Research article

Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator

F. Müge Sakar ${ }^{1, *}$ and Arzu Akgül ${ }^{2}$
${ }^{1}$ Department of Management, Faculty of Economics and Administrative Sciences, Dicle University, Diyarbakır, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, Umuttepe Campus, Kocaeli University, Kocaeli, Turkey
* Correspondence: Email: mugesakar@hotmail.com; Tel: +904122411000; Fax: +904122488348.

Abstract

In this study, by using q-analogue of Noor integral operator, we present an analytic and bi-univalent functions family in \mathfrak{D}. We also derive upper coefficient bounds and some important inequalities for the functions in this family by using the Faber polynomial expansions. Furthermore, some relevant corollaries are also presented.

Keywords: bi-univalent functions; Faber polynomials; q-analogue of Noor integral operator; coefficient inequalities
Mathematics Subject Classification: 30C45, 30C50

1. Introduction

Conformal mapping is used in electromagnetic theory as well as in heat transfer theory. Univalent functions have wide application in heat transfer problems (see [16]). Special functions contain a very old branch of mathematics. In addition, in recent years, special functions and inequalities are widely used for solving some problems in physics, integer-order differential equations and systems, electromagnetizm, heat-transfer problems, mathematical models, etc [24]. Specially harmonic, analytical functions and inequalities of coefficients are widely used in thermodynamics, electricity and magnetism and quantum physics. In electricity, current and impedance equations can be expressed in a complex plane, and basic electrical relations become complex functions. However, in this study, we consider only upper coefficient bounds and some important inequalities for analytic and bi-univalent functions family by using special functions.

Let's denote by \mathbb{C} which is the complex plane in the open unit disk $\mathcal{D}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Additionaly, \mathcal{A} denotes the family of functions $s(z)$ which are analytic in the open unit disk and
normalized by $s(0)=s^{\prime}(0)-1=0$ and having the style:

$$
\begin{equation*}
s(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be a subfamily of \mathcal{A} which is univalent in \mathfrak{D} (for details, see [11]). Furthermore, \mathcal{P} be the family of functions, formed:

$$
\varphi(z)=1+\sum_{k=1}^{\infty} \varphi_{k} z^{k} \quad(z \in \mathfrak{D})
$$

\mathfrak{D} and hold the necessity $\mathfrak{R}(\varphi(z))>0$ in \mathfrak{D}. By the Carathéodory's Lemma (e.g., see [11]), we get $\left|\varphi_{k}\right| \leq 2$.

In accordance with the Koebe Theorem (e.g.,see [11]), each univalent function $s(z) \in \mathcal{A}$ has an inverse s^{-1} fulfilling

$$
s^{-1}(s(z))=z \quad(z \in \mathfrak{D})
$$

and

$$
s\left(s^{-1}(w)\right)=w \quad\left(|w|<r_{0}(s) r_{0}(s) \geq \frac{1}{4}\right) .
$$

Actually, the inverse function s^{-1} is denoted by

$$
\begin{equation*}
r(w)=s^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

If both $s(z)$ and $s^{-1}(z)$ are univalent, we can say that, $s \in \mathcal{A}$ is be bi-univalent in \mathfrak{D}. All families of bi-univalent functions in \mathfrak{D} with Taylor-Maclaurin series expansion (1.1) are presented by Σ.

For both of some knowledges and different examples for functions belong to Σ, see the following references [$9,17,18,22,23,25$]. Also, see references by Ali et al. [5], Jahangiri and Hamidi [15], and other studies such as $[6,7,10,13,21]$.
Definition 1. For analytic functions s and r, s is subordinate to r, presented by

$$
\begin{equation*}
s(z)<r(z), \tag{1.3}
\end{equation*}
$$

if there is an analytic function w such that

$$
w(0)=0,|w(z)|<1 \text { and } s(z)=r(w(z)) .
$$

The following definition gives us the knowledge about fractional q-calculus operators (see, [22]). Definition 2. [22] For $q \in(0,1)$, the q-derivative of $s \in \mathcal{A}$ is given by

$$
\begin{equation*}
\partial_{q} s(z)=\frac{s(q z)-s(z)}{(q-1) z}, z \neq 0 \tag{1.4}
\end{equation*}
$$

and

$$
\partial_{q} s(0)=s^{\prime}(0) .
$$

Thus we have

$$
\begin{equation*}
\partial_{q} s(z)=1+\sum_{k=2}^{\infty}[k, q] a_{k} z^{k-1} \tag{1.5}
\end{equation*}
$$

where $[k, q]$ is presented by

$$
\begin{equation*}
[k, q]=\frac{1-q^{k}}{1-q}, \quad[0, q]=0 \tag{1.6}
\end{equation*}
$$

and define the q -fractional by

$$
[k, q]!=\left\{\begin{array}{cc}
\prod_{n=1}^{k}[n, q], & k \in \mathbb{N} \tag{1.7}\\
1, & k=0
\end{array} .\right.
$$

Furthermore, Pochhammer symbol which is q-generalized for $\mathfrak{p} \geq 0$ is denoted by

$$
[\mathfrak{p}, q]_{k}=\left\{\begin{array}{cc}
\prod_{n=1}^{k}[\mathfrak{p}+n-1, q], & k \in \mathbb{N} \tag{1.8}\\
1, & k=0
\end{array} .\right.
$$

In addition, as $q \rightarrow 1^{-},[k, q] \rightarrow k$, if we select $r(z)=z^{k}$, then we obtain

$$
\partial_{q} r(z)=\partial_{q} z^{k}=[k, q] z^{k-1}=r^{\prime}(z),
$$

where r^{\prime} is the ordinary derivative.
Recently, $F_{q, \mu+1}^{-1}(z)$, given with the following relation, was defined by Arif et al. (see [8])

$$
\begin{equation*}
F_{q, \mu+1}^{-1}(z) * F_{q, \mu+1}(z)=z \partial_{q} s(z), \quad(\mu>-1) \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{q, \mu+1}(z)=z+\sum_{k=2}^{\infty} \frac{[\mu+1, q]_{k-1}}{[k-1, q]!} z^{k}, \quad z \in \mathfrak{D} . \tag{1.10}
\end{equation*}
$$

Due to the fact that series given in (1.10) is convergent absolutely in $z \in \mathfrak{D}$, by taking advantage of the characterization of q-derivative via convolution, one can define the integral operator $\zeta_{q}^{\mu}: \mathfrak{D} \rightarrow \mathfrak{D}$ by

$$
\begin{equation*}
\zeta_{q}^{\mu} s(z)=F_{q, \mu+1}^{-1}(z) * s(z)=z+\sum_{k=2}^{\infty} \phi_{k-1} a_{k} z^{k}, \quad(z \in \mathfrak{D}) \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{k-1}=\frac{[k, q]!}{[\mu+1, q]_{k-1}} . \tag{1.12}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\zeta_{q}^{0} s(z)=z \partial_{q} s(z), \zeta_{q}^{\prime} s(z)=s(z) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{q \rightarrow 1} \zeta_{q}^{\mu} s(z)=z+\sum_{k=2}^{\infty} \frac{k!}{(\mu+1)_{k-1}} a_{k} z^{k} . \tag{1.14}
\end{equation*}
$$

Equation (1.14) means that the operator denoted by (1.11) reduces to the known Noor integral operator by getting $q \rightarrow 1$, which is presented in (see $[19,20]$). For further informations on the q-analogue of differential-integral operators, see the study of Aldweby and Darus (see [4]).

This work was motivated by Akgül and Sakar's study [3]. The basic purpose of this study is to give a new subfamily, which is in Σ and provide general coefficient bound $\left|a_{n}\right|$ by using Faber polynomial technics for this subfamily. Additionaly, we derive bounds of the $\left|a_{2}\right|$ and $\left|a_{3}\right|$ which are the first two coefficients of this subfamily.

2. The family $W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$

In this part, firstly we will introduce the class $W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$ and then give the knowledgements about Faber polynomial expansions.
Definition 3. A function $s \in \Sigma$ is known in the class $W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$ if the requirements given below hold:

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} s(z)}{z}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} s(z)\right)-1\right]<\varphi(z) \quad(z \in \mathfrak{D}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} r(w)}{w}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} r(w)\right)-1\right]<\varphi(w) \quad(w \in \mathfrak{D}) \tag{2.2}
\end{equation*}
$$

where ($\mu>-1,0<q<1, \tau>0, \alpha \geq 0$) and $s=r^{-1}(w)$ is given by (1.2).
It is clear from Definition 3 that upon setting $q \rightarrow 1^{-}$, for $\tau=1, \alpha=1$ and $\mu=1$, one can easily see that $s \in \Sigma$ is in

$$
W_{\Sigma}^{1}(1,1 ; \varphi)=\mathcal{H}_{\sigma}(\varphi)
$$

if the conditions given below hold true:

$$
s^{\prime}(z)<\varphi(z) \quad(z \in \mathfrak{D})
$$

and

$$
r^{\prime}(w)<\varphi(w) \quad(w \in \mathfrak{D}),
$$

where $r=s^{-1}$ is given by (1.2). The class $\mathcal{H}_{\sigma}(\varphi)$ was investigated by Ali et al. [5].
The Faber polynomials act effective role in several fields of mathematical sciences, specially, in the Theory of Geometric Function [12]. Also, Grunsky [14] gave some sufficient conditions for the univalency.

To obtain our main results, we need to following knowledgements owing to Airault and Bouali [1].
Using the Faber polynomial expansion of function $s \in \mathcal{A}$ given in (1.1), $s^{-1}=g$ may be given as

$$
r(w)=s^{-1}(w)=w+\sum_{k=2}^{\infty} \frac{1}{k} K_{k-1}^{-k}\left(a_{2}, a_{3}, \ldots\right) w^{k},
$$

where

$$
\begin{aligned}
K_{k-1}^{-k} & =\frac{(-k)!}{(-2 k+1)!(k-1)!} a_{2}^{k-1}+\frac{(-k)!}{[2(-k+1)]!(k-3)!} a_{2}^{k-3} a_{3} \\
& +\frac{(-k)!}{(-2 k+3)!(k-4)!} a_{2}^{k-4} a_{4} \\
& +\frac{(-k)!}{[2(-k+2)]!(k-5)!} a_{2}^{k-5}\left[a_{5}+(-k+2) a_{3}^{2}\right] \\
& +\frac{(-k)!}{(-2 k+5)!(k-6)!} a_{2}^{k-6}\left[a_{6}+(-2 k+5) a_{3} a_{4}\right]
\end{aligned}
$$

$$
+\sum_{j \geq 7} a_{2}^{k-j} V_{j}
$$

symbolically such term $(-k!) \equiv \Gamma(1-k):=(-k)(-k-1)(-k-2) \cdots(k \in \mathbb{N}, \mathbb{N}:=\{1,2,3, \cdots\})$ and V_{j} with $7 \leq j \leq k$ is a homologous polynomial in $a_{2}, a_{3}, \ldots a_{k}$, [2]. Particularly, some initial terms of K_{k-1}^{-k} are

$$
\begin{gathered}
K_{1}^{-2}=-2 a_{2}, \\
K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right), \\
K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
\end{gathered}
$$

Generally, for any $p \in \mathbb{N}:=\{1,2,3 \ldots\}$, an expansion of K_{k}^{p} is given, [1],

$$
K_{k}^{p}=p a_{k}+\frac{p(p-1)}{2} D_{k}^{2}+\frac{p!}{(p-3)!3!} D_{k}^{3}+\ldots+\frac{p!}{(p-k)!(k)!} D_{k}^{k},
$$

where $D_{k}^{p}=D_{k}^{p}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$, and by [26],

$$
D_{k}^{m}\left(a_{1}, a_{2}, \ldots a_{k}\right)=\sum_{m=2}^{\infty} \frac{m!}{i_{1}!\ldots i_{k}!} a_{1}^{i_{1}} \ldots a_{k}^{i_{k}} \quad \text { for } \quad m \leq k
$$

while $a_{1}=1$, and non-negative integers i_{1}, \ldots, i_{k} satisfying

$$
\begin{gathered}
i_{1}+i_{2}+\ldots+i_{k}=m \\
i_{1}+2 i_{2}+\ldots+k i_{k}=k .
\end{gathered}
$$

It is obvious that $D_{k}^{k}\left(a_{1}, a_{2}, \ldots a_{k}\right)=a_{1}^{k}$.
As a result, for $s \in W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$ given by (1.1), we can write

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} s(z)}{z}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} s(z)\right)-1\right]=1+\frac{1}{\tau} \sum_{k=2}^{\infty}[k, \alpha q] \phi_{k-1} a_{k} z^{k} \tag{2.3}
\end{equation*}
$$

where

$$
[k, \alpha q]=1+\sum_{l=1}^{k-1} \alpha q^{l}
$$

Theorem 4. For $\alpha \geq 1, \mu>-1,0<q<1, \tau>0$, let the function given by (1.1) $s \in W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$. If $a_{m}=0$ for $2 \leq m \leq k-1$, then

$$
\left|a_{k}\right| \leq \frac{2 \tau}{\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1}} .
$$

Proof. For analytic functions s given by (1.1), we get

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} s(z)}{z}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} s(z)\right)-1\right]=1+\frac{1}{\tau} \sum_{k=2}^{\infty}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} a_{k} z^{k-1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} r(w)}{w}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} r(w)\right)-1\right]=1+\frac{1}{\tau} \sum_{k=2}^{\infty}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} b_{k} w^{k-1} \\
= & 1+\frac{1}{\tau} \sum_{k=2}^{\infty}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} \times \frac{1}{k} K_{k-1}^{-k}\left(a_{2}, a_{3}, \ldots a_{k}\right) w^{k-1} \tag{2.5}
\end{align*}
$$

Moreover, the correlations (2.1) and (2.2) refer to the presence of Schwartz functions

$$
\begin{equation*}
u(z)=\sum_{k=2}^{\infty} c_{k} z^{k} \quad \text { and } \quad \vartheta(w)=\sum_{k=2}^{\infty} d_{k} w^{k} \tag{2.6}
\end{equation*}
$$

so that

$$
\begin{array}{r}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} s(z)}{z}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} s(z)\right)-1\right]=\varphi(u(z)) \\
1+\frac{1}{\tau}\left[(1-\alpha) \frac{\zeta_{q}^{\mu} r(w)}{w}+\alpha \partial_{q}\left(\zeta_{q}^{\mu} r(w)\right)-1\right]=\varphi(\vartheta(w)) \tag{2.8}
\end{array}
$$

where

$$
\begin{gather*}
\varphi(u(z))=1+\sum_{k=1}^{\infty} \sum_{n=1}^{k} \varphi_{n} D_{k}^{n}\left(c_{1}, c_{2}, \ldots, c_{k}\right) z^{k} \tag{2.9}\\
\varphi(\vartheta(w))=1+\sum_{k=1}^{\infty} \sum_{n=1}^{k} \varphi_{n} D_{k}^{n}\left(d_{1}, d_{2}, \ldots, d_{k}\right) w^{k} . \tag{2.10}
\end{gather*}
$$

Thus, from (2.4), (2.6) and (2.9) we have

$$
\begin{equation*}
\frac{1}{\tau}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} a_{k}=\sum_{n=1}^{k} \varphi_{n} D_{k}^{n}\left(c_{1}, c_{2}, \ldots, c_{k}\right), \quad(k \geq 2) \tag{2.11}
\end{equation*}
$$

Similarly, by using (2.5), (2.6) and (2.10) we find that

$$
\begin{equation*}
\frac{1}{\tau}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} b_{k}=\sum_{n=1}^{k} \varphi_{n} D_{k}^{n}\left(d_{1}, d_{2}, \ldots, d_{k}\right), \quad(k \geq 2) \tag{2.12}
\end{equation*}
$$

For $a_{n}=0(2 \leq n \leq k-1)$, we get

$$
b_{k}=-a_{k}
$$

and so

$$
\begin{aligned}
\frac{1}{\tau}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} a_{k} & =\varphi_{1} c_{k-1} \\
-\frac{1}{\tau}\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1} a_{k} & =\varphi_{1} d_{k-1}
\end{aligned}
$$

When we take the absolute values of either of the above two equalities and using $\left|\varphi_{1}\right| \leq 2,\left|c_{k-1}\right| \leq 1$ and $\left|d_{k-1}\right| \leq 1$, we obtain

$$
a_{k}=\frac{\left|\varphi_{1} c_{k-1}\right| \tau}{\left|\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1}\right|}=\frac{\left|\varphi_{1} d_{k-1}\right| \tau}{\left|\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1}\right|} \leq \frac{2 \tau}{\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1}}
$$

which evidently completes the proof of theorem.
We have the Corollary 5, when we choose $\tau=1$ in Theorem 4.
Corollary 5. For $\alpha \geq 1, \mu>-10<q<1$, let s in the form (1.1) be in $W_{\Sigma}^{\mu, q}(\alpha ; \varphi)$. If $a_{m}=0$ for $2 \leq m \leq k-1$, then

$$
\left|a_{k}\right| \leq \frac{2}{\left[1+\sum_{l=1}^{k-1} \alpha q^{l}\right] \phi_{k-1}} .
$$

Comforting the coeefficient restricts produced in Theorem 4, we get coefficients given early of $s \in W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$ given below.
Theorem 6. Let $s \in W_{\Sigma}^{\mu, q}(\alpha, \tau ; \varphi)$ and for $\alpha \geq 1, \mu>-1,0<q<1, \tau>0$. Then

$$
\begin{aligned}
& \text { (i) }\left|a_{2}\right| \leq \min \left\{\frac{2 \tau}{(1+\alpha q) \phi_{1}}, \frac{2 \sqrt{\tau}}{\sqrt{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}}\right\} \\
& \text { (ii) }\left|a_{3}\right| \leq \min \left\{\frac{4 \tau^{2}}{(1+\alpha q)^{2} \phi_{1}^{2}}+\frac{2|\tau|}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}, \frac{6 \tau}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}\right\}
\end{aligned}
$$

and
(iii) $\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4 \tau}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}$.

Proof. we obtain following equalities by replacing k by 2 and 3 in (2.11) and (2.12), respectively,

$$
\begin{gather*}
\frac{1}{\tau}(1+\alpha q) \phi_{1} a_{2}=\varphi_{1} c_{1} \tag{2.13}\\
\frac{1}{\tau}\left(1+\alpha q+\alpha q^{2}\right) \phi_{2} a_{3}=\varphi_{1} c_{2}+\varphi_{2} c_{1}^{2} \tag{2.14}\\
-\frac{1}{\tau}(1+\alpha q) \phi_{1} a_{2}=\varphi_{1} d_{1} \tag{2.15}\\
\frac{1}{\tau}\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}\left(2 a_{2}^{2}-a_{3}\right)=\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2} . \tag{2.16}
\end{gather*}
$$

From (2.13) and (2.15), we obtain,

$$
d_{1}=-c_{1}
$$

and taking their absolute values,

$$
\begin{equation*}
\left|a_{2}\right|=\frac{\left|\varphi_{1} c_{1}\right| \tau}{\left|(1+\alpha q) \phi_{1}\right|}=\frac{\left|\varphi_{1} d_{1}\right| \tau}{\left|(1+\alpha q) \phi_{1}\right|} \leq \frac{2 \tau}{(1+\alpha q) \phi_{1}} . \tag{2.17}
\end{equation*}
$$

Now, by adding (2.14) and (2.16), implies that

$$
\frac{2}{\tau}\left[\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}\right] a_{2}^{2}=\varphi_{1}\left(c_{2}+d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)
$$

or equivalently, (by taking the square roots and using Caratheodary Lemma)

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \sqrt{\tau}}{\sqrt{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}} \tag{2.18}
\end{equation*}
$$

Next, in order to obtain the coefficient estimate of $\left|a_{3}\right|$, we subtract (2.16) from (2.14). Thus we get

$$
\frac{2}{\tau}[\tau]\left(a_{3}-a_{2}^{2}\right)=\varphi_{1}\left(c_{2}-d_{2}\right)+\varphi_{2}\left(c_{1}^{2}-d_{1}^{2}\right)
$$

or equivalently,

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|a_{2}^{2}\right|+\frac{\left|\varphi_{1}\left(c_{2}-d_{2}\right)\right| \tau}{2\left|\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}\right|} \tag{2.19}
\end{equation*}
$$

By replacing $\left|a_{2}^{2}\right|$ from (2.17) and (2.18) into (2.19), we get,

$$
\left|a_{3}\right| \leq \frac{4 \tau^{2}}{(1+\alpha q)^{2} \phi_{1}^{2}}+\frac{2 \tau}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}}
$$

and

$$
\left|a_{3}\right| \leq \frac{6 \tau}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}} .
$$

Finally, from (2.16), we deduce that (by Caratheodary Lemma)

$$
\left|a_{3}-2 a_{2}^{2}\right|=\frac{\left|\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2}\right| \tau}{\left|\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}\right|} \leq \frac{4 \tau}{\left(1+\alpha q+\alpha q^{2}\right) \phi_{2}} .
$$

So, the proof is over.
By letting $q \rightarrow 1^{-}$in Theorem 6, we get the Corollary 7.
Corollary 7. Let s presented by (1.1) be in the family $W_{\Sigma}^{\mu}(\alpha, \tau ; \varphi)$ if $a_{m}=0$ for $2 \leq m \leq k-1$, then

$$
\begin{aligned}
& \text { (i) }\left|a_{2}\right| \leq \frac{2 \tau}{(1+\alpha) \phi_{1}}, \frac{2 \sqrt{\tau}}{\sqrt{(1+2 \alpha) \phi_{2}}} \\
& \text { (ii) }\left|a_{3}\right| \leq \frac{4 \tau^{2}}{(1+\alpha)^{2} \phi_{1}^{2}}+\frac{2 \tau}{(1+2 \alpha) \phi_{2}}, \frac{6 \tau}{(1+2 \alpha) \phi_{2}}
\end{aligned}
$$

and

$$
\text { (iii) }\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4 \tau}{(1+2 \alpha) \phi_{2}} \text {. }
$$

By letting $\tau=1$ in Corrollary 7, we obtain Corollary 8.
Corollary 8. Let s indicated by (1.1) be in the family $W_{\Sigma}^{\mu}(\alpha ; \varphi)$ if $a_{m}=0$ for $2 \leq m \leq k-1$, then

$$
\begin{aligned}
& \text { (i) }\left|a_{2}\right| \leq \frac{2}{(1+\alpha) \phi_{1}}, \frac{2}{\sqrt{(1+2 \alpha) \phi_{2}}} \\
& \text { (ii) }\left|a_{3}\right| \leq \frac{4}{(1+\alpha)^{2} \phi_{1}^{2}}+\frac{2}{(1+2 \alpha) \phi_{2}}, \frac{6}{(1+2 \alpha) \phi_{2}}
\end{aligned}
$$

and

$$
\text { (iii) }\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4}{(1+2 \alpha) \phi_{2}} \text {. }
$$

Conflict of interest

The authors declare no conflict of interest.

References

1. H. Airault, A. Bouali, Differential calculus on the Faber polynomials, B. Sci. Math., 130 (2006), 179-222. http://dx.doi.org/10.1016/j.bulsci.2005.10.002
2. H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, B. Sci. Math., 126 (2002), 343-367. http://dx.doi.org/10.1016/S0007-4497(02)01115-6
3. A. Akgül, F. M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q -analogue of Noor integral operator and Horadam polynomials, Turk. J. Math., 43 (2019), 2275-2286. http://dx.doi.org/10.3906/mat-1905-17
4. H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, International Scholarly Research Notices, 2013 (2013), 382312. http://dx.doi.org/10.1155/2013/382312
5. R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351. http://dx.doi.org/10.1016/j.aml.2011.09.012
6. Ş. Altınkaya, Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers, Turk. J. Math., 44 (2020), 553-560. http://dx.doi.org/10.3906/mat-1910-41
7. Ş. Altınkaya, S. Yalçın, S. Çakmak, A subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci numbers, Mathematics, 7 (2019), 160. http://dx.doi.org/10.3390/math7020160
8. M. Arif, M. Ul Haq, J.-L. Liu, Subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Space., 2018 (2018), 3818915. http://dx.doi.org/10.1155/2018/3818915
9. D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, In: S. M. Mazhar, A. Hamoui, N. S. Faour, Editors, Mathematical analysis and its applications, Oxford: Pergamon Press, Elsevier Science Limited, 1988, 53-60.
10. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49-60. http://dx.doi.org/10.7153/jca-02-05
11. P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
12. G. Faber, Über polynomische entwickelungen, Math. Ann., 57 (1903), 389-408. http://dx.doi.org/10.1007/BF01444293
13. B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573. http://dx.doi.org/10.1016/j.aml.2011.03.048
14. H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z., 45 (1939), 29-61. http://dx.doi.org/10.1007/BF01580272
15. J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), 190560. http://dx.doi.org/10.1155/2013/190560
16. P. A. A. Laura, A survey of modern applications of the method of conformal mapping, Rev. Unión Mat. Argent., 27 (1975), 167-179.
17. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
18. M. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112. http://dx.doi.org/10.1007/BF00247676
19. K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71-80.
20. K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341-352. http://dx.doi.org/10.1006/jmaa.1999.6501
21. Z. G. Peng, Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci., 34 (2014), 228-240. http://dx.doi.org/10.1016/S0252-9602(13)60140-X
22. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions; fractional calculus, and their applications, New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, 1989, 329-354.
23. H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, In: Nonlinear analysis, New York: Springer, 2012, 607-630. http://dx.doi.org/10.1007/978-1-4614-3498-6_38
24. H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327344. http://dx.doi.org/10.1007/s40995-019-00815-0
25. T. S. Taha, Topics in univalent function theory, Ph.D. Thesis of University of London, 1981.
26. P. G. Todorov, On the Faber polynomials of the univalent functions of class \sum, J. Math. Anal. Appl., 162 (1991), 268-276. http://dx.doi.org/10.1016/0022-247X(91)90193-4
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
