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1. Introduction

Conformal mapping is used in electromagnetic theory as well as in heat transfer theory. Univalent
functions have wide application in heat transfer problems (see [16]). Special functions contain a
very old branch of mathematics. In addition, in recent years, special functions and inequalities are
widely used for solving some problems in physics, integer-order differential equations and systems,
electromagnetizm, heat-transfer problems, mathematical models, etc [24]. Specially harmonic,
analytical functions and inequalities of coefficients are widely used in thermodynamics, electricity and
magnetism and quantum physics. In electricity, current and impedance equations can be expressed in
a complex plane, and basic electrical relations become complex functions. However, in this study, we
consider only upper coefficient bounds and some important inequalities for analytic and bi-univalent
functions family by using special functions.

Let’s denote by C which is the complex plane in the open unit disk D = {z : z ∈ C and |z| < 1} .
Additionaly, A denotes the family of functions s(z) which are analytic in the open unit disk and
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normalized by s(0) = s′(0) − 1 = 0 and having the style:

s (z) = z +

∞∑
k=2

akzk. (1.1)

Let S be a subfamily of A which is univalent in D (for details, see [11]). Furthermore, P be the
family of functions, formed:

ϕ(z) = 1 +

∞∑
k=1

ϕkzk (z ∈ D)

D and hold the necessity <(ϕ(z)) > 0 in D. By the Carathéodory’s Lemma (e.g., see [11]), we get
|ϕk| ≤ 2.

In accordance with the Koebe Theorem (e.g.,see [11]), each univalent function s(z) ∈ A has an
inverse s−1 fulfilling

s−1 (s(z)) = z (z ∈ D)

and

s
(
s−1(w)

)
= w

(
|w| < r0(s) r0(s) ≥

1
4

)
.

Actually, the inverse function s−1 is denoted by

r(w) = s−1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (1.2)

If both s(z) and s−1(z) are univalent, we can say that, s ∈ A is be bi-univalent in D. All families of
bi-univalent functions in D with Taylor-Maclaurin series expansion (1.1) are presented by Σ.

For both of some knowledges and different examples for functions belong to Σ, see the following
references [9, 17, 18, 22, 23, 25]. Also, see references by Ali et al. [5], Jahangiri and Hamidi [15], and
other studies such as [6, 7, 10, 13, 21].
Definition 1. For analytic functions s and r , s is subordinate to r, presented by

s(z) ≺ r(z), (1.3)

if there is an analytic function w such that

w(0) = 0 , |w(z)| < 1 and s(z) = r (w(z)) .

The following definition gives us the knowledge about fractional q-calculus operators (see, [22]).
Definition 2. [22] For q ∈ (0, 1), the q-derivative of s ∈ A is given by

∂qs(z) =
s(qz) − s(z)

(q − 1)z
, z , 0 (1.4)

and
∂qs(0) = s′(0).

Thus we have

∂qs(z) = 1 +

∞∑
k=2

[
k, q

]
akzk−1 (1.5)
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where
[
k, q

]
is presented by [

k, q
]

=
1 − qk

1 − q
,

[
0, q

]
= 0 (1.6)

and define the q-fractional by

[k, q]! =


k∏

n=1

[
n, q

]
, k ∈ N

1, k = 0
. (1.7)

Furthermore, Pochhammer symbol which is q−generalized for p ≥ 0 is denoted by

[p, q]k =


k∏

n=1

[
p + n − 1, q

]
, k ∈ N

1, k = 0
. (1.8)

In addition, as q→ 1−, [k, q]→ k, if we select r(z) = zk, then we obtain

∂qr(z) = ∂qzk =
[
k, q

]
zk−1 = r′(z),

where r′ is the ordinary derivative.
Recently, F−1

q,µ+1(z), given with the following relation, was defined by Arif et al. (see [8])

F−1
q,µ+1(z) ∗ Fq,µ+1(z) = z∂qs(z), (µ > −1) (1.9)

where

Fq,µ+1(z) = z +

∞∑
k=2

[µ + 1, q]k−1

[k − 1, q]!
zk, z ∈ D. (1.10)

Due to the fact that series given in (1.10) is convergent absolutely in z ∈ D , by taking advantage of the
characterization of q-derivative via convolution, one can define the integral operator ζµq : D→ D by

ζµq s(z) = F−1
q,µ+1(z) ∗ s(z) = z +

∞∑
k=2

φk−1akzk, (z ∈ D) (1.11)

where
φk−1 =

[k, q]!
[µ + 1, q]k−1

. (1.12)

We note that
ζ0

q s(z) = z∂qs(z), ζ′qs(z) = s(z) (1.13)

and

lim
q→1

ζµq s(z) = z +

∞∑
k=2

k!
(µ + 1)k−1

akzk. (1.14)

Equation (1.14) means that the operator denoted by (1.11) reduces to the known Noor integral operator
by getting q → 1, which is presented in (see [19, 20] ). For further informations on the q-analogue of
differential-integral operators, see the study of Aldweby and Darus (see [4]).

This work was motivated by Akgül and Sakar’s study [3]. The basic purpose of this study is to give
a new subfamily, which is in Σ and provide general coefficient bound |an| by using Faber polynomial
technics for this subfamily. Additionaly, we derive bounds of the |a2| and |a3| which are the first two
coefficients of this subfamily.
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2. The family Wµ,q
Σ

(α, τ;ϕ)

In this part, firstly we will introduce the class Wµ,q
Σ

(α, τ;ϕ) and then give the knowledgements about
Faber polynomial expansions.
Definition 3. A function s ∈ Σ is known in the class Wµ,q

Σ
(α, τ;ϕ) if the requirements given below hold:

1 +
1
τ

[
(1 − α)

ζ
µ
q s(z)

z
+ α∂q(ζµq s(z)) − 1

]
≺ ϕ(z) (z ∈ D), (2.1)

and

1 +
1
τ

[
(1 − α)

ζ
µ
q r(w)

w
+ α∂q(ζµq r(w)) − 1

]
≺ ϕ(w) (w ∈ D) (2.2)

where (µ > −1, 0 < q < 1, τ > 0, α ≥ 0) and s = r−1(w) is given by (1.2).

It is clear from Definition 3 that upon setting q → 1−, for τ = 1, α = 1 and µ = 1, one can easily
see that s ∈ Σ is in

W1
Σ(1, 1;ϕ) = Hσ(ϕ)

if the conditions given below hold true:

s′(z) ≺ ϕ(z) (z ∈ D),

and
r′(w) ≺ ϕ(w) (w ∈ D),

where r = s−1 is given by (1.2) . The classHσ(ϕ) was investigated by Ali et al. [5].
The Faber polynomials act effective role in several fields of mathematical sciences, specially, in

the Theory of Geometric Function [12]. Also, Grunsky [14] gave some sufficient conditions for the
univalency.

To obtain our main results, we need to following knowledgements owing to Airault and Bouali [1].
Using the Faber polynomial expansion of function s ∈ A given in (1.1), s−1 = g may be given as

r(w) = s−1(w) = w +

∞∑
k=2

1
k

K−k
k−1(a2, a3, . . .)wk,

where

K−k
k−1 =

(−k)!
(−2k + 1)!(k − 1)!

ak−1
2 +

(−k)!
[2(−k + 1)]!(k − 3)!

ak−3
2 a3

+
(−k)!

(−2k + 3)!(k − 4)!
ak−4

2 a4

+
(−k)!

[2(−k + 2)]!(k − 5)!
ak−5

2 [a5 + (−k + 2)a2
3]

+
(−k)!

(−2k + 5)!(k − 6)!
ak−6

2 [a6 + (−2k + 5)a3a4]
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+
∑
j≥7

ak− j
2 V j,

symbolically such term (−k!) ≡ Γ(1− k) := (−k)(−k − 1)(−k − 2) · · · (k ∈ N0, N := {1, 2, 3, · · · }) and V j

with 7 ≤ j ≤ k is a homologous polynomial in a2, a3, . . . ak, [2]. Particularly, some initial terms of K−k
k−1

are
K−2

1 = −2a2,

K−3
2 = 3(2a2

2 − a3),

K−4
3 = −4(5a3

2 − 5a2a3 + a4).

Generally, for any p ∈ N := {1, 2, 3 . . .}, an expansion of K p
k is given, [1],

K p
k = pak +

p(p − 1)
2

D2
k +

p!
(p − 3)!3!

D3
k + . . . +

p!
(p − k)!(k)!

Dk
k,

where Dp
k = Dp

k (a1, a2, a3, . . . , ak), and by [26],

Dm
k (a1, a2, . . . ak) =

∞∑
m=2

m!
i1! . . . ik!

ai1
1 . . . a

ik
k f or m ≤ k

while a1 = 1, and non-negative integers i1, . . . , ik satisfying

i1 + i2 + ... + ik = m,

i1 + 2i2 + ... + kik = k.

It is obvious that Dk
k(a1, a2, ...ak) = ak

1.
As a result, for s ∈ Wµ,q

Σ
(α, τ;ϕ) given by (1.1) , we can write

1 +
1
τ

[
(1 − α)

ζ
µ
q s(z)

z
+ α∂q(ζµq s(z)) − 1

]
= 1 +

1
τ

∞∑
k=2

[k, αq]φk−1akzk (2.3)

where

[k, αq] = 1 +

k−1∑
l=1

αql.

Theorem 4. For α ≥ 1, µ > −1, 0 < q < 1, τ > 0, let the function given by (1.1) s ∈ Wµ,q
Σ

(α, τ;ϕ). If
am = 0 for 2 ≤ m ≤ k − 1 , then

|ak| ≤
2τ[

1 +
k−1∑
l=1
αql

]
φk−1

.

Proof. For analytic functions s given by (1.1), we get

1 +
1
τ

[
(1 − α)

ζ
µ
q s(z)

z
+ α∂q(ζµq s(z)) − 1

]
= 1 +

1
τ

∞∑
k=2

1 +

k−1∑
l=1

αql

 φk−1akzk−1 (2.4)
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and

1 +
1
τ

[
(1 − α)

ζ
µ
q r(w)

w
+ α∂q(ζµq r(w)) − 1

]
= 1 +

1
τ

∞∑
k=2

1 +

k−1∑
l=1

αql

 φk−1bkwk−1

= 1 +
1
τ

∞∑
k=2

1 +

k−1∑
l=1

αql

 φk−1 ×
1
k

K−k
k−1(a2, a3, . . . ak)wk−1. (2.5)

Moreover, the correlations (2.1) and (2.2) refer to the presence of Schwartz functions

u(z) =

∞∑
k=2

ckzk and ϑ(w) =

∞∑
k=2

dkwk (2.6)

so that

1 +
1
τ

[
(1 − α)

ζ
µ
q s(z)

z
+ α∂q(ζµq s(z)) − 1

]
= ϕ (u(z)) (2.7)

1 +
1
τ

[
(1 − α)

ζ
µ
q r(w)

w
+ α∂q(ζµq r(w)) − 1

]
= ϕ (ϑ(w)) (2.8)

where

ϕ (u(z)) = 1 +

∞∑
k=1

k∑
n=1

ϕnDn
k(c1, c2, . . . , ck)zk (2.9)

ϕ (ϑ(w)) = 1 +

∞∑
k=1

k∑
n=1

ϕnDn
k(d1, d2, . . . , dk)wk. (2.10)

Thus, from (2.4), (2.6) and (2.9) we have

1
τ

1 +

k−1∑
l=1

αql

 φk−1ak =

k∑
n=1

ϕnDn
k(c1, c2, . . . , ck), (k ≥ 2). (2.11)

Similarly, by using (2.5), (2.6) and (2.10) we find that

1
τ

1 +

k−1∑
l=1

αql

 φk−1bk =

k∑
n=1

ϕnDn
k(d1, d2, . . . , dk), (k ≥ 2). (2.12)

For an = 0 (2 ≤ n ≤ k − 1), we get

bk = −ak

and so

1
τ

1 +

k−1∑
l=1

αql

 φk−1ak = ϕ1ck−1,

−
1
τ

1 +

k−1∑
l=1

αql

 φk−1ak = ϕ1dk−1.
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When we take the absolute values of either of the above two equalities and using |ϕ1| ≤ 2, |ck−1| ≤ 1
and |dk−1| ≤ 1, we obtain

ak =
|ϕ1ck−1| τ∣∣∣∣∣∣

[
1 +

k−1∑
l=1
αql

]
φk−1

∣∣∣∣∣∣
=

|ϕ1dk−1| τ∣∣∣∣∣∣
[
1 +

k−1∑
l=1
αql

]
φk−1

∣∣∣∣∣∣
≤

2τ[
1 +

k−1∑
l=1
αql

]
φk−1

which evidently completes the proof of theorem.
We have the Corollary 5, when we choose τ = 1 in Theorem 4.

Corollary 5. For α ≥ 1, µ > −1 0 < q < 1, let s in the form (1.1) be in Wµ,q
Σ

(α;ϕ) . If am = 0 for
2 ≤ m ≤ k − 1 , then

|ak| ≤
2[

1 +
k−1∑
l=1
αql

]
φk−1

.

Comforting the coeefficient restricts produced in Theorem 4, we get coefficients given early of
s ∈ Wµ,q

Σ
(α, τ;ϕ) given below.

Theorem 6. Let s ∈ Wµ,q
Σ

(α, τ;ϕ) and for α ≥ 1, µ > −1, 0 < q < 1, τ > 0. Then

(i) |a2| ≤ min

 2τ
(1 + αq)φ1

,
2
√
τ√

(1 + αq + αq2)φ2


(ii) |a3| ≤ min

{
4τ2

(1 + αq)2φ2
1

+
2|τ|

(1 + αq + αq2)φ2
,

6τ
(1 + αq + αq2)φ2

}
and

(iii)
∣∣∣a3 − 2a2

2

∣∣∣ ≤ 4τ
(1 + αq + αq2)φ2

.

Proof. we obtain following equalities by replacing k by 2 and 3 in (2.11) and (2.12), respectively,

1
τ

(1 + αq)φ1a2 = ϕ1c1 (2.13)

1
τ

(1 + αq + αq2)φ2a3 = ϕ1c2 + ϕ2c2
1 (2.14)

−
1
τ

(1 + αq)φ1a2 = ϕ1d1 (2.15)

1
τ

(1 + αq + αq2)φ2(2a2
2 − a3) = ϕ1d2 + ϕ2d2

1. (2.16)

From (2.13) and (2.15), we obtain,
d1 = −c1

and taking their absolute values,

|a2| =
|ϕ1c1| τ

|(1 + αq)φ1|
=
|ϕ1d1| τ

|(1 + αq)φ1|
≤

2τ
(1 + αq)φ1

. (2.17)

Now, by adding (2.14) and (2.16), implies that
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2
τ

[
(1 + αq + αq2)φ2

]
a2

2 = ϕ1(c2 + d2) + ϕ2(c2
1 + d2

1)

or equivalently, (by taking the square roots and using Caratheodary Lemma)

|a2| ≤
2
√
τ√

(1 + αq + αq2)φ2

(2.18)

Next, in order to obtain the coefficient estimate of |a3|, we subtract (2.16) from (2.14). Thus we get

2
τ

[τ] (a3 − a2
2) = ϕ1(c2 − d2) + ϕ2(c2

1 − d2
1)

or equivalently,

|a3| ≤ |a2
2| +

|ϕ1(c2 − d2)|τ
2|(1 + αq + αq2)φ2|

. (2.19)

By replacing |a2
2| from (2.17) and (2.18) into (2.19), we get,

|a3| ≤
4τ2

(1 + αq)2φ2
1

+
2τ

(1 + αq + αq2)φ2

and
|a3| ≤

6τ
(1 + αq + αq2)φ2

.

Finally, from (2.16), we deduce that (by Caratheodary Lemma)∣∣∣a3 − 2a2
2

∣∣∣ =
|ϕ1d2 + ϕ2d2

1 |τ

|(1 + αq + αq2)φ2|
≤

4τ
(1 + αq + αq2)φ2

.

So, the proof is over.
By letting q→ 1− in Theorem 6, we get the Corollary 7.

Corollary 7. Let s presented by (1.1) be in the family Wµ
Σ
(α, τ;ϕ) if am = 0 for 2 ≤ m ≤ k − 1, then

(i) |a2| ≤
2τ

(1 + α)φ1
,

2
√
τ√

(1 + 2α)φ2

(ii) |a3| ≤
4τ2

(1 + α)2φ2
1

+
2τ

(1 + 2α)φ2
,

6τ
(1 + 2α)φ2

and
(iii)

∣∣∣a3 − 2a2
2

∣∣∣ ≤ 4τ
(1 + 2α)φ2

.

By letting τ = 1 in Corrollary 7, we obtain Corollary 8.
Corollary 8. Let s indicated by (1.1) be in the family Wµ

Σ
(α;ϕ) if am = 0 for 2 ≤ m ≤ k − 1, then

(i) |a2| ≤
2

(1 + α)φ1
,

2√
(1 + 2α)φ2

(ii) |a3| ≤
4

(1 + α)2φ2
1

+
2

(1 + 2α)φ2
,

6
(1 + 2α)φ2

and
(iii)

∣∣∣a3 − 2a2
2

∣∣∣ ≤ 4
(1 + 2α)φ2

.
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7. Ş. Altınkaya, S. Yalçın, S. Çakmak, A subclass of bi-univalent functions based on the
Faber polynomial expansions and the Fibonacci numbers, Mathematics, 7 (2019), 160.
http://dx.doi.org/10.3390/math7020160

8. M. Arif, M. Ul Haq, J.-L. Liu, Subfamily of univalent functions associated with q-analogue of Noor
integral operator, J. Funct. Space., 2018 (2018), 3818915. http://dx.doi.org/10.1155/2018/3818915

9. D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, In: S. M. Mazhar, A. Hamoui,
N. S. Faour, Editors, Mathematical analysis and its applications, Oxford: Pergamon Press, Elsevier
Science Limited, 1988, 53–60.

10. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class.
Anal., 2 (2013), 49–60. http://dx.doi.org/10.7153/jca-02-05

11. P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
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