ3

4n

)2

+ 8
(
ξ1 − ξ3

4n

)4

+ 8
(
ξ1 − ξ3

4n

)6

+ 4
(
ξ1 − ξ3

4n

)8

≤ 1 + 12
(
ξ1 − ξ3

4n

)2

+ 12
(
ξ1 − ξ3

4n

)4

≤ 1 + (ξ1 − ξ3)2 +
1
2

(ξ1 − ξ3)4,

and
|1 +

1
2

Gb(ξ1, ξ2, ξ3)|2 = 1 + (ξ1 − ξ3)2 +
1
2

(ξ1 − ξ3)4.

Thus we obtain

|1 + Gb(S nξ1, S nξ2, S nξ3)| ≤ |1 +
1
2

Gb(ξ1, ξ2, ξ3)|
1
2 ≤ |1 +

1
2

M(ξ1, ξ2, ξ3)|
1
2 .

It follows that the operator equations Fnξ = uξ have a common solution ξ∗ = 0 in Q and (2.19) is
established with v = 0. Therefore, all conditions of Theorem 2.3 are satisfied, the operator equations
Fnξ = uξ have an unique solution ξ∗ = 0.

The following two corollaries can be easily obtained, if we let θ(t) = e|t|+t and θ(t) = 2− 2
π

arctan( 1
|t|γ )

in Theorem 2.3 respectively.
Corollary 2.3. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, {S n : X → Q, n ∈ N∗} be a dominated mapping sequence. Suppose that there
exist i, j ∈ N∗, k ∈ (0, 1), α ≥ 0 such that

|e|Gb(S i x,S jy,S jz)| + Gb(S ix, S jy, S jz)| ≤ |e|
1
s M(x,y,z)−α| +

1
s

M(x, y, z) − α|k

AIMS Mathematics Volume 7, Issue 7, 12322–12341.



12339

for any comparable elements x, y, z in Q, where Gb(S ix, S jy, S jz) , 0, and

M(x, y, z) = max{Gb(x, S ix, S ix),Gb(y, S jy, S jz),Gb(z, S jz, S jy),Gb(x, y, z)}.

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if
there exists an element v in Q such that v � x∗, and

Gb(S n−1
j v, S n

jv, S
n
jv) - Gb(x∗, S n−1

j v, S n−1
j v),

then the operator equations have an unique solution.
Corollary 2.4. Let (X,Gb,�) be a complete partially ordered complex valued Gb-metric space with
s ≥ 1, Q ⊂ X be a cone, {S n : X → Q, n ∈ N∗} be a dominated mapping sequence. Suppose that there
exist i, j ∈ N∗, γ, k ∈ (0, 1), α ≥ 0 such that

2 −
2
π

arctan(
1

|Gb(S ix, S jy, S jz)|γ
) ≤ |2 −

2
π

arctan(
1

| 1s M(x, y, z) − α|γ
)|k

for any comparable elements x, y, z in Q, where Gb(S ix, S jy, S jz) , 0, and

M(x, y, z) = max{Gb(x, S ix, S ix),Gb(y, S jy, S jz),Gb(z, S jz, S jy),Gb(x, y, z)}.

Define the operator equations Fnx = ux by Fn = uS n, u ≥ 1. If a nonincreasing sequence {xn} → κ

such that κ � xn, then the operator equations have at least a common solution x∗ in Q. Moreover, if
there exists an element v in Q such that v � x∗, and

Gb(S n−1
j v, S n

jv, S
n
jv) - Gb(x∗, S n−1

j v, S n−1
j v),

then the operator equations have an unique solution.

3. Conclusions

In this paper, we have obtained some new theorems for the common solutions of the operator
equations Fnx = ux (u ≥ 1, n ∈ N∗) via complex valued Cp-class function, a type of Geraghty
contraction and a type of JS contraction in complete partially ordered complex valued Gb-metric
spaces, and some of which are established in a closed ball. These new results generalize many known
results in complex valued Gb-metric spaces and Gb-metric spaces, in addition, it would be interesting
and worthwhile to further investigate some similar problems in other types of spaces.
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