In this paper, we study some subvarieties of a semiring variety determined by certain additional identities. We first present alternative characterizations for equivalences $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{D}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{D}} $. Then we give the sufficient and necessary conditions for these equivalences to be congruence. Finally, we prove that semiring classes defined by these congruences are varieties and provide equational bases.
Citation: Xuliang Xian, Yong Shao, Junling Wang. Some subvarieties of semiring variety COS$ ^{+}_{3} $[J]. AIMS Mathematics, 2022, 7(3): 4293-4303. doi: 10.3934/math.2022237
In this paper, we study some subvarieties of a semiring variety determined by certain additional identities. We first present alternative characterizations for equivalences $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{D}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{D}} $. Then we give the sufficient and necessary conditions for these equivalences to be congruence. Finally, we prove that semiring classes defined by these congruences are varieties and provide equational bases.
[1] | F. Guzmán, The variety of Boolean semirings, J. Pure Appl. Algebra, 78 (1992), 253–270. https://doi.org/10.1016/0022-4049(92)90108-R doi: 10.1016/0022-4049(92)90108-R |
[2] | N. Damljanović, M. Ćirić, S. Bogdanović, Congruence openings of additive Green's relations on a semigroup, Semigroup Forum, 82 (2011), 437–454. https://doi.org/10.1007/s00233-010-9255-9 doi: 10.1007/s00233-010-9255-9 |
[3] | S. Burris, H. P. Sankappanavar, A course in universal algebra, New York: Springer, 1981. |
[4] | A. F. Wang, Y. Shao, On a semiring variety satisfying $x^{n}{\approx} x$, Publ. Math. Debrecen, 93 (2018), 73–86. https://doi.org/10.5486/PMD.2018.8022 doi: 10.5486/PMD.2018.8022 |
[5] | F. Pastijn, Idempotent distributive semirings II, Semigroup Forum, 26 (1983), 151–166. https://doi.org/10.1007/BF02572828 doi: 10.1007/BF02572828 |
[6] | F. Pastijn, X. Z. Zhao, Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring, Arch. Math., 36 (2000), 77–93. |
[7] | X. Z. Zhao, Idempotent semirings with a commutative additive reduct, Semigroup Forum, 64 (2002), 289–296. https://doi.org/10.1007/s002330010048 doi: 10.1007/s002330010048 |
[8] | F. Pastijn, Y. Q. Guo, Semirings which are unions of rings, Sci. China Ser. A, 45 (2002), 172–195. https://doi.org/10.1360/02ys9020 doi: 10.1360/02ys9020 |
[9] | F. Pastijn, X. Z. Zhao, Varieties of idempotent semirings with commutative addition, Algebra Univers., 54 (2005), 301–321. https://doi.org/10.1007/s00012-005-1947-8 doi: 10.1007/s00012-005-1947-8 |
[10] | Z. P. Wang, Y. L. Zhou, Y. Q. Guo, A note on band semirings, Semigroup Forum, 71 (2005), 439–442. https://doi.org/10.1007/S00233-005-0541-X doi: 10.1007/S00233-005-0541-X |
[11] | S. Ghosh, F. Pastijn, X. Z. Zhao, Varieties generated by ordered bands I, Order, 22 (2005), 109–128. https://doi.org/10.1007/s11083-005-9011-z doi: 10.1007/s11083-005-9011-z |
[12] | F. Pastijn, Weak commutativity in idempotent semirings, Semigroup Forum, 72 (2006), 283–311. https://doi.org/10.1007/s00233-005-0543-8 doi: 10.1007/s00233-005-0543-8 |
[13] | X. Z. Zhao, K. P. Shum, Y. Q. Guo, $\mathcal{L}$-subvarieties of variety of idempotent semirings, Algebra Univers., 46 (2001), 75–96. https://doi.org/10.1007/PL00000348 doi: 10.1007/PL00000348 |
[14] | Y. L. Cheng, Y. Shao, Semiring varieties related to multiplicative Green's relations on a semiring, Semigroup Forum, 101 (2020), 571–584. https://doi.org/10.1007/s00233-020-10108-3 doi: 10.1007/s00233-020-10108-3 |
[15] | Y. L. Cheng, Y. Shao, Semiring varieties defined by Green's relations on a semiring (in Chinese), J. Shandong U. (Nat. Sci.), 56 (2021), 1–7. https://doi.org/10.6040/j.issn.1671-9352.0.2020.453 doi: 10.6040/j.issn.1671-9352.0.2020.453 |
[16] | X. Z. Zhao, Y. Q. Guo, K. P. Shum, $\mathcal{D}$-subvarieties of variety of idempotent semirings, Algebra Colloq., 9 (2002), 15–28. |
[17] | M. Petrich, N. R. Reilly, Completely regular semigroup, New York: Wiley, 1999. |
[18] | J. M. Howie, Fundamentals of semigroup theory, New York: Oxford University Press, 1995. |