The ideas of transversals are important to study algebraic structures which are useful for investigating semirings structure. In this paper, we introduce and explore split additively orthodox semirings which are special semirings with transversals. After obtaining some property theorems of split additively orthodox semirings, the structure theorem for them is obtained by using idempotent semirings, additively inverse semirings, and Munn semigroup. It not only extends and strengthens the corresponding results of Clifford semirings and split orthodox semigroups but also develops a new way to study semirings.
Citation: Kaiqing Huang, Yizhi Chen, Aiping Gan. Structure of split additively orthodox semirings[J]. AIMS Mathematics, 2022, 7(6): 11345-11361. doi: 10.3934/math.2022633
The ideas of transversals are important to study algebraic structures which are useful for investigating semirings structure. In this paper, we introduce and explore split additively orthodox semirings which are special semirings with transversals. After obtaining some property theorems of split additively orthodox semirings, the structure theorem for them is obtained by using idempotent semirings, additively inverse semirings, and Munn semigroup. It not only extends and strengthens the corresponding results of Clifford semirings and split orthodox semigroups but also develops a new way to study semirings.
[1] | T. S. Blyth, Lattices and ordered algebraic structures, 1 Ed., London: Springer, 2005. https://doi.org/10.1007/b139095 |
[2] | A. K. Bhuniya, R. Debnath, Varieties of idempotent distributive semirings with regular multiplicative reduct, Semigroup Forum, 90 (2015), 843–847. https://doi.org/10.1007/s00233-014-9680-2 doi: 10.1007/s00233-014-9680-2 |
[3] | A. K. Bhuniya, T. K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum, 80 (2010), 293–301. https://doi.org/10.1007/s00233-009-9205-6 doi: 10.1007/s00233-009-9205-6 |
[4] | I. Chajda, H. Länger, The variety of commutative additively and multiplicatively idempotent semirings, Semigroup Forum, 96 (2018), 409–415. https://doi.org/10.1007/s00233-017-9905-2 doi: 10.1007/s00233-017-9905-2 |
[5] | A. El-Qallali, Split quasi-adequate semigroups, Libyan J. Sci., 14 (1985), 55–66. |
[6] | M. P. Grillet, Semirings with a completely simple additive semigroup, J. Aust. Math. Soc., 20 (1975), 257–267. https://doi.org/10.1017/S1446788700020607 doi: 10.1017/S1446788700020607 |
[7] | J. S. Golan, Semirings and their applications, 1 Ed., Netherlands: Springer, 1999. |
[8] | J. M. Howie, Fundamentals of semigroup theory, 1 Ed., Oxford: Oxford University Press, 1995. |
[9] | K. Q. Huang, Y. Z. Chen, M. M. Ren. Additively orthodox semirings with special transversals, AIMS Math., 7 (2022), 4153–4167. https://doi.org/10.3934/math.2022230 doi: 10.3934/math.2022230 |
[10] | P. H. Karvellas, Inversive semirings, J. Aust. Math. Soc., 18 (1974), 277–288. https://doi.org/10.1017/S1446788700022850 doi: 10.1017/S1446788700022850 |
[11] | A. Kendziorra, J. Zumbrägel, Finite simple additively idempotent semirings, J. Algebra, 388 (2013), 43–64. https://doi.org/10.1016/j.jalgebra.2013.04.023 doi: 10.1016/j.jalgebra.2013.04.023 |
[12] | D. B. McAlister, T. S. Blyth, Split orthodox semigroups, J. Algebra, 51 (1978), 491–525. |
[13] | S. K. Maity, R. Ghosh, On quasi completely regular semirings, Semigroup Forum, 89 (2014), 422–430. https://doi.org/10.1007/s00233-014-9579-y doi: 10.1007/s00233-014-9579-y |
[14] | S. K. Maity, R. Ghosh, Congruences on quasi completely regular semirings, Semigroup Forum, 102 (2021), 725–736. https://doi.org/10.1007/s00233-021-10186-x doi: 10.1007/s00233-021-10186-x |
[15] | D. B. McAlister, R. B. McFadden, Regular semigroups with inverse transversals, Q. J. Math., 34 (1983), 459–474. https://doi.org/10.1093/qmath/34.4.459 doi: 10.1093/qmath/34.4.459 |
[16] | D. B. McAlister, R. B. McFadden, Semigroups with inverse transversal as matrix semigroups, Q. J. Math., 35 (1984), 455–474. https://doi.org/10.1093/qmath/35.4.455 doi: 10.1093/qmath/35.4.455 |
[17] | F. Pastijn, A. Ramanowska, Idempotent distributive semiring I, Acta. Sci. Math., 44 (1982), 239–253. |
[18] | F. Pastijn, Idempotent distributive semiring Ⅱ, Semigroup Forum, 26 (1983), 151–166. https://doi.org/10.1007/BF02572828 doi: 10.1007/BF02572828 |
[19] | M. K. Sen, Y. Q. Guo, K. P. Shum, A class of idempotent semirings, Semigroup Forum, 60 (2000), 351–367. https://doi.org/10.1007/s002339910029 doi: 10.1007/s002339910029 |
[20] | M. K. Sen, S. K. Maity, K. P. Shum, Clifford semirings and generalized Clifford semirings, Taiwan. J. Math., 9 (2005), 433–444. http://www.jstor.org/stable/43833616 |
[21] | S. K. Maity, M. K. Sen, K. P. Shum, On completely regular semirings, Bull. Cal. Math. Soc., 98 (2006), 319–328. |
[22] | Y. H. Li, Split P-regular semigroup, J. South China Normal Univ. (Nat. Sci.), 1 (2005), 1–5. |
[23] | T. Saito, Structure of regular semigroup with a quasi-ideal inverse transversal, Semigroup Forum, 31 (1985), 305–309. https://doi.org/10.1007/BF02572659 doi: 10.1007/BF02572659 |
[24] | T. Saito, Construction of regular semigroups with inverse transversals, P. Edinburgh. Math. Soc., 32 (1989), 41–51. https://doi.org/10.1017/S0013091500006891 doi: 10.1017/S0013091500006891 |
[25] | M. K. Sen, A. K. Bhuniya, On semirings whose additive reduct is a semilattice, Semigroup forum, 82 (2011), 131–140. https://doi.org/10.1007/s00233-010-9271-9 doi: 10.1007/s00233-010-9271-9 |
[26] | F. Pastijn, Y. Q. Guo, Semirings which are unions of rings, Sci. China Ser. A-Math., 45 (2002), 172–195. |
[27] | J. Zeleznekow, Regular semirings, Semigroup Forum, 23 (1981), 119–136. https://doi.org/10.1007/BF02676640 doi: 10.1007/BF02676640 |
[28] | J. Zeleznekow, Orthodox semirings and rings, J. Aust. Math. Soc., 30 (1980), 50–54. https://doi.org/10.1017/S144678870002190X doi: 10.1017/S144678870002190X |