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1. Introduction

Fixed point theory in metric spaces occupies an extremely important position in modern
mathematics, it has been generalized in various aspects. For example, G-metric spaces [1] were
introduced and G,-metric spaces were reported in [2], which successfully popularized the general
metric and promoted the research of various types of fixed point theorems. These theorems are
accompanied with different contractive conditions (see [3-12,21-27]), especially the new Geraghty
contraction was given in [13] and the JS contraction was given in [14].

Recently, Shoaib et al. [15] introduced the ordered dislocated quasi G-metric spaces, and obtained
some new fixed point results for a dominated mapping on a close ball in this space. On the other hand,
Ege [16] also proposed the complex valued G,-metric spaces as a new notion, the Banach contraction
principle and Kannan’s fixed point theorem were proved for this space. Moreover, there are also other
interesting fixed point theorems in this space (see [17-20]).

In this work, we study some problems about the common solutions of the operator equations F,x =
ux (u > 1,n € N¥) in complete partially ordered complex valued G,-metric spaces, introduce the
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complex valued C”-class function and a type of Geraghty contraction to this space respectively, and we
obtain the common solutions in a closed ball. Furthermore, we also introduce a type of JS contraction
to this space and investigate a new theorem.

Firstly, we recall some basic concepts, which will be used later. For a real Banach space E, a
nonempty closed subset Q C E is called a cone, if
(a)forall{ e Qandt> 0,7 € Q;
(b)forallfy1,H € O, L1+ L€ O
(00N (=0)=0.

For &,,&, € E, given a cone Q, we define a partial order < on E, which is induced by Q, i.e., & < &
iff & — & € Q. Furthermore, &, &, are said to be comparable if £} < &, or & < &.

On the other hand, for all £, &, € C, the partial order < on C is defined as follows:

§1 386 © Re(&)) < Re(£r) and Im(&y) < Im(&).

Therefore, & < &, if one of the following conditions holds:
(C1) Re(&1) = Re(&>) and Im(&y) = Im(&y);
(C2) Re(&1) = Re(&) and Im(&) < Im(&);
(C3) Re(é1) < Re(&>) and Im(¢1) = Im(&);
(C4) Re(&1) < Re(&,) and Im(&y) < Im(&).
Moreover, we denote & < &, if only (C4) holds. Obviously, 0 < & < & = |&1] < |&], where || 1s
the magnitude of &;, i = 1,2. For more details, see [25].
Definition 1.1. ([16]) Let X be a nonempty set, for areal number s > 1, if the mapping G, : XXXXX —
C satisfies:
(CGp1) Gp(81, 82, 53) =01t 8y = 8 = &5;
(CGy2) Gp(&1,81,4) > Oforall §y,4 € X with &y # &5
(CGb3) Gb(§1,§1, §2) ) Gb((l, {2, §3) for all (1, §2, (3 € X with {3 * {2;
(CGya) Gp(1, &, 83) = Gp(R{L1, &b, &3)), where R is an arbitrary permutation of {{, >, {3};
(CGy5) Gp(15, 8, 3) 3 8IGp(G1, v, v) + Gyp(v, &, G3)] Tor all £, &, &3,v € X
Then the function Gy, is called a complex valued G,-metric on X, the pair (X, G;) is called a complex
valued G,-metric space.
Proposition 1.1. ([16]) For a complex valued G,-metric space (X, G,) and all {;,{;, {5 € X, we have
(1) Gp(&1, 82, 53) 3 sIGp(&15 81, &) + Gu(81, 41 B
(2) G815, 82, &) 3 25[Gu(L1, 41, D)1
Definition 1.2. ([16]) Let {x,} be a sequence in a complex valued G,-metric space (X, G;),
(1) {x,} 1s called complex valued G,-convergent to { € X, if for any € € C with € > 0, there exists
¢ € N such that G,(Z, x,,, x,,,) < € for all n,m > &. We write x, —» { as n — oo, or 31_)rr010 X, =

(2) {x,} is called complex valued G,-Cauchy, if for any € € C with € > 0, there exists & € N such that
Gy(xyy X, X)) < € forall n,m,l > &;
(3) (X, Gp) is said to be complex valued G,-complete, if any complex valued G,-Cauchy sequence {x,}
is complex valued G,-convergent.
Theorem 1.1. ([16]) Let {x,} be a sequence in a complex valued G,-metric space (X, G), and { € X,
the following are equivalent:

(1) {x,} is complex valued G,-convergent to {;

(2) 1Gp(xns X, Ol = 0 as n,m — oo;
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(3) 1Gp(xn, £, Ol = Oas n — oo;

(D) |G p(X, X5, Ol = O as n — co.
Theorem 1.2. ([16]) A sequence {x,} is complex valued G,-Cauchy sequence is equivalent to
|Gp(x,, X, X)) = 0 asn,m,l — oo,
Definition 1.3. ([28]) Let Q ¢ R” be a cone, a mapping S : Q — R” is said to be dominated if Sx < x
forall x € Q.
Theorem 1.3. ([15]) Let (X, <, G) be an ordered complete dislocated quasi G-metric space, S : X —» X
be a mapping and x, be an arbitrary point in X. Suppose there exists k € [0, %) with

G(Sx,8y,82) < k(G(x,Sx,8x) + G(y,Sy,Sy) + G(z,52,52)
for all comparable elements x,y, z € B(xy, r), and

G()C(),SX(),SX()) < (1 - 9)1”,

where 0 = 1—_ka If for nonincreasing sequence {x,} — wu implies that u < x,. Then there exists

a point x* in B(xo, r) such that x* = Sx* and G(x*, x*,x*) = 0. Moreover, if for any three points
X, ¥,z € B(xy, 1), there exists a point v in B(xg, r) such thatv < xandv < y, v < z, where

G(x9,S x0,Sx0) + GV, Sv,Sv) + G(v, Sv,S5Vv) < G(xp,v,v) + G(S x0,Sv,Sv) + G(S xp,Sv,Sv),

then the point x* is unique.
2. Results and examples

In this section, let X =RY, Q, ={Z, € C: 05 Z},% ={Z,€C:0< 2}, W% ={Z;€C: 1<
Z3}. (X, Gy, <) is called a partially ordered complex valued G,-metric space, which shows (X, G,) is a
complex valued G,-metric space and (X, <) is a partially ordered set.

Let (X, G,) be a complex valued G,-metric space, for any xo € X, r € C and r > 0, the G,-ball with
ball center xj is B(xg, r) = {x € X| Gp(xp, x, x) S r}. Moreover, for all n € N* and xq, x», ..., x,, € C,
the function max{xi, x, ..., x,} > xj, j=1,2,...,n.

Definition 2.1. A continuous mapping P : Q] — C is called complex valued CP-class function, if it
satisfies r S P(r, s,t) forall r, 5,1 € Q.

Example 2.1. Some examples of complex valued C”-class function are given as follows:

(1) P(r,s,t) =r+ s+t wherer,s,t €€y,

(2) P(r,s,t) = mr, where m € [1,00) and r, 5,1 € €;

(3) P(r,s,t) =n(r)r, wheren : Q; — [1,00) and r, 5,1 € Q.

Theorem 2.1. Let (X, G, <) be a complete partially ordered complex valued G,-metric space with
s > 1, O c X be a cone, xy be an arbitrary element in Q, {S, : X — X, n € N*} be a dominated

mapping sequence. If there exist r € €),, and nonnegative numbers «, B,y satisfy @ — 2sy # 0, - _ﬁzy €
[0,6],6 < %, such that
Ply(a Gy(Six, Sy, S iy), p(a Gp(S ix, S ¥, S jy)), e(a Gp(S ix, S jy, S jy)] 2.0

SYIBGH(x, Six,Six) + yGo(y, S j3,S j2) + ¥ Gu(2, S jz, S jy)]
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for any comparable elements x, y, z in B(xy, r), where B(xy,r) C Q, i,j € N*, P is a complex valued
CP-class function, ¢ : Q; — €, is a nondecreasing function, ¢ : ; — C is a continuous function.

And
1-2s50

Gp(x0, S 1x0, S 1%0) 3 r. (2.2)

Define the operator equations F,x = ux by F, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that x < x,, then the operator equations have at least a common solution x* in B(xy, r). Moreover,
if there exists an element v in B(xg, r) such that v < x*, and

B Gy(x0,S1x0,S 1x0) + 2y Gp(v, S jv, S v) S BGp(x0,v, V) + 2y Gp(S 1 X0, S jv, S jv), (2.3)

then the operator equations have an unique solution.
Proof. By selecting the ball centre x, in B(xy, r), we construct a sequence {x,}, where x,,; = §,+1X, <
X, n € N. From (2.2), we obtain x; € B(xy, r). Using (2.1), we have

Y(a Gp(S 1x0, S 2x1, S 2x1))
3 Ply(a Gyp(S 1x0, S 2x1, S 2x1)), (@ Gp(S 1 X0, S 2x1, S 2x1)), (@ Gp(S 1x0, S 2x1, S 2x1))]
SYIB Gp(xo, S 1x0, S 1x0) + 2y Gp(x1, S 2x1, S2x1)].

Since the function ¢ is nondecreasing, we can easily get

Gp(x1, X2, X%2) 3 o Gy(x0, X1, X1) 3 6 Gp(x0, X1, X1).
Hence, G;(xo, X2, x2) 3 5[Gp(x0, X1, X1) + Gp(x1, X2, X2)] 3 5(1 + 6)Gp(x0, x1, x1). Using (2.2), we get
Gp(x0, X2, X2) S (1 = 8*)r < r, thatis x, € B(xo, r).

Now we prove {x,} C B(xo, r). Suppose that x3, x4, ..., xx € B(xy, r), according to (2.1), we have

Y(a Gp(S kX1, S k1 Xk S ka1 X1))
< PlYy(a Gp(S ixi=1, S k1% S k+1X0)), (@ Gp(S 1 Xk=15 S 11Xk S ks 1X1))5 9(@ Gp(S 1 Xk=15 S k1 Xk S k1 X1)) ]
SYIBGH(Xk—1, S kXk-1, S kXk-1) + 2¥ Gp(Xp, S fer1 Xies S k1 X0) -

Thus G, (xg, X1, Xps1) 3 a'_‘;z),Gb(xk—l, Xy X)) S 6 Gp(xk—1, X, Xp), it can easily get that

Gp(Xts Xkt 1> Xas1) S 0F Gy(x0, X1, X1). (2.4)
By using (CG,5) and (2.4), it follows that

2 k+1
Gp(X0, X1, Xkr1) S SGp(X0, X1, X1) + 5°Gp(X1, X2, X2) + oo + 87 Gp(Xk, X1, Xr1)
< (s+ 826+ ... + NG, (x0, x1, X1)
1 1-s6
S s r
1—-s6 =
= r’

1.€., Xi+1 € B(xo, r), therefore, {x,} C B(xo, r).
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Now we show that {x,} is a complex valued G,-Cauchy sequence, from (2.4), we obtain
(2.5)

Gb(-xn’ Xn+1, -xn+l) s 6n Gb(xo’ X1, X1),

thus for all n,m € N*, n < m, we have
2 m—n
Gb(xm X xm) 3 SGb(xn, Xn+1s xn+1) +s Gb(xn+1a Xn+2s xn+2) t+..+5s Gb(xm—h Xms xm)

< (56" + s 4 L+ 5" TNGY(x, X1, X1)

s Sén : 1— SéGb(xo’ X1, .Xl),

which implies that
Lim Gy(x,, X, Xn) = 0.

n,m— oo

Therefore, {x,} is a complex valued G,-Cauchy sequence, and there exists an element x* in B(x, r)

such that x, —» x*.
Next we prove x* is the common solution of the operator equations. For any j € N*, we have
Gp(x*, 8 jix*, 8 jx°) 3 s[Gp(x™, X", X") + Gp(X", § jx*, S jx)].

Furthermore, since § jx* < x* < x, < x,-1, using (2.1), it can be easily get that
aGy(x", S x*, 8 jx*) 3 ,BG;,(x"_l, XX+ 2y Gp(x, S jx7, 8 jx°).

Hence,
aGp(x", S ix*, 8 jx*) 3 saGp(x", X", X") + sa Gp(x", S jx", S jx7)
< sa Gu(x", X", X") + sBGp(x, X", ") + 25y Gp(x, S x5, 8 x").
That is,
[sa Gp(x", X", x") + 5B Gp(xX" 1, X", xM)].

G *aS j *9S X" 5
o5 x5 %0) a—2sy
Let n — oo at both sides of the above inequality, we obtain lim G,(x*, S ;x*,S jx*) = 0, i.e. x* =

S jx*. According to the arbitrariness of j, we get x* is a common solution of the operator equations.
Uniqueness. Assume that y* is another solution of the operator equations, y* # x* and y* € B(xo, r).

Case 1. If x* and y* are comparable, using (2.1), it follows that

aGp(x",y",y") = aGy(S:ix", Sy, S jy")
SBGH(X,Six",Six") + 2y Gp(y", S v, S jy")

= BGy(x", X", x) + 2y G,(y", y", ")

=0,
as a result, x* = y*.
Case 2. If x* and y* are not comparable, then there exists an element v € B(x, r) such that v < x* and
v < y*, for any j € N*, we will show {S;?xn} C B(xp,r). Owing to (2.1) and (2.3), we have

CL’Gb(S 1X0» SjV, SJ'V) < ﬁGh(Xo, S 1x0, S 1X0) + 2’)/ Gb(V, Sjv, SjV)
S BGy(xo,v,v) + 2y Gp(S 10, S jv, S jv),
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i.e.,
Go(S 130, 1.8 1) < —L—Gixovv) s 67
a—2y
Hence,
Gyp(x0,S jv, 8 jv) 3 s[Gp(xp, x1, X1) + Gp(x1, S v, § V)]
| I Y0)
< s( 5 r+dr)
= r,

IA
A
o)
LN
<
A

that is S ;v € B(xo, r). Suppose that S?v,Sj’.v, ...,S’j‘.v € B(xo, r), obviously, S’J‘.v < S’j‘.‘lv
Sy v=x =< x,<..% x0. From (2.1), we can immediately obtain

@ Gp(SKv, 851y, S5 v) < BGL(SK v, 850, 85v) + 2y Gy (Shv, S5, S5+ 1),

so we have

Gy(S5v, 85 v, 8541y < h

k-1 k k k-1 k k

as a result,
Gy(S5v, S5, 85 1) 5 6 Gy(S5 v, S5v, %)
<. (2.6)
3 6°G(v, S v, S jv).
In addition, using (2.1), (2.3), (2.5) and (2.6), we can also immediately obtain
a Gp( X1, Slflv, SI;-HV) < BGy(Xpy Xpa1> Xpr1) + 2y Gb(S’;-v, S’]‘-“v, S’J‘.”v)
3 B6*Gy(x0, x1, x1) + 2y8*Gyp(v, S jv, S jv)
< B Gy (x0, v, v) + 2y5°G(S 1x0, S v, S jv)

< B6*Gy(x0, v, v) + 2y6*

ﬁ Gb(x()’ v, V)
a-—2y

< (BS* + 2y8*™NGy(x0, v, V),

i.e.,
5k+2 5k+1
Gp(Xe1, S50, 85 1) 3 MGb(Xo,V, v)
-2 5k+1 +2 6k+1
5 (a, 7) 4 Gb(x07 v, V)
= &G (x0, v, V).
Thus,

Gy(x0, S5 v, S5) < 5Gy(x0, x1, x1) + oo + S Gy, Xpets Xeit) + 5 Gy, SKH Y, S5 y)
S (54 826 + ... + NG (x0, X1, x1) + TG (x0, v, V)
1 —(s6)! 1-s6
. 1-s6 '
[1— (56 + (so)r

:r,

r+ (s6)
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which implies S ’j‘.“v € B(xo, 1), 50 {S"x,} € B(x, r). From (2.6), we obtain
Gy(S"v, 8", 81 1v) 5 6" Gyp(v, S v, S jv),

and
lim G(Sv, Sy, 8§ 1) = 0. (2.7)

n—oo

From (2.1), we can easily get

a Gp(x", S;fv, S?v) = aGy(Six", S?v, S;v)
3 BGH(x", 8ix",8ix") + 2y Gp(S" v, S, ")
=2y G;,(S?_lv, S, ).
Owing to (2.7), we have
lim Gp(x", 8", S%v) = 0. (2.8)
Similarly,
aGp(Sv,y",y") = @ Gp(Sv, Siy", S iy")
< BG(S" v, S, S™) + 2y Gy, Sy, S )
=BGy(S" v, 5", 8").
According to (2.7), we also have
lim G,(S ;?v, v,y =0. (2.9)
Since G,(x*,y",y") 3 s[Gp(x7, S’j’.v, S’;.v) + Gp(S ;?v, y*,y")], using (2.8) and (2.9), we obtain
Gb(-x*a y*7 y*) = }}l—glo Gb(X*ay*7 y*) $ O

Therefore, x* = y*, the proof is completed.

Following the proof process of Theorem 2.1, we can obtain the following corollary.
Corollary 2.1. Let (X, G, <) be a complete partially ordered complex valued G,-metric space with
s>1,0cC Xbeacone, {S, : X - O, n € N} be a dominated mapping sequence. If there exist

nonnegative numbers a, 8,y satisfy @ — 2sy # 0, - f 7 € [0, %)’ such that

nW(a Gy(Six,S jy, S YO(aGy(Six, S jy, S jy))
SYBGH(x, Six,Six) + Yy Gp(y,S 1,5 j2) + Y Gi(z, S j2,S jy)]

for any comparable elements x,y,z in Q, where i,j € N*, n : Q; — [l,00), ¥ : Q; — Q;is a
nondecreasing function.

Define the operator equations F,x = ux by F,, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in Q. Moreover, if
there exists an element v in Q such that v < x*, then the operator equations have an unique solution.
Example 2.2. Let X = R, Q = [0,0),a =5,=y =1,0 = %, G, : X X X X X — C be defined by
Gy(é1,62, &) = max{lé) — &1, 16 - &P, 1€ - & + max{lé) — &, 16 — &1, 16 — &) with s = 2, and
Y(r) = n(r)r = r for any r in Q.
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Forany éin X,0 <v"' < }L and n € N*, take § ,& = v'¢ and F,, = uS ,, where u > 1. The partial order
<on X is the usual order < of R, for any &, &, &5 in O, we have

@ Gy(S 1€1, S 1a, S ufa) = 5VP'(&1 — &) + 5V — &),

and
Biér —V'EP +ylér —VEP +yIE —VEP = (1= VY(E +E + E).

Hence,

a Gp(S &1, 8,62, S :62)
3BE —VEI +YIE —V'ES +yIE —VEP + [BIE —VES +YIE —VE] +yIE - V'E
SBGHELL S éL S 1) + ¥ Gp(éa, S uéay S 2E3) + v Gu(E3, 8 1E3, S nén).

It follows that the operator equations F,& = ué have a common solution & = 0 in Q, and there
exists an element v = 0 in Q such that v < &". Therefore, all conditions of Corollary 2.1 are satisfied,
the operator equations F,& = ué have an unique solution & = 0.

Let 2 be the set of functions 8 : Q; — [0, %), which satisfies if 11_210 B(x,) = %, then 11_210 x, = 0.
Theorem 2.2. Let (X, Gy, <) be a complete partially ordered conl;plex valued Gb—mentric space with
s > 1, QO € X be a cone, x( be an arbitrary element in Q, {S, : X — X,n € N*} be a dominated
mapping sequence. Suppose that there exist 8 € 4, i, j € N* and r € ,, such that

Gb(Six’Sjy’SjZ) Sﬁ(M(X’ Y, Z))M(X, Ys Z) (210)

for any comparable elements x, y, z in B(xy, r), where B(xy,r) C Q,

Gp(x,Six,Six)Gp(y, S jy, S j2) Gp(x,Six,Six)Gp(x, S jy, S j2)

1+ Gb(x’y’ Z) ’ I+ S[Gb(x’y’ Z) + Gb(Six’SjyaSjZ)] },
2.11)

M(x,y,z) = max{Gp(x,y, 2),

and
1-s6

Gy(x0, S 1%0, S 1X0) 3 r, (2.12)

where 6 € (0, %).

Define the operator equations F,x = ux by F,, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in B(xy, r).
Proof. By selecting the ball centre x, in B(xy, r), we construct a sequence {x,}, where x,,; = §,+1x, <
X, n € N. From (2.12), we know x; € B(xy, r). Using (2.10), we have

Gp(x1, X2, X2) = Gp(S 1x0, S 2x1, S 2x1) < B(M(x0, X1, X1))M (X0, X1, X1), (2.13)

where

M(xo, x1, x1) = max{Gp(xo, X1, X1),
Gp(xo, S 1x0, S 1%0)Gp(x1, S 2x1, S2x1) Gp(x0, S 1x0, S 1%0)Gp(x0, S 2x1, S 2x1)
1 + Gp(xo, x1, Xx1) "1+ s[Gp(x0, X1, 1) + Gp(S 1X0, S 2x1, S2x1)]
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Since

Gp(xo, S 1x0,S 1%0)Gp(x1, S 2x1, S2x1)

3 Gp(x1, S2x1, S = Gy(x1, X2, X2),
1 + Gp(xo, x1, X1) b(X1,82X1, 82x1) p(X1, X2, X2)

and

Gp(xo, S 1x0, S 1%0)Gp(x0, S 2x1, S 2x1) - S[Gp(xo, x1, x1) + Gp(x1, S2x1, S 2x1)1Gp(X0, S 1 X0, S 1X0)
1 + s[Gp(x0, X1, X1) + Gp(S1X0, S 2X1, S2x1)] ~ I + s[Gp(x0, X1, X1) + Gp(S 1X0, S2x1, S 2x1)]
Gp(xo, S 1x0, S 1X0)

= Gp(xo, X1, X1),

A

thus M(xo, x1, x1) 3 max{G,(xo, X1, x1), Gp(x1, X2, X2)}.
If max{G(xo, x1, x1), Gp(x1, X2, x2)} = Gp(X1, X2, X), then we have

1
Gp(x1, X2, X2) < B(M(x0, X1, X1))M (X0, X1, X1) < EGb(xl’ X2, X2),

which is a contradiction, thus

max{G,(xo, X1, X1), Gp(x1, X2, x2)} = Gp(x0, X1, X1),

and
Gp(x1, X2, X2) S B(M(x0, X1, X1))M(x0, X1, X1) 3 6 Gp(X0, X1, X1).
So we have
Gp(x0, X2, X2) 3 S[Gp(x0, X1, X1) + Gp(x1, X2, X2)]
1-s6

< s(1+6) —2

2 (1=-6r

<

as a result, x, € B(xy,r).
Now we will show {x,} C B(xg, r). Assume that x3, x4, ..., Xy € B(xo, r), owing to (2.10), we get

Gp(Xks Xiea 15 Xk+1) = Gp(S kXi=15S ka1 X0, S kw1 X0) < BM (=1, X, Xi))M (X1, Xiey Xie)-
Following the above proof process, we can obtain
M (Xi—1, X, X)) S Max{Gp(xe—1, Xk, Xi), G (X, Xk 15 Xiew1)} = Gp( X1, Xies Xie)- (2.14)

Thus,
Gy (Xk, X115 Xke1) S 0 Gp(X—1, X, Xi)

3 6% Gp(Xi2, Xi1> Xio1) 2.15)
. .

N eee

3 6" Gy(x0, X1, X1).
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By using (CG,5) and (2.15), it follows that

2 kil
G (X0, Xps1, Xkr1) S SGp(X0, X1, X1) + 5"Gp(X1, X2, X2) + oo + 87 Gp(Xk, X1, Xr1)

< (s+ 825+ ... + NG, (x0, x1, X1)
1 —(s6)' 1-s6
S s . r
1—s6 S
<r.

Hence, x4 € B(xo, 1), so {x,} C B(xg, r). As aresult, for all n € N*,
Gb(xn’ Xn+1» xn+1) = Gb(S nXn—1, Sn+1xn, Sn+1xn) 5 ﬁ(M(xn—l s Xn» xn))M(xn—l > Xn» xn)’ (216)

thus we have G, (x,, X115, Xpe1) < %Gb(xn_l s Xy X).
If s > 1, then Gp(Xy, Xust1, Xur1) < (2)"Gp(x0, X1, %) = O asn — oo,
If s = 1, then Gp(x,, X415 Xn1) < Gp(Xu1, Xy, Xn), Which implies that {G,(x,, X,41, Xn41)} 1S @
decreasing sequence.
Suppose that
lim Gy (x,, X1, Xp11) = 1> 0,

n—oo

owing to (2.14) and (2.16), we obtain

r = llm Gb(xlf” xn+1axn+1)

n—oo

5 111’1'1 ﬁ(M(xn—l’ Xns -xn))M(-xn—l’ Xns xn)

n—oo

1
) lim _Gb(-xn—la Xns xn)

n—oo §

S

2

thus lim S(M(x,_1, X,, x,)) = 1, which implies lim G(x,_1, x,, x,) = 0, contradiction. As a result,

n—oo

lim Gb(xm Xn+1, xn+l) =0.

n—oo

Now we prove {x,} is a complex valued G,-Cauchy sequence. Suppose that contrary, then there
exist € > 0 and two subsequences x,,, and x,, of x,, such that

Gp(Xmg» X Xn,) 2 € and Gp( Xy, Xpp—15 Xn—1) < E.

So we have
€ 5 Gb(xmk’ xnka xnk) 5 S[Gb(xmk > xm/H.] > xmk+1) + Gb(xmk+1 2 -xnka xnk)]'

Let k — oo, we get
€=x ]}Lrg inf Gp(Xpy s Xy X)) 3 Slll_)l’glo inf Gp(Xpm,, > Xngs Xn)-
Furthermore, using (2.10) and (2.14),
,}1_{510 inf Gp(Xpr15 Xngs X)) 3 111_{{)10 inf B(M (X, Xpy—15 Xngm1) )M (X s Xe—15 Xp—1)

< 1}1—>IE> inf ﬁ(M(xmk7 Xng—=1» xnk—l))Gb(xmka Xng—=15 xnk—l)

< liminf B(M (X, Xpp-15 Xpe—1))E,
k—o0
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thus we have

€ .. .
; < I}lm inf Gp(Xp,,,»> Xngs X, )

—00

< lim inf B(M (X, Xp—1, Xn—1))€E

k— o0

5 hm Supﬁ(M(xmk’ xnk—l ’ -xnk—l))e
k— o0

€
S -.
s
Therefore, ,}im BM (X, Xpy—1> Xny—1)) = %, thus gim Gy (X s Xnp—15 Xn—1) = 0. As a result,
—00 b —00

€= Gb(xmk’ Xngs xnk) S S[Gb(ka, Xng—15 xnk—l) + Gb(xnk—l’ Xngs xnk)] — 0ask— oo,

which is a contradiction. Therefore, {x,} is a complex valued G,-Cauchy sequence, and there exists an
element x* in B(xy, r) such that x, — x™.

Finally, we show that x* is a common solution of the operator equations. Let x = x;_;,y = z = x*
in (2.10), we have

. ) . 1
lim G (S ixi-1, S jx°, S jx°) < im B(M (x;—1, X, X" )M (x;-1, X, x7) < lim =M (x;—1, x*, x7),
i—00 R)

i—00 i—00

where
Gp(xiz1, S ixi1, S ixi-)Gp(X", § jx*, S jx7)

I+ Gp(xizg, x*, x¥)
Gp(xiz1, S ixi1, S ixi-)Gp(Xi-1, S jx*, S jx*)
1+ s[Gp(xim1, x5, x*) + Gp(Sixizy, S x5, 8 jx9)]

M(xi_y, x", x*) = max{G(xi_1, X", X*),

9

It can be easily deduced that lim M(x;_;, x*, x*) = 0 and lim G,(S ;x;—1, S jx*, S jx*) = 0, thus
Gb(x*,ij*,ij*) < s[Gb(x*,S,-x,-_l,S,-x,-_l) + Gb(S,'X,'_l,SjX*,SjX*)] — 0asi— oco.

As aresult, x* = § ;x*, owing to the arbitrariness of j, we obtain that x* is a common solution of the
operator equations, the proof is completed.

Similarly, following the proof process of Theorem 2.2, the following corollary will be established.
Corollary 2.2. Let (X, Gy, <) be a complete partially ordered complex valued G,-metric space with
s>1,0c Xbeacone, {S,: X = Q,ne N} be adominated mapping sequence. Suppose that there
exist i, j € N* such that

Gb(Sianjy’SjZ) s /IM(x’yaz)

for any comparable elements x, y, z in Q, where A € [0, %), and

Gb(x’ Si-x’ Six)Gb(ya Sjy7 SJZ) Gb(x7 Six’ S,‘X)Gb(x, Sjy$ SJZ)

M s Vs = G s V9 <) 5 .
(7,2 = max{Gip(x. . 2) [+ Gy(57,9) [+ 510G (57,9 + Go(S . S 7.5 2]

Define the operator equations F,x = ux by F, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in Q.
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Example 2.3. Let X = R, Q = [0,00), G, : X X X X X — C be defined by G,(¢1,&2,&3) = (|€ — &| +

=&l +16 - &)+ (6 &l + 16 -Gl + 16 —&DYiwiths =2,6 = 1, x = 1, r = 4 + 4i. For all
t € Q, take

1

50 t:O;

3

—1 O<|t <1;
,B(t)z 2+|_£|, <||_ 5

1
ST 7| > 1.
2 2+l

Obviously, % <B() < %, and

B(1,4 + 4i) = {x|G,(1,x,x) < 4 +4i}) = {x]4]1 — x> + 4|1 — x*i < 4+ 4i} =[0,2].

Moreover, for any £ in X, let S ¢ = £ neN*and F w = uS ,, where u > 1. The partial order < on

V3n S
X 1s the usual order < of R, for any &1, &,&5 in B(1,4 + 4i), we have

1
Gp(S 11,8162, S 0&3) = ﬁ[ﬂfl &+ 16 - &l +1E - &)+ (16 - &l + 16 - &l +1E - &,

and
Gy(é1,62,8) = (1€ — &l +16 — &l + 16 - &) + (& — &l + 16 — &l + 16 — &)
It follows that |
Gp(S €1, 8162, 8,63) 3 EGb(§1,§2,§3)

1
3 §M(§l’ fz’ §3)
3 ﬁ(M(é:l’ §2’ §3))M(é‘:l’ 62’ 53)’

V3 V3. 16-8V3 16-8V3. 3 .
Gb(l, T, T) = 3 + 3 1< 1—0(4 + 4l)

It is clearly that all conditions of Theorem 2.2 are satisfied, as a result, the operator equations
F,& = u¢ have a common solution & = 0 in B(1,4 + 4i).

and

On the other hand, let ® be the set of functions 6 : Q, — 3, which satisfies the following
conditions:
®,; : 0 is continuous;
®, : 6 is nondecreasing, i.e. 8(x;) x 0(xy) if x; = x;
05 : li_)m 0x,) =1 li_>m x, = 0%, where {x,} C Q,.
Thegreoin 2.3. Let (Xn, GOZ, <) be a complete partially ordered complex valued G,-metric space with
s>1,0c Xbeacone, {S,: X - Q, n €N} beadominated mapping sequence. Suppose that there

exist@ € O, 1, j € N k € (0,1), > 0 such that
1
0(Gu(Six,S jy,S j2)| < IG(EM (x,y,2) - @) (2.17)
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for any comparable elements x, y, z in Q, where G,(S ;x, S ;y, S jz) # 0, and
M()C, Y, Z) = maX{Gb()C, S[X, Six)a Gb(y$ Sjy’ sz)a Gb(za SjZ7 Sjy)9 Gb(xa Y, Z)} (218)

Define the operator equations F,x = ux by F, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in Q. Moreover, if
there exists an element v in Q such that v < x*, and

Gp(S" v, S, 5"M) 5 Gp(x", 8"y, S ), (2.19)

then the operator equations have an unique solution.
Proof. By selecting a point x; in Q, we construct a sequence {x,}, where x,,; = S,11x, < x,, n € N.
Letx = x,.1,y =z = x, 1n (2.17), we have

1
|0(EGb(Snxn—l’ Sn+1xn’ Sn+1xn))| < |9(Gb(Snxn—la Sn+1xna Sn+1xn))|
1
< |9(_M(xn—l, Xns -xn) - a)lk
N
1 k
< |9(§M(~xn—l» Xns xn))l s

where

M(xn—l > Xns xn) = maX{Gb(xn—l 5 Snxn—l ’ Snxn—l ), Gb(-xn’ Sn+]xm Sn+lxn), Gb(xn—l > Xn» xn)}

= maX{Gb(xl’l—l > xn’ xn)9 Gb(xna xn+1 H -er—l)}’

thus we get

|9(EGb(xna Xni1 Xpe1))| < |9(§ Max{Gy(Xu-1, Xn» Xn)> Gp(Xns Xns1> Xns )DL
If max{G,(xy-1, Xns %), Gp(Xns Xns15 Xne1)} = Gp(Xn, Xns1, Xn+1), then
IQ(EG;,(x,,, Xp+1s Xnr1))| < |9(§Gb(xn, Xns1s Xne1))[5, which is contradiction with k € (0, 1),
hence,

IH(EGb(xn,an,xnﬂ))l <G p(Xns Xna15 X)) < |9(§Gb(xn—l,xn,xn))|k-
It follows that
IH(EGb(xn,an,an))l < |0(§Gb(xn—l’xn’xn))|k <..< IH(EGb(xO,xl,xl))l"n,
and | .
31_{{)10 |9(EGb(xn’ Xpi1s Xnr))| < }}1_{{)10 |9(EGb(xo, xi, ) =1,
therefore,

lim Gp(Xy, Xp415 X0v1) = 0 and lim Gp(x;, X, X441) = 0.
n—oo

n—oo
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Now we show {x,} is a complex valued G,-Cauchy sequence. If not, then there exist € > 0 and two
subsequences x,, and x,, of x,, where i < n; < my, such that

Gh(-xn,-’ xn,-s xm,—) Z € and Gb(xn,-9xn,-9xin,-—l) <e€.
Using (CG,S), we have
€ Gb(xn,-, Xni» xm,-) ) S[Gb(xn,-a Xn;» xn,-+l) + Gb(-xn,-+l’ Xni+1 xm,—)]a

let i — oo at the above inequality, we get

€ 1M Gy (s X1 Xgr): (2.20)

R) 1—00

In addition, owing to (2.17), we obtain

1
|0(Gb(S m,-xm,-,l b Sn,'+1xn," Sni+1xn;))| S |9(;M(xmi,1 ’ xn,—9 xn,—) - a,)lk’

i.e.,
1
|0(EGb(xmi’ Xni+1» xn,~+l))| < |9(Gb(xmi’ Xni+1» -xn,'+l))|
1 k
< |9(;M(xm,'_1 » xl’l[, -xn[) - Cl)l
1 k
< |9(§M(Xm,-,1,xn,-,xn,-))| ,
where
M(-xmi_l ) xn,'v xn,') = maX{Gb(xm,'_l ’ xm;a -xm,-)a Gb(xn,v’ xn,u,] » -xn;+1 )’ Gb(-xn;a -xn;a xm,'_l )}
Since

llm Gb(xm,-,l 9 -xm,-’ xm,) = ll)m Gb(xn,’ an] 2 xnlur]) = 07
1—00

i—00

obviously, M(x,,_,, Xn;> Xn,) = Gp(Xy,5 X, Xm._, ), 1t follows that
1
|0(Gb(xm;? xn;+l i xl’l[+1 ))l S |9(EGb(xn," -xn," xm;_1 ))lk' (221)
Using (2.20) and (2.21), we have
€ . . 1 « € &
IH(E)I < Him |Gy (X, X1, X)) < 1im |9(§Gb(xn,-a Xngs X DI < |9(;)| .

which is a contradiction with k € (0, 1). As a result, {x,} is a complex valued G,-Cauchy sequence, and
there exists an element x* in Q such that x, —» x*.
Now we prove that x* is a common solution of the operator equations. For all i, j € N*, we have

Gp(x", S jx", 8 jx") 3 s[Gp(X", x;, ;) + Gp(x;, S jx", S jx)],
and let i — oo at the above inequality, we get

Gp(x", S jx*, 8 jx*) 3 lim sGp(x;, S jx*, S jx°). (2.22)
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In addition, since x* < Xx;_;, according to (2.17), we obtain

16(Gp(S ixi—1, S jx*, 8 jx7))| < |0(;M(xi—l’x X —a)f < IQ(;M(xi—l’x )

where
M(x;_1, x*, x7) = max{Gy(xi_1, Xi, X;), Gp(x, ij*, ij*), Gp(xi-1, X", X))}

If M(x;—1, x*, x*) = Gp(x*, S jx*, S jx*), using (2.22), it follows that
. ) 1 . .
lim |0(Gy(x;, S jx°, S jx*)| < im |0(=Gp(x", S jx*, S ;X NI* < 1im [0(Gy(x;, S jx*, S jx" NI,
1—00 1—00 S 1—00
contradiction, thus we can easily get

1
16(Gp(x;, S jx*, S ;X)) < 10(=Gp(xio1, i, x))IF —> 1 as i — oo,
s

or
1
10(Gy(xi, S jx*, 8 jx))| < 10(=Gp(xi1, X, XD = 1 as i — oo,
S

hence,
lim G(x;, S jx*, S ;x°) = 0.

From (2.22), we have

Gp(x", S jx*, 8 jx*) 3 lim sGp(x;, S x°, S jx*) = 0.

As aresult, x* = § ;x*, owing to the arbitrariness of j, we obtain x* is a common solution of the operator
equations.

Uniqueness. If y* is another solution of the operator equations, y* # x*, then G,(x*,y*,y*) # O.
Case 1. x* and y* are comparable, using (2.17), it follows that

0(GH(", " y DI =[0GS ", S 1", Sy S 1My, 57 = a)lt < O(-M(, 5",y M.

Obviously, M(x*,y*,y*) = G»(x*,¥",y"), so we have

P 1 % % %
|H(Gb(X*7y >y ))l < |0(§Gb(-x Y LY ))lk,

which is a contradiction. As a result, y* = x™.
Case 2. x* and y* are not comparable, then there exists an element v € Q such that v < x* and v < y*,
for any 7, j € N*, we have

X =8 =85 = =8, y* =8y =S?y* =...=8%,

and
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From (2.17), we get

1 1
0(Gp(STx", 8"y, S| < [O(=M(S]'x", 8" v, 8" v) —a)ff < [0(=M(S]'x", 8" v, S W),
N N

where
M(ST'x", 8771, 877 1v) = max{Gy (S} x", 81X, S 1x), Gu(S v, 8, S"v), Gp(S] X, 811, S ).

According to (2.19), we obtain M(S"'x*, S?‘lv, S?‘lv) = Gp(S7'x7, S']?‘lv, S?‘lv), and

1
0(GH(S 2", S, "W < 10(=Gp(S" ™' x", 8" 1y, SV < 0(Gy(ST ", S v, S ),
S
so that we have

0Gy(Six", v, "W < |GH(ST X%, 8 v, ST W)IF < . < [BG(x", v W)Y

It follows that
lim [6(G,(S]x", $"1v, STv))| < 1im [6(Gy(x7, v, WK =1,
hence,

lim G,(S7x", S%v,S%v) = 0. (2.23)

Similarly, using (2.17) and (2.19), we get
1
0(G(Sy", S, S| < [0(=M(ST 'y, §5v, $17'v) — )If
S
n—1_x n—1 n—1 k
<|OMST Y, ST, ST,
where
My, 87, 817)) = max{G, (S, 81y, 81y, Gu(S v, 81, 81v), G (S, 81, S )
= max{0, G,(S" v, $1v, $v), G, (S 'y*, § 171w, 1))
= Gy(S" 1y, 81, 87 ).
Therefore,
0(GH(Sy", 8w, ST < 16(G(ST'y", ST v, "D < .. <10GL (", v DI,
let n — oo, we have
lim [0(Gy(S3y", S v, )| < lim [0(Gy(y", v, ' =1,
so we obtain
lim G,(S"y*,8"v,8%v) =0,
and also

lim G,(S"v, $"y", S"y") = 0. (2.24)

n—oo J
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Using (2.23) and (2.24), we also have
Gp(S7x7, 8%y, 87y") 3 sIG(S7x", 8, 87v) + Gp (S, S7y", 81y)] = 0 as n — oo.

Owing to G,(x*, ¥, y*) = Gp(S7x", STy", 8%y, as a result, x* = y*, the proof is completed.
Example 2.4. Let X = R, Q =[0,00),0() =1+t,a =0,k = %, Gy, : X X X X X — C be defined by
Gp(§1,62,&3) = max{|§) - lez & — &P, |61 — &) + max{|é) — &, 1€, — &P, 1€ — &7} with s = 2. For
any ¢ in X, take §,¢ = and F, = uS,, where u > 1,n € N*, the partial order < on X is the usual
order < of R.

Suppose that ‘fl 2 62 2 §39 if ‘fl - 63 < 1 for any 61’62’ 63 in Q’ or gla gz, §3 € [09 1]’ we can eaSﬂy
obtain

_ 2 _ 2
1+ Gy(8,60, 5,8, 5,60 = 1+ (F8) 4 (B8]
and { i {
1+ EGb(§1’§2,§3) =1+ 5(51 — &) + 5(51 — &)
Hence,
3 4
_ 2 _ 4
1L+ Go(S r, S ons S )l = l\/(l +(E250) ) +(25) ‘
_ & —& & —& & -6\ & -&\
_1+4( 4n ) (4n ) (4n )+4( 4n )
2 4
<1+ 12(514_”53) + 12(514_”53)
1
S 1+E -8+ 5@ - &),
and

1 2 _ RSN RV
|1+2Gb(§1’§2,§3)| =1+ - &) +2(§1 &)

Thus we obtain

1 | 1 |
11+ Gp(S 61,8062, 8,83 < |1 + EGb(é:lafZ’gB)P <1+ EM(51,§2,§3)|7-

It follows that the operator equations F,& = ué have a common solution £ = 0 in Q and (2.19) is
established with v = 0. Therefore, all conditions of Theorem 2.3 are satisfied, the operator equations
F,¢ = ué have an unique solution &* =

The following two corollaries can be easily obtained, if we let 6(f) = e +1 and 6() = 2—7—2r arctan(ﬁ)
in Theorem 2.3 respectively.

Corollary 2.3. Let (X, G, <) be a complete partially ordered complex valued G,-metric space with
s>1,Q0c Xbeacone, {S,: X = Q, ne€N"} beadominated mapping sequence. Suppose that there
existi, j € N,k € (0,1),@ > 0 such that

ey 1 _ 1
|e|Gb(S1x,S,y,S,z)| + Gb(S,-x, S,-y, SjZ)| < |e|SM(x,y,z) al + —M(x, y, Z) _ (X|k
’ S
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for any comparable elements x, y, z in Q, where G,(S ;x, S ;y, S jz) # 0, and
M(.X, Y, Z) = maX{Gb(Xa Si-x» SiX), Gb(ya S]y9 SjZ)a Gb(Z9 SjZ’ Sjy)7 Gb(xa Y, Z)}

Define the operator equations F,x = ux by F, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in Q. Moreover, if
there exists an element v in Q such that v < x*, and

Gp(S" v, S, 5") 5 Gp(x", 8"y, §7 ),

then the operator equations have an unique solution.

Corollary 2.4. Let (X, G, <) be a complete partially ordered complex valued Gj,-metric space with
s>1,0c Xbeacone, {S,: X = O, n €N} beadominated mapping sequence. Suppose that there
exist i, j € N*,y,k € (0, 1), > 0 such that

1 2 1 ;

2
2 — — arctan < |2 — — arctan
V4 (|Gb(SiX, Sy, SjZ)V) | r (I%M(x, v,2) —al |

for any comparable elements x, y, z in Q, where G,(S ;x, S ;y, S ;z) # 0, and
M(x,y,z) = max{Gy(x, S;x,5;x),G,(y,S jy,S j2), Gp(2, S jz, S j¥), Gp(x, y,2)}.

Define the operator equations F,x = ux by F, = uS,, u > 1. If a nonincreasing sequence {x,} — «
such that k < x,, then the operator equations have at least a common solution x* in Q. Moreover, if
there exists an element v in Q such that v < x*, and

Gy(S"7 v, 8", 8") 5 Gy(x*, 8"y, 877 ),

then the operator equations have an unique solution.
3. Conclusions

In this paper, we have obtained some new theorems for the common solutions of the operator
equations F,x = ux (u > 1,n € N") via complex valued C”-class function, a type of Geraghty
contraction and a type of JS contraction in complete partially ordered complex valued G,-metric
spaces, and some of which are established in a closed ball. These new results generalize many known
results in complex valued G,-metric spaces and G,-metric spaces, in addition, it would be interesting
and worthwhile to further investigate some similar problems in other types of spaces.
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