Research article Special Issues

Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation

  • Received: 02 December 2021 Revised: 06 January 2022 Accepted: 11 January 2022 Published: 17 January 2022
  • MSC : 74A35, 80A19, 74F05, 65M60

  • Effective classical representations of heterogeneous systems fail to have an effect on the overall response of components on the spatial scale of heterogeneity. This effect may be critical if the effective continuum subjects' scale differs from the material's microstructure scale and then leads to size-dependent effects and other deviations from conventional theories. This paper is concerned with the thermoelastic behavior of rotating nanoscale beams subjected to thermal loading under mechanical thermal loads based on the non-local strain gradient theory (NSGT). Also, a new mathematical model and governing equations were constructed within the framework of the extended thermoelastic theory with phase delay (DPL) and the Euler-Bernoulli beam theory. In contrast to many problems, it was taken into account that the thermal conductivity and specific heat of the material are variable and linearly dependent on temperature change. A specific operator has been entered to convert the nonlinear heat equation into a linear one. Using the Laplace transform method, the considered problem is solved and the expressions of the studied field variables are obtained. The numerical findings demonstrate that a variety of variables, such as temperature change, Coriolis force due to rotation, angular velocity, material properties, and nonlocal length scale parameters, have a significant influence on the mechanical and thermal waves.

    Citation: Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta. Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation[J]. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341

    Related Papers:

  • Effective classical representations of heterogeneous systems fail to have an effect on the overall response of components on the spatial scale of heterogeneity. This effect may be critical if the effective continuum subjects' scale differs from the material's microstructure scale and then leads to size-dependent effects and other deviations from conventional theories. This paper is concerned with the thermoelastic behavior of rotating nanoscale beams subjected to thermal loading under mechanical thermal loads based on the non-local strain gradient theory (NSGT). Also, a new mathematical model and governing equations were constructed within the framework of the extended thermoelastic theory with phase delay (DPL) and the Euler-Bernoulli beam theory. In contrast to many problems, it was taken into account that the thermal conductivity and specific heat of the material are variable and linearly dependent on temperature change. A specific operator has been entered to convert the nonlinear heat equation into a linear one. Using the Laplace transform method, the considered problem is solved and the expressions of the studied field variables are obtained. The numerical findings demonstrate that a variety of variables, such as temperature change, Coriolis force due to rotation, angular velocity, material properties, and nonlocal length scale parameters, have a significant influence on the mechanical and thermal waves.



    加载中


    [1] V. S. Chandel, Gl. Wang, M. Talha, Advances in modelling and analysis of nano structures: A review, Nanotechn. Rev., 9 (2020), 230-258. https://doi.org/10.1515/ntrev-2020-0020 doi: 10.1515/ntrev-2020-0020
    [2] R. H. J. Peerlings, N. A. Fleck, Computational evaluation of strain gradient elasticity constants, Int. J. Multiscale Comput. Eng., 2 (2004), 599-619. https://doi.org/10.1615/IntJMultCompEng.v2.i4.60 doi: 10.1615/IntJMultCompEng.v2.i4.60
    [3] B. I. Yakobson, C. Brabec, J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., 76 (1996), 2511. https://doi.org/10.1103/PhysRevLett.76.2511 doi: 10.1103/PhysRevLett.76.2511
    [4] L. Behera, S. Chakraverty, Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models, Arch. Comput. Meth. Eng., 24 (2017), 481-494. https://doi.org/10.1007/s11831-016-9179-y doi: 10.1007/s11831-016-9179-y
    [5] B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comput. Mater. Sci., 51 (2012), 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040 doi: 10.1016/j.commatsci.2011.07.040
    [6] Y. Liu, J. Reddy, A nonlocal curved beam model based on a modified couple stress theory, Int. J. Struc. Stab. Dynam., 11 (2011), 495-512. https://doi.org/10.1142/s0219455411004233 doi: 10.1142/s0219455411004233
    [7] S. Park, X. Gao, Bernoulli-Euler beam model based on a modified couple stress theory, J. Microm. Microeng., 16 (2006), 2355. https://doi.org/10.1061/40830(188)166 doi: 10.1061/40830(188)166
    [8] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983). 4703-4710. http://dx.doi.org/10.1063/1.332803 doi: 10.1063/1.332803
    [9] A. C. Eringen, Nonlocal continuum field theories. Springer Science & Business Media, Springer-Verlag: New York, 2002.
    [10] A. C. Eringen, D. Edelen, On nonlocal elasticity, Int. J. Eng Sci., 10 (1972), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0 doi: 10.1016/0020-7225(72)90039-0
    [11] A. C. Eringen, Nonlocal polar field theory. In: A.C. Eringen (ed.), Continuum Physics. 4. Academic Press: New York, 1976.
    [12] A. Farajpour, M. H. Ghayesh, H. Farokhi, A review on the mechanics of nanostructures, Int. J. Eng. Sci., 133 (2018), 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006 doi: 10.1016/j.ijengsci.2018.09.006
    [13] C. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, 78 (2015), 298-313. https://doi.org/10.1016/j.jmps.2015.02.001 doi: 10.1016/j.jmps.2015.02.001
    [14] E. C. Aifantis, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30 (1992), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3 doi: 10.1016/0020-7225(92)90141-3
    [15] L. Li, Y. Hu, L. Ling, Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory, Physica E: Low-dimensional Sys. Nanostruc., 75 (2016), 118-124. https://doi.org/10.1016/j.physe.2015.09.028 doi: 10.1016/j.physe.2015.09.028
    [16] J. L. Liu, Y. Mei, R. Xia, W. L. Zhu, Large displacement of a static bending nanowire with surface effects, Physica E: Low-Dimensional Sys. Nanostruc., 44 (2012), 2050-2055. https://doi.org/10.1016/j.physe.2012.06.009 doi: 10.1016/j.physe.2012.06.009
    [17] F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X doi: 10.1016/S0020-7683(02)00152-X
    [18] R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1 (1965), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5 doi: 10.1016/0020-7683(65)90006-5
    [19] B. Akgöz, Ö. Civalek, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, Int. J. Eng. Sci., 70 (2013), 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004 doi: 10.1016/j.ijengsci.2013.04.004
    [20] R. Barretta, F. M. de Sciarra, Variational nonlocal gradient elasticity for nano-beams, Int. J. Eng. Sci., 143 (2019), 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016 doi: 10.1016/j.ijengsci.2019.06.016
    [21] C. Li, H. Qing, C. F. Gao, Theoretical analysis for static bending of Euler-Bernoulli using different nonlocal gradient models, Mech. Adv. Mater. Struct., 28 (2020), 1965-1977. https://doi.org/10.1080/15376494.2020.1716121 doi: 10.1080/15376494.2020.1716121
    [22] S. K. Jena, S. Chakraverty, M. Malikan, H. Mohammad-Sedighi, Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model, Int. J. Appl. Mech., 12 (2020), 2050054. https://doi.org/10.1142/S1758825120500544 doi: 10.1142/S1758825120500544
    [23] S. Zeng, K. Wang, B. Wang, J. Wu, Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory, Appl. Math. Mech., 41 (2020), 859-880. https://doi.org/10.1007/s10483-020-2620-8 doi: 10.1007/s10483-020-2620-8
    [24] P. Bian, H. Qing, On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models, ZAMM J. Appl. Math. Mech., 101 (2021), e202000132. https://doi.org/10.1002/zamm.202000132 doi: 10.1002/zamm.202000132
    [25] P. Jiang, H. Qing, C. Gao, Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model, Appl. Math. Mech., 41 (2019), 207-232. https://doi.org/10.1007/s10483-020-2569-6 doi: 10.1007/s10483-020-2569-6
    [26] P. Zhang, H. Qing, The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures, Int. J. Mech. Sci., 189 (2021), 105991. https://doi.org/10.1016/j.ijmecsci.2020.105991 doi: 10.1016/j.ijmecsci.2020.105991
    [27] S. Narendar, S. Gopalakrishnan, Nonlocal wave propagation in rotating nanotube, Results Phys., 1 (2011), 17-25. https://doi.org/10.1016/j.rinp.2011.06.002 doi: 10.1016/j.rinp.2011.06.002
    [28] F. Ebrahimi, M. R. Barati, P. Haghi, Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory, J. Vibr. Control, 24 (2018), 3809-3818. https://doi.org/10.1177/1077546317711537 doi: 10.1177/1077546317711537
    [29] M. Malik, D. Das, Free vibration analysis of rotating nano-beams for flap-wise, chord-wise and axial modes based on Eringen's nonlocal theory, Int. J. Mech. Sci., 179 (2020), 105655. https://doi.org/10.1016/j.ijmecsci.2020.105655 doi: 10.1016/j.ijmecsci.2020.105655
    [30] L. Hao-nan, L. Cheng, S. Ji-ping, Y. Lin-quan, Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory, J. Vibr. Eng. Techn., (2021), https://doi.org/10.1007/s42417-021-00288-9. doi: 10.1007/s42417-021-00288-9
    [31] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, 227 (2016), 2207-2232. https://doi.org/10.1007/s00707-016-1623-4 doi: 10.1007/s00707-016-1623-4
    [32] S. Faroughi, A. Rahmani, M. I. Friswell, On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model, Appl. Math. Model., 80 (2020), 169-190. https://doi.org/10.1016/j.apm.2019.11.040 doi: 10.1016/j.apm.2019.11.040
    [33] F. Ebrahimi, A. Dabbagh, Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory, J. Electro. Waves Applic., 32 (2018), 138-169. https://doi.org/10.1080/09205071.2017.1369903 doi: 10.1080/09205071.2017.1369903
    [34] A. Rahmani, B. Safaei, Z. Qin, On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen's theory, Eng. Comput., (2021). https://doi.org/10.1007/s00366-021-01429-0. doi: 10.1007/s00366-021-01429-0
    [35] S. M. Ragab, A. E. Abouelregal, H. F. AlShaibi, R. A. Mansouri, Heat transfer in biological spherical tissues during hyperthermia of magnetoma, Biology, 10 (2021), 1259. https://doi.org/10.3390/biology10121259 doi: 10.3390/biology10121259
    [36] A. Babaei, M. Arabghahestani, Free vibration analysis of rotating beams based on the modified couple stress theory and coupled displacement field, Appl. Mech., 2 (2021), 226-238. https://doi.org/10.3390/applmech2020014 doi: 10.3390/applmech2020014
    [37] A. E. Abouelregal, H. Ahmad, Thermodynamic modeling of viscoelastic thin rotating microbeam based on non-Fourier heat conduction, Appl. Math. Modell., 91 (2021), 973-988. https://doi.org/10.1016/j.apm.2020.10.006 doi: 10.1016/j.apm.2020.10.006
    [38] A. E. Abouelregal, H. Ahmad, K. A. Gepreeld, P. Thounthong, Modelling of vibrations of rotating nanoscale beams surrounded by a magnetic field and subjected to a harmonic thermal field using a state-space approach, Europ. Phys. J. Plus, 136 (2021), 268. https://doi.org/10.1140/epjp/s13360-021-01257-7 doi: 10.1140/epjp/s13360-021-01257-7
    [39] A. E. Abouelregal, H. Ahmad, T. A. Nofal, H. Abu-Zinadah, Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads, Mod. Phys. Lett. B, 35 (2021), 2150297. https://doi.org/10.1142/S0217984921502973 doi: 10.1142/S0217984921502973
    [40] A. E. Abouelregal, H. M. Sedighi, S. A. Faghidian, A. H. Shirazi, Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load, Facta Univer. Series: Mech. Eng., 19 (2021), 633-656. https://doi.org/10.22190/FUME201222024A doi: 10.22190/FUME201222024A
    [41] A. E. Abouelregal, H. M. Sedighi, The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore-Gibson-Thompson heat conduction model, Proc. Institut. Mech. Eng., Part L: J. Mat.: Design Appl., 235 (2021), 1004-1020. https://doi.org/10.1177/1464420720985899 doi: 10.1177/1464420720985899
    [42] H.W. Lord, Y. H. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [43] D. Y. Tzou, Thermal shock phenomena under high rate response in solids, Annual Rev. Heat Trans., 4 (1992), 111-185. https://doi.org/10.1615/AnnualRevHeatTransfer.v4.50 doi: 10.1615/AnnualRevHeatTransfer.v4.50
    [44] D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, J. Heat Trans., 117 (1995), 8-16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329
    [45] D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Trans., 38 (1995), 3231-3240. https://doi.org/10.1016/0017-9310(95)00052-B doi: 10.1016/0017-9310(95)00052-B
    [46] A. E. Abouelregal, Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags, Mater. Res. Express, 6 (2019), 116535. http://dx.doi.org/10.1088/2053-1591/ab447f doi: 10.1088/2053-1591/ab447f
    [47] A. E. Abouelregal, On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags, J. Appl. Comp. Mech., 6 (2020), 445-456. http://doi.org/10.22055/JACM.2019.29960.1649 doi: 10.22055/JACM.2019.29960.1649
    [48] A. E. Abouelregal, A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags, Multidiscip. Model. Ma. Structures, 16 (2020), 689-711. https://doi.org/10.1108/MMMS-07-2019-0138 doi: 10.1108/MMMS-07-2019-0138
    [49] A. E. Abouelregal, Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives, Indian J. Phys., 94 (2020), 1949-1963. https://doi.org/10.1007/s12648-019-01635-z doi: 10.1007/s12648-019-01635-z
    [50] D. Singh, G. Kaur, S. K. Tomar, Waves in nonlocal elastic solid with voids, J. Elast., 128 (2017), 85-114. https://doi.org/10.1016/j.euromechsol.2018.03.015 doi: 10.1016/j.euromechsol.2018.03.015
    [51] R. D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Analy., 16 (1964), 51-78. https://doi.org/10.1007/BF00248490 doi: 10.1007/BF00248490
    [52] M. Jirasek, Nonlocal theories in continuum mechanics, Acta Polytech., 44 (2004), 16-34. https://doi.org/10.14311/610 doi: 10.14311/610
    [53] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45 (2007), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004 doi: 10.1016/j.ijengsci.2007.04.004
    [54] D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X doi: 10.1016/S0022-5096(03)00053-X
    [55] L. Li, H. Tang, Y. Hu, The effect of thickness on the mechanics of nanobeams, Int. J. Eng. Sci., 123 (2018), 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021 doi: 10.1016/j.ijengsci.2017.11.021
    [56] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comput. Appl. Math., 10 (1984), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X doi: 10.1016/0377-0427(84)90075-X
    [57] A. Cheng, P. Sidauruk, Approximate inversion of the Laplace transform, Math. J., 4 (1994), 76-82. Corpus ID: 53626109
    [58] H. Hassanzadeh, M. Poolad-Darvish, Comparison of different numerical Laplace inversion methods for engineering application, Appl. Math. Comput., 189 (2007), 1966-1981. https://doi.org/10.1016/j.amc.2006.12.072 doi: 10.1016/j.amc.2006.12.072
    [59] B. Gu, T. He, Y. Ma, Thermoelastic damping analysis in micro-beam resonators considering nonlocal strain gradient based on dual-phase-lag model, Int. J. Heat Mass Trans., 180 (2021), 121771. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121771 doi: 10.1016/j.ijheatmasstransfer.2021.121771
    [60] X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Comp. Struc., 165 (2017), 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032 doi: 10.1016/j.compstruct.2017.01.032
    [61] L. Lu, X. Guo, J. Zhao, A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms, Int. J. Eng. Sci., 119 (2017), 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024 doi: 10.1016/j.ijengsci.2017.06.024
    [62] L. Lu, X. Guo, J. Zhao, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., 116 (2017), 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006 doi: 10.1016/j.ijengsci.2017.03.006
    [63] X. Zhu, L. Li, Closed form solution for a nonlocal strain gradient rod in tension, Int. J. Eng. Sci., 119 (2017), 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019 doi: 10.1016/j.ijengsci.2017.06.019
    [64] S. Singh, D. Kumar, K. N. Rai, Convective-radiative fin with temperature dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity, Propuls. Power Res., 3 (2014), 207-221. https://doi.org/10.1016/j.jppr.2014.11.003 doi: 10.1016/j.jppr.2014.11.003
    [65] C. B. Xiong, L. N. Yu, Y. B. Niu, Effect of variable thermal conductivity on the generalized thermoelasticity problems in a fiber-reinforced anisotropic half-space, Advan. Mater. Sci. Eng., 2019 (2019), Article ID 8625371. https://doi.org/10.1155/2019/8625371 doi: 10.1155/2019/8625371
    [66] C. Xiong, Y. Guo, Effect of variable properties and moving heat source on magnetothermoelastic problem under fractional order thermoelasticity, Advan. Mater. Sci. Eng., 2016 (2016), Article ID 5341569. https://doi.org/10.1155/2016/5341569 doi: 10.1155/2016/5341569
    [67] A. S. V. Kanth, N. U. Kumar, A haar wavelet study on convective-radiative fin under continuous motion with temperature-dependent thermal conductivity, Walailak J. Sci. Techn., 11 (2014), 211-224. https://doi.org/10.14456/WJST.2014.40 doi: 10.14456/WJST.2014.40
    [68] Y. Wang, D. Liu, Q. Wang, J. Zhou, Asymptotic solutions for generalized thermoelasticity with variable thermal material properties, Arch. Mech., 68 (2016), 181-202. https://doi.org/10.1142/S1758825113500233 doi: 10.1142/S1758825113500233
    [69] F. Ebrahimi, P. Haghi, Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment, Adv. Nano Res., 6 (2018), 201-217. https://doi.org/10.12989/anr.2018.6.3.201 doi: 10.12989/anr.2018.6.3.201
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1953) PDF downloads(78) Cited by(6)

Article outline

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog