This paper explicates the Razumikhin-type uniform stability and a uniform asymptotic stability theorem for the conformable fractional system with delay. Based on a Razumikhin-Lyapunov functional and some inequalities, a delay-dependent asymptotic stability criterion is in the term of a linear matrix inequality (LMI) for the conformable fractional linear system with delay. Moreover, an application of our theorem is illustrated via a numerical example.
Citation: Narongrit Kaewbanjak, Watcharin Chartbupapan, Kamsing Nonlaopon, Kanit Mukdasai. The Lyapunov-Razumikhin theorem for the conformable fractional system with delay[J]. AIMS Mathematics, 2022, 7(3): 4795-4802. doi: 10.3934/math.2022267
This paper explicates the Razumikhin-type uniform stability and a uniform asymptotic stability theorem for the conformable fractional system with delay. Based on a Razumikhin-Lyapunov functional and some inequalities, a delay-dependent asymptotic stability criterion is in the term of a linear matrix inequality (LMI) for the conformable fractional linear system with delay. Moreover, an application of our theorem is illustrated via a numerical example.
[1] | S. Abdourazek, B. M. Abdellatif, A. H. Mohamed, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009 |
[2] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[3] | A. Cochocki, R. Unbehauen, Neural networks for optimization and signal processing, New York: Wiley, 1993. |
[4] | H. Danhua, X. Liguang, Exponential stability of impulsive fractional switched systems with time delays, IEEE T. Circuits II, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654 |
[5] | E. Fridman, Introduction to time-delay systems: Analysis and control, Switzerland: Springer, 2014. |
[6] | C. F. Hsu, C. W. Chang, Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks, Neurocomputing, 173 (2016), 734–743. https://doi.org/10.1016/j.neucom.2015.08.024 doi: 10.1016/j.neucom.2015.08.024 |
[7] | R. Hermann, Fractional calculus: An introduction for physicists analysis second edition, New Jersey: World Scientific Publishing, 2014. |
[8] | W. W. Hsieh, B. Tang, Applying neural network models to prediction and data analysis in meteorology and oceanography, B. Am. Meteorol. Soc., 79 (1998), 1855–1870. https://dx.doi.org/10.14288/1.0041821 doi: 10.14288/1.0041821 |
[9] | R. Khalil, M. Alhorani, A. Yousef dan, M. Sababheh, A definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[10] | M. Musraini, E. Rustam, L. Endang, H. Ponco, Classical properties on conformable fractional calculus, Pure Appl. Math. J., 8 (2019), 83–87. https://doi.org/10.11648/j.pamj.20190805.11 doi: 10.11648/j.pamj.20190805.11 |
[11] | X. Liguang, L. Wen, H. Hongxiao, Z. Weisong, Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control, Nonlinear Dyn., 96 (2019), 1665–1675. https://doi.org/10.1007/s11071-019-04877-y doi: 10.1007/s11071-019-04877-y |
[12] | X. Liguang, C. Xiaoyan, H. Hongxiao, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000 |
[13] | L. Xu, X. Chu, H. Hu, Quasi-synchronization analysis for fractional-order delayed complex dynamical networks, Math. Comput. Simulat., 185 (2021), 594–613. https://doi.org/10.1016/j.matcom.2021.01.016 doi: 10.1016/j.matcom.2021.01.016 |
[14] | Y. V. Pershin, M. D. Ventra, Experimental demonstration of associative memory with memoristive neural networks, Neural Netw., 23 (2010), 881–886. https://doi.org/10.1016/j.neunet.2010.05.001 doi: 10.1016/j.neunet.2010.05.001 |
[15] | F. Usta, A conformable calculus of radial basis functions and its applications, IJOCTA, 8 (2018), 176–182. https://doi.org/10.11121/ijocta.01.2018.00544 doi: 10.11121/ijocta.01.2018.00544 |
[16] | M. Vahid, E. Mostafa, R. Hadi, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Paran. Mat., 38 (2020), 159–171. https://doi.org/10.5269/bspm.v38i6.37010 doi: 10.5269/bspm.v38i6.37010 |
[17] | X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Soliton. Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268 |
[18] | Y. Xia, G. Feng, A new neural network for solving nonlinear projection equations, Neural Netw., 20 (2007), 577–589. https://doi.org/10.1016/j.neunet.2007.01.001 doi: 10.1016/j.neunet.2007.01.001 |
[19] | Y. Qi, X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390 |