Research article Special Issues

The Lyapunov-Razumikhin theorem for the conformable fractional system with delay

  • Received: 02 September 2021 Revised: 06 December 2021 Accepted: 17 December 2021 Published: 27 December 2021
  • MSC : 34K25, 34K40, 37B25, 58K25

  • This paper explicates the Razumikhin-type uniform stability and a uniform asymptotic stability theorem for the conformable fractional system with delay. Based on a Razumikhin-Lyapunov functional and some inequalities, a delay-dependent asymptotic stability criterion is in the term of a linear matrix inequality (LMI) for the conformable fractional linear system with delay. Moreover, an application of our theorem is illustrated via a numerical example.

    Citation: Narongrit Kaewbanjak, Watcharin Chartbupapan, Kamsing Nonlaopon, Kanit Mukdasai. The Lyapunov-Razumikhin theorem for the conformable fractional system with delay[J]. AIMS Mathematics, 2022, 7(3): 4795-4802. doi: 10.3934/math.2022267

    Related Papers:

  • This paper explicates the Razumikhin-type uniform stability and a uniform asymptotic stability theorem for the conformable fractional system with delay. Based on a Razumikhin-Lyapunov functional and some inequalities, a delay-dependent asymptotic stability criterion is in the term of a linear matrix inequality (LMI) for the conformable fractional linear system with delay. Moreover, an application of our theorem is illustrated via a numerical example.



    加载中


    [1] S. Abdourazek, B. M. Abdellatif, A. H. Mohamed, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009
    [2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [3] A. Cochocki, R. Unbehauen, Neural networks for optimization and signal processing, New York: Wiley, 1993.
    [4] H. Danhua, X. Liguang, Exponential stability of impulsive fractional switched systems with time delays, IEEE T. Circuits II, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654
    [5] E. Fridman, Introduction to time-delay systems: Analysis and control, Switzerland: Springer, 2014.
    [6] C. F. Hsu, C. W. Chang, Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks, Neurocomputing, 173 (2016), 734–743. https://doi.org/10.1016/j.neucom.2015.08.024 doi: 10.1016/j.neucom.2015.08.024
    [7] R. Hermann, Fractional calculus: An introduction for physicists analysis second edition, New Jersey: World Scientific Publishing, 2014.
    [8] W. W. Hsieh, B. Tang, Applying neural network models to prediction and data analysis in meteorology and oceanography, B. Am. Meteorol. Soc., 79 (1998), 1855–1870. https://dx.doi.org/10.14288/1.0041821 doi: 10.14288/1.0041821
    [9] R. Khalil, M. Alhorani, A. Yousef dan, M. Sababheh, A definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [10] M. Musraini, E. Rustam, L. Endang, H. Ponco, Classical properties on conformable fractional calculus, Pure Appl. Math. J., 8 (2019), 83–87. https://doi.org/10.11648/j.pamj.20190805.11 doi: 10.11648/j.pamj.20190805.11
    [11] X. Liguang, L. Wen, H. Hongxiao, Z. Weisong, Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control, Nonlinear Dyn., 96 (2019), 1665–1675. https://doi.org/10.1007/s11071-019-04877-y doi: 10.1007/s11071-019-04877-y
    [12] X. Liguang, C. Xiaoyan, H. Hongxiao, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000
    [13] L. Xu, X. Chu, H. Hu, Quasi-synchronization analysis for fractional-order delayed complex dynamical networks, Math. Comput. Simulat., 185 (2021), 594–613. https://doi.org/10.1016/j.matcom.2021.01.016 doi: 10.1016/j.matcom.2021.01.016
    [14] Y. V. Pershin, M. D. Ventra, Experimental demonstration of associative memory with memoristive neural networks, Neural Netw., 23 (2010), 881–886. https://doi.org/10.1016/j.neunet.2010.05.001 doi: 10.1016/j.neunet.2010.05.001
    [15] F. Usta, A conformable calculus of radial basis functions and its applications, IJOCTA, 8 (2018), 176–182. https://doi.org/10.11121/ijocta.01.2018.00544 doi: 10.11121/ijocta.01.2018.00544
    [16] M. Vahid, E. Mostafa, R. Hadi, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Paran. Mat., 38 (2020), 159–171. https://doi.org/10.5269/bspm.v38i6.37010 doi: 10.5269/bspm.v38i6.37010
    [17] X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Soliton. Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268
    [18] Y. Xia, G. Feng, A new neural network for solving nonlinear projection equations, Neural Netw., 20 (2007), 577–589. https://doi.org/10.1016/j.neunet.2007.01.001 doi: 10.1016/j.neunet.2007.01.001
    [19] Y. Qi, X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1910) PDF downloads(113) Cited by(3)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog