Research article Special Issues

Global dynamics analysis of a Zika transmission model with environment transmission route and spatial heterogeneity

  • Received: 09 November 2021 Revised: 20 December 2021 Accepted: 21 December 2021 Published: 27 December 2021
  • MSC : 35Q80, 35Q99

  • Zika virus, a recurring mosquito-borne flavivirus, became a global public health agency in 2016. It is mainly transmitted through mosquito bites. Recently, experimental result demonstrated that $ Aedes $ mosquitoes can acquire and transmit Zika virus by breeding in contaminated aquatic environments. The environmental transmission route is unprecedented discovery for the Zika virus. Therefore, it is necessary to introduce environment transmission route into Zika model. Furthermore, we consider diffusive terms in order to capture the movement of humans and mosquitoes. In this paper, we propose a novel reaction-diffusion Zika model with environment transmission route in a spatial heterogeneous environment, which is different from all Zika models mentioned earlier. We introduce the basic offspring number $ R_{0}^{m} $ and basic reproduction number $ R_{0} $ for this spatial model. By using comparison arguments and the theory of uniform persistence, we prove that disease free equilibrium with the absence of mosquitoes is globally attractive when $ R_{0}^{m} < 1 $, disease free equilibrium with the presence of mosquitoes is globally attractive when $ R_{0}^{m} > 1 $ and $ R_{0} < 1 $, the model is uniformly persistent when $ R_{0}^{m} > 1 $ and $ R_{0} > 1 $. Finally, numerical simulations conform these analytical results.

    Citation: Liping Wang, Peng Wu, Mingshan Li, Lei Shi. Global dynamics analysis of a Zika transmission model with environment transmission route and spatial heterogeneity[J]. AIMS Mathematics, 2022, 7(3): 4803-4832. doi: 10.3934/math.2022268

    Related Papers:

  • Zika virus, a recurring mosquito-borne flavivirus, became a global public health agency in 2016. It is mainly transmitted through mosquito bites. Recently, experimental result demonstrated that $ Aedes $ mosquitoes can acquire and transmit Zika virus by breeding in contaminated aquatic environments. The environmental transmission route is unprecedented discovery for the Zika virus. Therefore, it is necessary to introduce environment transmission route into Zika model. Furthermore, we consider diffusive terms in order to capture the movement of humans and mosquitoes. In this paper, we propose a novel reaction-diffusion Zika model with environment transmission route in a spatial heterogeneous environment, which is different from all Zika models mentioned earlier. We introduce the basic offspring number $ R_{0}^{m} $ and basic reproduction number $ R_{0} $ for this spatial model. By using comparison arguments and the theory of uniform persistence, we prove that disease free equilibrium with the absence of mosquitoes is globally attractive when $ R_{0}^{m} < 1 $, disease free equilibrium with the presence of mosquitoes is globally attractive when $ R_{0}^{m} > 1 $ and $ R_{0} < 1 $, the model is uniformly persistent when $ R_{0}^{m} > 1 $ and $ R_{0} > 1 $. Finally, numerical simulations conform these analytical results.



    加载中


    [1] G. W. A. Dick, S. F. Kitchen, A. J. Haddow, Zika virus (I). Isolations and serological specificity, T. Roy. Soc. Trop. Med. H., 46 (1952), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4 doi: 10.1016/0035-9203(52)90042-4
    [2] M. R. Duffy, T. H. Chenet, T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, et al., Zika virus outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med., 360 (2009), 2536–2543. http://doi.org/10.1056/NEJMoa0805715 doi: 10.1056/NEJMoa0805715
    [3] G. Lucchese, D. Kanduc, Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond, Autoimmun Rev., 15 (2016), 801–808. https://doi.org/10.1016/j.autrev.2016.03.020 doi: 10.1016/j.autrev.2016.03.020
    [4] World Health Organization, WHO statement on the frst meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations, 2016.
    [5] J. Rocklöv, M. B. Quam, B. Sudre, M. German, M. U. G. Kraemer, O. Brady, et al., Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe, EBioMedicine, 9 (2016), 250–256. https://doi.org/10.1016/j.ebiom.2016.06.009 doi: 10.1016/j.ebiom.2016.06.009
    [6] P. Watson-Brown, E. Viennet, G. Mincham, C. R. Williams, C. C. Jansen, B. L. Montgomery, et al., Epidemic potential of Zika virus in Australia: Implications for blood transfusion safety, Transfusion, 59 (2019), 648–658. https://doi.org/10.1111/trf.15095 doi: 10.1111/trf.15095
    [7] J. Tataryn, L. Vrbova, M. Drebot, H. Wood, E. Payne, S. Connors, et al., Travel-related Zika virus cases in Canada: October 2015-June 2017, Can. Commun. Dis. Rep., 44 (2018), 18–26. https://doi.org/10.14745/ccdr.v44i01a05 doi: 10.14745/ccdr.v44i01a05
    [8] Centers for Disease Control and Prevention, Zika virus, CDC, 2018. Available from: https://www.cdc.gov/zika/.
    [9] T. Hashimoto, S. Kutsuna, S. Tajima, E. Nakayama, T. Maeki, S. Taniguchi, et al., Importation of Zika virus from Vietnam to Japan, November 2016, Emerg. Infect. Dis., 23 (2017), 1223–1225. https://doi.org/10.3201/eid2307.170519 doi: 10.3201/eid2307.170519
    [10] H. M. Jia, M. Zhang, M. Y. Chen, Z. W. Yang, J. S. Li, G. Huang, et al., Zika virus infection in travelers returning from countries with local transmission, Guangdong, China, 2016, Travel Med. Infect. Di., 21 (2018), 56–61. https://doi.org/10.1016/j.tmaid.2017.11.012 doi: 10.1016/j.tmaid.2017.11.012
    [11] Centers for Disease Control and Prevention, Zika travel information, CDC, 2019. Available from: https://wwwnc.cdc.gov/travel/page/zika-information.
    [12] Q. Zhang, K. Y. Sun, M. Chinazzi, A. P. y Piontti, N. E. Deanet, D. P. Rojas, et al., Spread of Zika virus in the Americas, PNAS, 114 (2017), E4334–E4343. https://doi.org/10.1073/pnas.1620161114 doi: 10.1073/pnas.1620161114
    [13] H. Y. Zhao, L. P. Wang, S. M. Oliva, H. P. Zhu, Modeling and dynamics analysis of Zika transmission with limited medical resources, Bull. Math. Biol., 82 (2020), 99. https://doi.org/10.1007/s11538-020-00776-1 doi: 10.1007/s11538-020-00776-1
    [14] S. Funk, A. J. Kucharski, A. Camacho, R. M. Eggo, L. Yakob, L. M. Murray, et al., Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus, PLoS Negl. Trop. Dis., 10 (2016), e0005173. https://doi.org/10.1371/journal.pntd.0005173 doi: 10.1371/journal.pntd.0005173
    [15] L. P. Wang, H. Y. Zhao, L. P. Wang, S. M. Oliva, H. P. Zhu, Modeling the transmission and control of Zika in Brazil, Sci. Rep., 7 (2017), 7721. https://doi.org/10.1038/s41598-017-07264-y doi: 10.1038/s41598-017-07264-y
    [16] C. M. Saad-Roy, J. L. Ma, P. van den Driessche, The effect of sexual transmission on Zika virus dynamics, J. Math. Biol., 77 (2018), 1917–1941. https://doi.org/10.1007/s00285-018-1230-1 doi: 10.1007/s00285-018-1230-1
    [17] M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilarc, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal.-Real, 50 (2019), 144–170. https://doi.org/10.1016/j.nonrwa.2019.04.006 doi: 10.1016/j.nonrwa.2019.04.006
    [18] M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Mathematics, 4 (2019), 134–146. https://doi.org/10.3934/Math.2019.1.134 doi: 10.3934/Math.2019.1.134
    [19] S. Olaniyi, Dynamics of Zika virus model with nonlinear incidence and optimal control strategies, Appl. Math. Inform. Sci., 12 (2018), 969–982. https://doi.org/10.18576/amis/120510 doi: 10.18576/amis/120510
    [20] E. Okyere, S. Olaniyi, E. Bonyah, Analysis of Zika virus dynamics with sexual transmission route using multiple optimal controls, Sci. African, 9 (2020), e00532. https://doi.org/10.1016/j.sciaf.2020.e00532 doi: 10.1016/j.sciaf.2020.e00532
    [21] T. Y. Miyaoka, S. Lenhart, J. F. C. A. Meyer, Optimal control of vaccination in a vector-borne reaction-diffusion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077–1104. https://doi.org/10.1007/s00285-019-01390-z doi: 10.1007/s00285-019-01390-z
    [22] K. Yamazaki, Zika virus dynamics partial differential equations model with sexual transmission route, Nonlinear Anal.-Real, 50 (2019), 290–315. https://doi.org/10.1016/j.nonrwa.2019.05.003 doi: 10.1016/j.nonrwa.2019.05.003
    [23] J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Amer. Nat., 130 (1987), 811–827. https://doi.org/10.1086/284749 doi: 10.1086/284749
    [24] W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, An outbreak vector-host epidemic model with spatial structure: The 2015–C2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Model, 14 (2017), 7. https://doi.org/10.1186/s12976-017-0051-z doi: 10.1186/s12976-017-0051-z
    [25] S. Y. Du, Y. Liu, J. J. Liu, J. Zhao, C. Champagne, L. Q. Tong, et al., Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments, Nat. Commun., 10 (2019), 1324. https://doi.org/10.1038/s41467-019-09256-0 doi: 10.1038/s41467-019-09256-0
    [26] L. P. Wang, H. Y. Zhao, Modeling and dynamics analysis of Zika transmission with contaminated aquatic environments, Nonlinear Dyn., 104 (2021), 845–862. https://doi.org/10.1007/s11071-021-06289-3 doi: 10.1007/s11071-021-06289-3
    [27] N. K. Vaidya, F. B. Wang, X. F. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment, DCDS-B, 17 (2012), 2829–2848. https://doi.org/10.3934/dcdsb.2012.17.2829 doi: 10.3934/dcdsb.2012.17.2829
    [28] K. Yamazaki, Global well-posedness of infectious disease models without life-time immunity: The cases of cholera and avian influenza, Math. Med. Biol., 35 (2018), 427–445. https://doi.org/10.1093/imammb/dqx016 doi: 10.1093/imammb/dqx016
    [29] Y. J. Lou, X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. https://doi.org/10.1007/s00285-010-0346-8 doi: 10.1007/s00285-010-0346-8
    [30] H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Rhode Island: American Mathematical, 1995.
    [31] J. Wu, Theory and applications of partial functional differential equations, New York: Springer, 1996.
    [32] R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1–44. https://doi.org/10.1090/S0002-9947-1990-0967316-X doi: 10.1090/S0002-9947-1990-0967316-X
    [33] S. B. Hsu, F. B. Wang, X. Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Differ. Equ., 255 (2013), 265–297. https://doi.org/10.1016/j.jde.2013.04.006 doi: 10.1016/j.jde.2013.04.006
    [34] S. B. Hsu, F. B. Wang, X. Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817–842. https://doi.org/10.1007/s10884-011-9224-3 doi: 10.1007/s10884-011-9224-3
    [35] P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173
    [36] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $ R_0 $ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [37] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [38] W. D. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942
    [39] R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, 2004.
    [40] Y. C. Shyu, R. N. Chien, F. B. Wang, Global dynamics of a West Nile virus model in a spatially variable habitat, Nonlinear Anal.-Real, 41 (2018), 313–333. https://doi.org/10.1016/j.nonrwa.2017.10.017 doi: 10.1016/j.nonrwa.2017.10.017
    [41] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
    [42] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [43] J. K. Hale, P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388–395. https://doi.org/10.1137/0520025 doi: 10.1137/0520025
    [44] H. L. Smith, X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal.-Theor., 47 (2001), 6169–6179. https://doi.org/10.1016/S0362-546X(01)00678-2 doi: 10.1016/S0362-546X(01)00678-2
    [45] K. Yamazaki, X. Y. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559–579.
    [46] F. B. Agusto, S. Bewick, W. F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex., 29 (2017), 61–81. https://doi.org/10.1016/j.ecocom.2016.12.007 doi: 10.1016/j.ecocom.2016.12.007
    [47] H. M. Yin, On a reaction-diffusion system modeling infectious diseases without life-time immunity, arXiv: 2011.08355, 2020.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1854) PDF downloads(128) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog