In this paper, we develop a theory for Standard bases of $ K $-subalgebras in $ K[[t_{1}, t_{2}, \ldots, t_{m}]] [x_{1}, x_{2}, ..., x_{n}] $ over a field $ K $ with respect to a monomial ordering which is local on $ t $ variables and we call them Subalgebra Standard bases. We give an algorithm to compute subalgebra homogeneous normal form and an algorithm to compute weak subalgebra normal form which we use to develop an algorithm to construct Subalgebra Standard bases. Throughout this paper, we assume that subalgebras are finitely generated.
Citation: Nazia Jabeen, Junaid Alam Khan. Subalgebra analogue of Standard bases for ideals in $ K[[t_{1}, t_{2}, \ldots, t_{m}]][x_{1}, x_{2}, \ldots, x_{n}] $[J]. AIMS Mathematics, 2022, 7(3): 4485-4501. doi: 10.3934/math.2022250
In this paper, we develop a theory for Standard bases of $ K $-subalgebras in $ K[[t_{1}, t_{2}, \ldots, t_{m}]] [x_{1}, x_{2}, ..., x_{n}] $ over a field $ K $ with respect to a monomial ordering which is local on $ t $ variables and we call them Subalgebra Standard bases. We give an algorithm to compute subalgebra homogeneous normal form and an algorithm to compute weak subalgebra normal form which we use to develop an algorithm to construct Subalgebra Standard bases. Throughout this paper, we assume that subalgebras are finitely generated.
[1] | G. M Greuel, G. Pfister, A singular introduction to commutative algebra, Springer, 2008. https://doi.org/10.1007/978-3-540-73542-7 |
[2] | A. Hefez, M. E. Herandes, Computional methods in local theory of curves, ${{23}^{\underline{\text{o}}}}$ Colóquio Brasileiro de Mathemática. IMPA, Rio de Janerio, 2001. Available from: https://impa.br/wp-content/uploads/2017/04/23_CBM_01_03.pdf. |
[3] | T. Mora, G. Pfister, C. Traverso, An introduction to the Tangent Cone Algorithm, Publications mathématiques et informatique de Rennes, 4 (1989), 133–171. |
[4] | L. Robbiano, M. Sweedler, Subalgebra bases, In: Commutative algebra. Lecture notes in mathematics, Springer, 1430 (1990), 61–87. https://doi.org/10.1007/BFb0085537 |
[5] | T. Markwig, Standard bases in $K[[t_{1}, t_{2}, \ldots, t_{m}]][x_{1}, x_{2}, \ldots, x_{n}]^{s}$, J. Symb. Comput., 48 (2008), 765–786. https://doi.org/10.1016/j.jsc.2008.03.003 doi: 10.1016/j.jsc.2008.03.003 |
[6] | J. A. Khan, Subalgebra Analogue to standard bases for ideals, Stud. Sci. Math. Hung., 48 (2011), 458–474. https://doi.org/10.1556/sscmath.2011.1174 doi: 10.1556/sscmath.2011.1174 |
[7] | L. J. Miller, Analogs of Grobner bases in polynomial rings over a ring, J. Symb. Comput., 21 (1996), 139–153. |
[8] | B. Buchberger, An algorithm for finding the bases of the residue class ring modulo a zero dimensional polynomial ideal, Austria: University of Innsbruck, 1965. |
[9] | H. S. Li, C. Su, On (De)homogenized Gröbner Bases, 2009, arXiv: 0907.0526. |
[10] | W. W. Adams, P. Loustaunau, An introduction to Gröbner Bases, Graduate Studies in Mathematics, 1994. |