In this paper, the preinvexity of n-dimensional fuzzy number-valued functions are defined and discussed by means of the partial order relation in n-dimensional fuzzy number space which including preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity, prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity, and so on. In addition, their interrelations of the preinvexity of n-dimensional fuzzy number-valued functions are discussed, and some counterexamples are given. Furthermore, the two-parameter optimization problem, $ n $-dimensional fuzzy variational-like inequality and optimality conditions related to $ n $-dimensional preinvex fuzzy number-valued functions are discussed.
Citation: Zengtai Gong, Han Gao, Ting Xie. Preinvexity of $ n $-dimensional fuzzy number-valued functions: characterization, variational inequality and optimization problems[J]. AIMS Mathematics, 2022, 7(4): 6099-6127. doi: 10.3934/math.2022340
In this paper, the preinvexity of n-dimensional fuzzy number-valued functions are defined and discussed by means of the partial order relation in n-dimensional fuzzy number space which including preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity, prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity, and so on. In addition, their interrelations of the preinvexity of n-dimensional fuzzy number-valued functions are discussed, and some counterexamples are given. Furthermore, the two-parameter optimization problem, $ n $-dimensional fuzzy variational-like inequality and optimality conditions related to $ n $-dimensional preinvex fuzzy number-valued functions are discussed.
[1] | T. Antczak, G-Pre-invex functions in mathematical programming, Comput. Math. Appl., 217 (2008), 212–226. DOI: 10.1016/j.cam.2007.06.026 doi: 10.1016/j.cam.2007.06.026 |
[2] | T. Antczak, Relationships between pre-invex concepts, Nonlinear Anal., 60 (2005), 349–367. DOI: 10.1016/S0362-546X(04)00351-7 doi: 10.1016/S0362-546X(04)00351-7 |
[3] | T. Antczak, Multiobjective programming under d-invexity, Eur. J. Oper. Res., 137 (2002), 28–36. DOI: 10.1016/S0377-2217(01)00092-3 doi: 10.1016/S0377-2217(01)00092-3 |
[4] | Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, R. Osuna-Gómez, A note on generalized convexity for fuzzy mappings through a linear ordering, Fuzzy Set. Syst., 231 (2013), 70–83. DOI: 10.1016/j.fss.2013.07.001 doi: 10.1016/j.fss.2013.07.001 |
[5] | N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy Set. Syst., 93 (1998), 113–119. DOI: 10.1016/S0165-0114(96)00192-3 doi: 10.1016/S0165-0114(96)00192-3 |
[6] | R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31–43. DOI: 10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6 |
[7] | Z. T. Gong, S. X. Hai, Convexity of $n$-dimensional fuzzy number-valued functions and its applications, Fuzzy Set. Syst., 295 (2016), 19–36. DOI: 10.1016/j.fss.2015.10.010 doi: 10.1016/j.fss.2015.10.010 |
[8] | S. X. Hai, Z. T. Gong, H. X. Li, Generalized differentiability for $n$-dimensional fuzzy number-valued functions and fuzzy optimization, Inform. Sciences, 374 (2016), 151–163. DOI: 10.1016/j.ins.2016.09.028 doi: 10.1016/j.ins.2016.09.028 |
[9] | J. Y. Li, M. A. Noor, On properties of convex fuzzy mappings, Fuzzy Set. Syst., 219 (2013), 113–125. DOI: 10.1016/j.fss.2012.11.006 doi: 10.1016/j.fss.2012.11.006 |
[10] | L. F. Li, S. Y. Liu, J. K. Zhang, On fuzzy generalized convex mapping and optimality conditions for fuzzy weakly univex mappings, Fuzzy Set. Syst., 280 (2015), 107–132. DOI: 10.1016/j.fss.2015.02.007 doi: 10.1016/j.fss.2015.02.007 |
[11] | Z. M. Luo, J. B. Jian, Some properties of Semi-E-Preinvex maps in Banach spaces, Nonlinear Anal., 12 (2011), 1243–1249. DOI: 10.1016/j.nonrwa.2010.09.019 doi: 10.1016/j.nonrwa.2010.09.019 |
[12] | H. Z. Luo, H. X. Wu, On the relationships between G-Preinvex functions and semistrictly G-Preinvex functions, J. Comput. Appl. Math., 222 (2008), 372–380. DOI: 10.1016/j.cam.2007.11.006 doi: 10.1016/j.cam.2007.11.006 |
[13] | S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. DOI: 10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057 |
[14] | S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Set. Syst., 32 (1989), 359–367. DOI: 10.1016/0165-0114(89)90268-6 doi: 10.1016/0165-0114(89)90268-6 |
[15] | M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 64 (1994), 95–104. DOI: 10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6 |
[16] | M. Panigrahi, G. Panda, S. Nanda, Convex fuzzy mapping with differentiability and its application in fuzzy optimization, Eur. J. Oper. Res., 185 (2008), 47–62. DOI: 10.1016/j.ejor.2006.12.053 doi: 10.1016/j.ejor.2006.12.053 |
[17] | Y. R. Syau, On convex and concave fuzzy mappings, Fuzzy Set. Syst., 103 (1999), 163–168. DOI: 10.1016/S0165-0114(97)00210-8 doi: 10.1016/S0165-0114(97)00210-8 |
[18] | Y. R. Syau, Some properties of convex fuzzy mappings, Journal of Fuzzy Mathematics, 7 (1999), 151–160. |
[19] | Y. R. Syau, Preinvex fuzzy mappings, Comput. Math. Appl., 37 (1999), 31–39. https://doi.org/10.1016/S0898-1221(99)00044-9 doi: 10.1016/S0898-1221(99)00044-9 |
[20] | Y. R. Syau, E. S. Lee, Preincavity and fuzzy decision making, Fuzzy Set. Syst., 155 (2005), 408–424. https://doi.org/10.1016/j.fss.2005.01.015 doi: 10.1016/j.fss.2005.01.015 |
[21] | Y. R. Syau, E. S. Lee, Preinvexity and $\Phi$-convexity of fuzzy mappings through a linear ordering, Comput. Math. Appl., 51 (2006), 405–418. https://doi.org/10.1016/j.camwa.2005.10.010 doi: 10.1016/j.camwa.2005.10.010 |
[22] | C. X. Wu, M. Ma, Fuzzy Analysis Fundamation, Beijing: Defense Industry Press, 1991 (in Chinese). |
[23] | Z. Z. Wu, J. P. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Set. Syst., 160 (2009), 1590–1619. https://doi.org/10.1016/j.fss.2008.11.031 doi: 10.1016/j.fss.2008.11.031 |
[24] | T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[25] | G. X. Wang, C. X. Wu, Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming, Fuzzy Set. Syst., 138 (2003), 559–591. https://doi.org/10.1016/S0165-0114(02)00440-2 doi: 10.1016/S0165-0114(02)00440-2 |
[26] | C. X. Wu, M. Ma, Embedding problem of fuzzy number space: Part I, Fuzzy Set. Syst., 44 (1991), 33–38. https://doi.org/10.1016/0165-0114(91)90030-T doi: 10.1016/0165-0114(91)90030-T |
[27] | X. M. Yang, K. L. Teo, X.Q. Yang, A characterization of convex function, Appl. Math. Lett., 13 (2000), 27–30. https://doi.org/10.1016/S0893-9659(99)00140-8 doi: 10.1016/S0893-9659(99)00140-8 |
[28] | H. Yan, J. P. Xu, A class of convex fuzzy mappings, Fuzzy Set. Syst., 129 (2002), 47–56. https://doi.org/10.1016/S0165-0114(01)00157-9 doi: 10.1016/S0165-0114(01)00157-9 |
[29] | X. M. Yang, W. D. Rong, Generalized Convexity and Application, Beijing: Science Press, 2015 (in Chinese). |
[30] | X. M. Yang, X. Q. Yang, K. L. Teo, Explicitly B-preinvex functions, J. Comput. Appl. Math., 146 (2002), 25–36. https://doi.org/10.1016/S0377-0427(02)00415-6 doi: 10.1016/S0377-0427(02)00415-6 |
[31] | C. Zhang, X. H. Yuan, E. S. Lee, Convex fuzzy mapping and operations of convex fuzzy mappings, Comput. Math. Appl., 51 (2006), 143–152. https://doi.org/10.1016/j.camwa.2004.12.019 doi: 10.1016/j.camwa.2004.12.019 |