In this paper, a new M-eigenvalue inclusion set for a partially symmetric tensor is provided. It is proved that the new set is tighter than some existing M-eigenvalue inclusion sets. Based on the obtained results, an upper bound of the largest M-eigenvalue is given and a modified WQZ-algorithm is established which guarantees the generated converges to the largest M-eigenvalue of the tensor faster.
Citation: Shunjie Bai. A tighter M-eigenvalue localization set for partially symmetric tensors and its an application[J]. AIMS Mathematics, 2022, 7(4): 6084-6098. doi: 10.3934/math.2022339
In this paper, a new M-eigenvalue inclusion set for a partially symmetric tensor is provided. It is proved that the new set is tighter than some existing M-eigenvalue inclusion sets. Based on the obtained results, an upper bound of the largest M-eigenvalue is given and a modified WQZ-algorithm is established which guarantees the generated converges to the largest M-eigenvalue of the tensor faster.
[1] | L. Ahlfors, Complex analysis, New York: McGraw-Hill, 1966. |
[2] | H. Che, H. Chen, Y. Wang, On the M-eigenvalue estimation of fourth order partially symmetric tensors, J. Ind. Manag. Optim., 16 (2020), 309–324. http://dx.doi.org/10.3934/jimo.2018153 doi: 10.3934/jimo.2018153 |
[3] | H. Chen, L. Qi, Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255–276. http://dx.doi.org/10.1007/s11464-018-0681-4 doi: 10.1007/s11464-018-0681-4 |
[4] | H. Che, H. Chen, G. Zhou, New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors, J. Ind. Manag. Optim., 17 (2021), 3685–3694. http://dx.doi.org/10.3934/jimo.2020139 doi: 10.3934/jimo.2020139 |
[5] | S. Chirit$\check{a}$, A. Danescu, M. Ciarletta, On the srtong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1–27. http://dx.doi.org/10.1007/s10659-006-9096-7 doi: 10.1007/s10659-006-9096-7 |
[6] | G. Dahl, J. Leinaas, J. Myrheim, E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711–725. http://dx.doi.org/10.1016/j.laa.2006.08.026 doi: 10.1016/j.laa.2006.08.026 |
[7] | W. Ding, J. Liu, L. Qi, H. Yan, Elasticity M-tensors and the strong ellipticity condition, Appl. Math. Comput., 373 (2020), 124982. http://dx.doi.org/10.1016/j.amc.2019.124982 doi: 10.1016/j.amc.2019.124982 |
[8] | A. Doherty, P. Parillo, F. Spedalieri, Distinguishing separable and entangled states, Phys. Rev. Lett., 88 (2002), 187904. http://dx.doi.org/10.1103/PhysRevLett.88.187904 doi: 10.1103/PhysRevLett.88.187904 |
[9] | L. Gurvits, Classical deterministic complexity of edmonds problem and quantum entanglement, Proceedings of Thirty-Fifth ACM Symposium on Theory of Computing, 2003, 10–19. http://dx.doi.org/10.1145/780542.780545 |
[10] | M. Gurtin, The linear theory of elasticity, Heidelberg: Springer, 1973. http://dx.doi.org/10.1007/978-3-662-39776-3_1 |
[11] | D. Han, H. Dai, L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1–13. http://dx.doi.org/10.1007/s10659-009-9205-5 doi: 10.1007/s10659-009-9205-5 |
[12] | S. Hauss$\ddot{u}$hl, Physical properties of crystals: an introduction, Weinheim: Wiley-VCH GmbH, 2007. http://dx.doi.org/10.1002/9783527621156 |
[13] | J. He, C. Li, Y. Wei, M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity, Appl. Math. Lett., 102 (2020), 106137. http://dx.doi.org/10.1016/j.aml.2019.106137 doi: 10.1016/j.aml.2019.106137 |
[14] | J. He, Y. Liu, G. Xu, New M-eigenvalue inclusion sets for fourth-order partially symmetric tensors with applications, Bull. Malays. Math. Sci. Soc., 44 (2021), 3929–3947. http://dx.doi.org/10.1007/s40840-021-01152-5 doi: 10.1007/s40840-021-01152-5 |
[15] | J. He, Y. Liu, G. Xu, New $S$-type inclusion theorems for the M-eigenvalues of a 4th-order partially symmetric tensor with applications, Appl. Math. Comput., 398 (2021), 125992. http://dx.doi.org/10.1016/j.amc.2021.125992 doi: 10.1016/j.amc.2021.125992 |
[16] | J. Knowles, E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, J. Elasticity, 5 (1975), 341–361. http://dx.doi.org/10.1007/BF00126996 doi: 10.1007/BF00126996 |
[17] | S. Li, C. Li, Y. Li, M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor, J. Comput. Appl. Math., 356 (2019), 391–401. http://dx.doi.org/10.1016/j.cam.2019.01.013 doi: 10.1016/j.cam.2019.01.013 |
[18] | S. Li, Y. Li, Bounds for the M-spectral radius of a fourth-order partially symmetric tensor, J. Inequal. Appl., 2018 (2018), 18. http://dx.doi.org/10.1186/s13660-018-1610-5 doi: 10.1186/s13660-018-1610-5 |
[19] | C. Ling, J. Nie, L. Qi, Y. Ye, Biquadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optim., 20 (2009), 1286–1310. http://dx.doi.org/10.1137/080729104 doi: 10.1137/080729104 |
[20] | L. Qi, H. Dai, D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349. http://dx.doi.org/10.1007/s11464-009-0016-6 doi: 10.1007/s11464-009-0016-6 |
[21] | L. Qi, H. Chen, Y. Chen, Tensor eigenvalues and their applications, New York: Springer, 2018. http://dx.doi.org/10.1007/978-981-10-8058-6 |
[22] | P. Vannucci, Anisotropic elasticity, Singapore: Springer, 2018. http://dx.doi.org/10.1007/978-981-10-5439-6 |
[23] | W. Wang, M. Li, H. Che, A tighter M-eigenvalue localization set for fourth-order partially symmetric tensors, Pac. J. Optim., 16 (2020), 687–698. |
[24] | Y. Wang, L. Qi, X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589–601. http://dx.doi.org/10.1002/nla.633 doi: 10.1002/nla.633 |
[25] | L. Sun, G. Wang, L. Liu, Further study on Z-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105–129. http://dx.doi.org/10.1007/s40840-020-00939-2 doi: 10.1007/s40840-020-00939-2 |
[26] | J. Walton, J. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlin. Mech., 38 (2003), 411–455. http://dx.doi.org/10.1016/S0020-7462(01)00066-X doi: 10.1016/S0020-7462(01)00066-X |
[27] | G. Wang, L. Sun, L. Liu, M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, 2020 (2020), 2474278. http://dx.doi.org/10.1155/2020/2474278 doi: 10.1155/2020/2474278 |