In this paper, we develop a method for numerical differentiation of two-dimensional scattered input data on arbitrary domain. A Hermite extension approach is used to realize the approximation and a modified implicit iteration method is proposed to stabilize the approximation process. For functions with various smooth conditions, the numerical solution process of the method is uniform. The error estimates are obtained and numerical results show that the new method is effective. The advantage of the method is that it can solve the problem in any domain.
Citation: Benxue Gong, Zhenyu Zhao, Tiao Bian, Yingmei Wang. Numerical differentiation for two-dimensional scattered data on arbitrary domain base on Hermite extension with an implicit iteration process[J]. AIMS Mathematics, 2022, 7(4): 5991-6015. doi: 10.3934/math.2022334
In this paper, we develop a method for numerical differentiation of two-dimensional scattered input data on arbitrary domain. A Hermite extension approach is used to realize the approximation and a modified implicit iteration method is proposed to stabilize the approximation process. For functions with various smooth conditions, the numerical solution process of the method is uniform. The error estimates are obtained and numerical results show that the new method is effective. The advantage of the method is that it can solve the problem in any domain.
[1] | A. Ramm, A. Smirnova, On stable numerical differentiation, Math. Comp., 70 (2001), 1131–1153. https://dx.doi.org/10.1090/S0025-5718-01-01307-2 doi: 10.1090/S0025-5718-01-01307-2 |
[2] | R. S. Anderssen, P. Bloomfield, Numerical differentiation procedures for non-exact data, Numer. Math., 22 (1974), 157–182. https://dx.doi.org/10.1007/BF01436965 doi: 10.1007/BF01436965 |
[3] | S. Lu, V. Naumova, S. V. Pereverzev, Legendre polynomials as a recommended basis for numerical differentiation in the presence of stochastic white noise, J. Inverse Ill-Posed Probl., 21 (2013), 193–216. https://dx.doi.org/10.1515/jip-2012-0050 doi: 10.1515/jip-2012-0050 |
[4] | H. N. Mhaskar, V. Naumova, S. V. Pereverzyev, Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions, Appl. Math. Comput., 224 (2013), 835–847. https://dx.doi.org/10.1016/j.amc.2013.09.015 doi: 10.1016/j.amc.2013.09.015 |
[5] | D. A. Murio, C. E. Mejía, S. Zhan, Discrete mollification and automatic numerical differentiation, Comput. Math. Appl., 35 (1998), 1–16. https://dx.doi.org/10.1016/S0898-1221(98)00001-7 doi: 10.1016/S0898-1221(98)00001-7 |
[6] | Z. Y. Zhao, A truncated Legendre spectral method for solving numerical differentiation, Int. J. Comput. Math., 87 (2010), 3209–3217. https://dx.doi.org/10.1080/00207160902974404 doi: 10.1080/00207160902974404 |
[7] | Z. Y. Zhao, J. F. Liu, Hermite spectral and pseudospectral methods for numerical differentiation, Appl. Numer. Math., 61 (2011), 1322–1330. https://dx.doi.org/10.1016/j.apnum.2011.09.006 doi: 10.1016/j.apnum.2011.09.006 |
[8] | G. W. Groetsch, Lanczo's generalized derivative, Am. Math. Mon., 105 (1998), 320–326. https://dx.doi.org/10.2307/2589707 doi: 10.2307/2589707 |
[9] | Z. W. Wang, R. S. Wen, Numerical differentiation for high orders by an integration method, J. Comput. Appl. Math., 234 (2010), 941–948. https://dx.doi.org/10.1016/j.cam.2010.01.056 doi: 10.1016/j.cam.2010.01.056 |
[10] | B. Q. Chen, Z. Y. Zhao, Z. Li, Z. H. Meng, Numerical differentiation by a Fourier extension method with super-order regularization, Appl. Math. Comput., 334 (2018), 1–10. https://dx.doi.org/10.1016/j.amc.2018.04.005 doi: 10.1016/j.amc.2018.04.005 |
[11] | J. Cullum, Numerical differentiation and regularization, SIAM J. Numer. Anal., 8 (1971), 254–265. https://dx.doi.org/10.1137/0708026 doi: 10.1137/0708026 |
[12] | M. Hanke, O. Scherzer, Inverse problems light: Numerical differentiation, Am. Math. Mon., 108 (2001), 512–521. https://dx.doi.org/10.2307/2695705 doi: 10.2307/2695705 |
[13] | B. Hu, S. Lu, Numerical differentiation by a Tikhonov regularization method based on the discrete cosine transform, Appl. Anal., 91 (2012), 719–736. https://dx.doi.org/10.1080/00036811.2011.598862 doi: 10.1080/00036811.2011.598862 |
[14] | T. Wei, Y. C. Hon, Y. B. Wang, Reconstruction of numerical derivatives from scattered noisy data, Inverse Probl., 21 (2005), 657. https://dx.doi.org/10.1088/0266-5611/21/2/013 doi: 10.1088/0266-5611/21/2/013 |
[15] | T. Wei, Y. C. Hon, Numerical differentiation by radial basis functions approximation, Adv. Comput. Math., 27 (2007), 247–272. https://dx.doi.org/10.1007/s10444-005-9001-0 doi: 10.1007/s10444-005-9001-0 |
[16] | S. Lu, S. V. Pereverzev, Numerical differentiation from a viewpoint of regularization theory, Math. Comp., 75 (2006), 1853–1870. https://dx.doi.org/10.1090/S0025-5718-06-01857-6 doi: 10.1090/S0025-5718-06-01857-6 |
[17] | Z. H. Meng, Z. Y. Zhao, D. Mei, Y. X. Zhou, Numerical differentiation for two-dimensional functions by a Fourier extension method, Inverse Probl. Sci. En., 28 (2020), 126–143. https://dx.doi.org/10.1080/17415977.2019.1661410 doi: 10.1080/17415977.2019.1661410 |
[18] | Y. B. Wang, T. Wei, Numerical differentiation for two-dimensional scattered data, J. Math. Anal. Appl., 312 (2005), 121–137. https://dx.doi.org/10.1016/j.jmaa.2005.03.025 doi: 10.1016/j.jmaa.2005.03.025 |
[19] | S. Riachy, M. Mboup, J. Richard, Multivariate numerical differentiation, J. Comput. Appl. Math., 236 (2011), 1069–1089. https://dx.doi.org/10.1016/j.cam.2011.07.031 doi: 10.1016/j.cam.2011.07.031 |
[20] | S. Qiu, Z. W. Wang, A. Xie, Multivariate numerical derivative by solving an inverse heat source problem, Inverse Probl. Sci. En., 26 (2018), 1178–1197. https://dx.doi.org/10.1080/17415977.2017.1386187 doi: 10.1080/17415977.2017.1386187 |
[21] | R. Adams, Sobolev spaces, New York: Academic press, 1975. |
[22] | H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63–89. https://dx.doi.org/10.2307/1989708 doi: 10.2307/1989708 |
[23] | C. Fefferman, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoam., 21 (2005), 313–348. https://dx.doi.org/10.4171/RMI/424 doi: 10.4171/RMI/424 |
[24] | C. Fefferman, Whitney's extension problems and interpolation of data, Bull. Amer. Math. Soc., 46 (2008), 207–220. https://dx.doi.org/10.1090/S0273-0979-08-01240-8 doi: 10.1090/S0273-0979-08-01240-8 |
[25] | C. Fefferman, A. Israel, G. K. Luli, Sobolev extension by linear operators, J. Amer. Math. Soc., 27 (2014), 69–145. https://dx.doi.org/10.1090/S0894-0347-2013-00763-8 doi: 10.1090/S0894-0347-2013-00763-8 |
[26] | Z. Y. Zhao, A Hermite extension method for numerical differentiation, Appl. Numer. Math., 159 (2021), 46–60. https://dx.doi.org/10.1016/j.apnum.2020.08.016 doi: 10.1016/j.apnum.2020.08.016 |
[27] | Q. N. Jin, U. Tautenhahn, Implicit iteration methods in Hilbert scales under general smoothness conditions, Inverse Probl., 27 (2011), 045012. https://dx.doi.org/10.1088/0266-5611/27/4/045012 doi: 10.1088/0266-5611/27/4/045012 |
[28] | S. Thangavelu, Lectures on Hermite and Laguerre expansions, New Jersey: Princeton University Press, 1993. https://dx.doi.org/10.1515/9780691213927 |
[29] | T. Tao, The Hermite spectral method for gaussian-type functions, SIAM J. Sci. Comput., 14 (1993), 594–606. https://dx.doi.org/10.1137/0914038 doi: 10.1137/0914038 |