In this study, by using $ q $-analogue of Noor integral operator, we present an analytic and bi-univalent functions family in $ \mathfrak{D} $. We also derive upper coefficient bounds and some important inequalities for the functions in this family by using the Faber polynomial expansions. Furthermore, some relevant corollaries are also presented.
Citation: F. Müge Sakar, Arzu Akgül. Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator[J]. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
In this study, by using $ q $-analogue of Noor integral operator, we present an analytic and bi-univalent functions family in $ \mathfrak{D} $. We also derive upper coefficient bounds and some important inequalities for the functions in this family by using the Faber polynomial expansions. Furthermore, some relevant corollaries are also presented.
[1] | H. Airault, A. Bouali, Differential calculus on the Faber polynomials, B. Sci. Math., 130 (2006), 179–222. http://dx.doi.org/10.1016/j.bulsci.2005.10.002 doi: 10.1016/j.bulsci.2005.10.002 |
[2] | H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, B. Sci. Math., 126 (2002), 343–367. http://dx.doi.org/10.1016/S0007-4497(02)01115-6 doi: 10.1016/S0007-4497(02)01115-6 |
[3] | A. Akgül, F. M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q -analogue of Noor integral operator and Horadam polynomials, Turk. J. Math., 43 (2019), 2275–2286. http://dx.doi.org/10.3906/mat-1905-17 doi: 10.3906/mat-1905-17 |
[4] | H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, International Scholarly Research Notices, 2013 (2013), 382312. http://dx.doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312 |
[5] | R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. http://dx.doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012 |
[6] | Ş. Altınkaya, Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers, Turk. J. Math., 44 (2020), 553–560. http://dx.doi.org/10.3906/mat-1910-41 doi: 10.3906/mat-1910-41 |
[7] | Ş. Altınkaya, S. Yalçın, S. Çakmak, A subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci numbers, Mathematics, 7 (2019), 160. http://dx.doi.org/10.3390/math7020160 doi: 10.3390/math7020160 |
[8] | M. Arif, M. Ul Haq, J.-L. Liu, Subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Space., 2018 (2018), 3818915. http://dx.doi.org/10.1155/2018/3818915 doi: 10.1155/2018/3818915 |
[9] | D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, In: S. M. Mazhar, A. Hamoui, N. S. Faour, Editors, Mathematical analysis and its applications, Oxford: Pergamon Press, Elsevier Science Limited, 1988, 53–60. |
[10] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49–60. http://dx.doi.org/10.7153/jca-02-05 doi: 10.7153/jca-02-05 |
[11] | P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983. |
[12] | G. Faber, Über polynomische entwickelungen, Math. Ann., 57 (1903), 389–408. http://dx.doi.org/10.1007/BF01444293 doi: 10.1007/BF01444293 |
[13] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. http://dx.doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048 |
[14] | H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z., 45 (1939), 29–61. http://dx.doi.org/10.1007/BF01580272 doi: 10.1007/BF01580272 |
[15] | J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), 190560. http://dx.doi.org/10.1155/2013/190560 doi: 10.1155/2013/190560 |
[16] | P. A. A. Laura, A survey of modern applıcatıons of the method of conformal mapping, Rev. Unión Mat. Argent., 27 (1975), 167–179. |
[17] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. |
[18] | M. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. http://dx.doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676 |
[19] | K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71–80. |
[20] | K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. http://dx.doi.org/10.1006/jmaa.1999.6501 |
[21] | Z. G. Peng, Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci., 34 (2014), 228–240. http://dx.doi.org/10.1016/S0252-9602(13)60140-X doi: 10.1016/S0252-9602(13)60140-X |
[22] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions; fractional calculus, and their applications, New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, 1989,329–354. |
[23] | H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, In: Nonlinear analysis, New York: Springer, 2012,607–630. http://dx.doi.org/10.1007/978-1-4614-3498-6_38 |
[24] | H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. http://dx.doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[25] | T. S. Taha, Topics in univalent function theory, Ph.D. Thesis of University of London, 1981. |
[26] | P. G. Todorov, On the Faber polynomials of the univalent functions of class $\sum$, J. Math. Anal. Appl., 162 (1991), 268–276. http://dx.doi.org/10.1016/0022-247X(91)90193-4 doi: 10.1016/0022-247X(91)90193-4 |