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1. Introduction

The concept of semiring was firstly introduced by Dedekind in 1894, it had been studied by various
researchers using techniques coming from semigroup theory or ring theory. The algebraic theories of
semirings were widely applied in automata theory, optimization theory, parallel computation systems
and the mathematical modeling of quantum physics, etc. [7]

A semiring (S ,+, ·) is an algebra with two binary operations + and · such that the additive reduct
(S ,+) and the multiplicative reduct (S , ·) are semigroup connected by ring-like distributive laws, that is,

a(b + c) = ab + ac and (b + c)a = ba + ca, ∀a, b, c ∈ S .
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In recent several decades, many authors extended the concepts and results of semigroups to
semirings which is one of the development power of semiring theory. For instance, many researchers
investigate idempotent semirings in which both additive reduct and multiplicative reduct are bands,
which play a role in semirings just as the role of bands in semigroups in many aspects [2, 4, 17–19],
etc. Semirings whose additive reduct is a band are also studied by many authors [3, 11, 25], etc.
Karvellas introduced additively inverse semirings whose additive reduct is an inverse semigroup [10].
Zeleznikow studied regular semirings in which both additive and multiplicative semigroups are
regular [27]. He also introduced the orthodox semirings firstly [28]. Grillet gave the structure theorem
of semirings with a completely simple additive semigroup [6].

Meanwhile, semirings are generalizations of distributive lattices, b-lattices, rings, skew-rings. Sen,
Maity, and Shum extended the concept of Clifford semigroup to semiring by defining a class of
semiring which is called Clifford semiring and showed that a semiring S is a Clifford semiring if and
only if it is a strong distributive lattice of skew-rings [20]. What’s more, as a further generalization,
they proved that a semiring S is a generalized Clifford semiring if and only if it is a strong b-lattice of
skew-rings. Sen and Maity had also extended completely regular semigroups to completely regular
semirings by giving a gross structure theorem: A semiring S is completely regular semiring if and
only if it is a b-lattice of completely simple semirings [21]. Pastijn and Guo used inspiration for the
study of semirings which are disjoint unions of rings in theory developed for completely regular
semiring [26]. Maity and Ghosh also extended completely regular semiring to quasi completely
regular semirings, and show that S is quasi completely regular semirings if and only if S is an
idempotent semiring of quasi skew-rings [13, 14]. Since the ideas of transversals are important to
study algebraic structures which is useful in the study of semigroups structure [15, 16, 23, 24]. In
2022, Huang et al. introduced some special semiring transversals into semirings and extended the
results of completely regular semirings [9].

On the other hand, in the regular semigroups with inverse transversals, split orthodox semigroups
are not only special regular semigroups with inverse transversals but also one of the origins of inverse
transversals. In [12], D. B. McAlister and T. S. Blyth introduced a kind of semigroups which are called
split orthodox semigroups and used a band, an inverse semigroup, and Munn morphism to give a
structure theorem for them. El-Qallali studied the split quasi-adequate semigroups whose idempotents
are commutative and extended the result of split orthodox semigroups [5]. Li extended split orthodox
semigroups to split P-regular semigroups [22].

To develop new ways to study semirings, we will study a kind of semirings called split additively
orthodox semirings which have the property like split orthodox semigroups. It is also a class of
special semirings with transversals. In this paper, after obtaining some properties theorems of such
semirings, we obtain a structure theorem for them by idempotent semirings, additively inverse
semirings, and Munn semigroup. Consequently, the corresponding results of Clifford semirings and
generalized Clifford semirings in [20], and split orthodox semigroups in [12] are also extended and
strengthened.

For the terminology and notions not given in this paper, the reader is referred to [1, 8].

2. Preliminaries

Firstly, we claim that the following theorem will be frequently used without further mention.
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Theorem 2.1. (Miller-Clifford theorem) [8]
(1) Let e and f beD-equivalent idempotents of a semigroup S . Then each element a of Re ∩L f has

a unique inverse a′ in R f ∩ Le, be such that aa′ = e and a′a = f .
(2) Let a, b be elements of a semigroup S . Then ab ∈ Ra ∩ Lb if and only if Rb ∩ La contains an

idempotent.

In this section, we will list some elementary results of split bands and split orthodox semigroups.
The following results are all due to D. B. McAlister and T. S. Blyth. For convenience, throughout this
section the letterD will always denote the Green’s relation on a band B.

Definition 2.1. (Definition 1.1 [12]) Let B = ∪{Bα : α ∈ Y} be a band with structure semilattice Y and
D-classes the rectangular bands Bα. If ♮ : B→ B/D is the natural morphism then we shall say that B
is split if there is a morphism π : B/D → B such that π♮ = idB/D. Such a morphism π will be called a
splitting morphism.

Definition 2.2. (Definition 1.2 [12]) Let B = ∪{Bα : α ∈ Y} be a band. Then by a skeleton of B shall
mean a subset E = {xα : α ∈ Y} such that xα ∈ Bα for every α ∈ Y and xαxβ = xαβ = xβxα for all
α, β ∈ Y.

Lemma 2.1. (Lemma 1.3 [12]) A band B is split if and only if it has a skeleton. If π : B/D → B is
splitting morphism then Imπ is a skeleton of B.

We recall that the relation
γ = {(x, y) ∈ T × T : V(x) = V(y)}

on an orthodox semigroup T turns out to be the smallest inverse semigroup congruence on T .
Moveover, on B the band of idempotents of T , γ is the same toD.

Definition 2.3. (Definition 1.4 [12]) Let T be an orthodox semigroup and let ♮ : T → T/γ be natural
morphism. Then we shall say that T is split if there is a morphism π : T/γ → T such that π♮ = idT/γ.

Definition 2.4. (Definition 1.5 [12]) Let T be an orthodox semigroup with band of idempotents B.
Suppose that E is a D-transversal of B in that E meets every D-class only once. Then we define the
span of E by

Sp(E) = {a ∈ T : (∃e, f ∈ E)eRaL f }.

Lemma 2.2. (Lemma 1.6 [12]) Let T be an orthodox semigroup with band of idempotents B. Suppose
that E is aD-transversal of B in that E meets everyD-class only once. Then Sp(E) meets every γ-class
of T exactly once.

We denote the unique inverse of a ∈Sp(E) in Sp(E) by a◦. Moreover, note that e = aa◦ and f = a◦a.
Then

Theorem 2.2. (Theorem 1.7 [12]) Let T be an orthodox semigroup with band of idempotents B and
suppose that B has a skeleton E. Then the following statements are equivalent:
(1) There is an inverse subsemigroup S ◦ of T that meets every γ-class of T exactly once and has E as
semilattice of idempotents;
(2) aEa◦ ⊆ E for every a ∈ Sp(E);
(3) Sp(E) is a subsemigroup of T .
Moreover, if (1) holds, then necessarily S ◦ = Sp(E).
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B is a band with a skeleton E. e ∈ E. Let θ be a band isomorphism between subbands of B of the
form eBe. We say θ is skeleton-preserving if it satisfies that

f θ ∈ E ⇔ f ∈ E,∀ f ∈ Domθ.

What is more, as shown in [12], if denote Dom(θ) and Im(θ) by eθBeθ and fθB fθ respectively, then

eθϕ = ( fθeϕ)θ−1 and fθϕ = ( fθeϕ)ϕ.

Now, denote by TB the set of skeleton-preserving isomorphisms θ between subbands of B of the
form eBe, where e ∈ E.

Lemma 2.3. (Lemma 2.1 [12]) Let B be a band with a skeleton E. Then TB is an inverse semigroup.

Lemma 2.4. (Lemma 2.2 [12]) Let B be a band with a skeleton E. For θ ∈ TB, define θ̄ : B → B as
following:

∀b ∈ B, bθ̄ = (eθbeθ)θ.

Then θϕ = θ̄ϕ̄, ∀θ, ϕ ∈ TB.

Given θ ∈ TB, let θ : eθBeθ → fθB fθ. It is clear that E ∩ Domθ = eθE and E ∩ Codθ = fθE.
Moreover, θ induces an isomorphism θ̂ : eθE → fθE. For every x ∈ eθE, we have xθ̂ = xθ. The
assignment̂ : θ 7→ θ̂ is then a morphism from TB to TE (the Munn semigroup of semilattice E).

Suppose now that S is an inverse semigroup with semilattice of idempotents E, let µ : a 7→ µa be a
morphism from S to TE.

If there exists a morphism θ : S → TB making the following diagram commutative,

-

@
@

@
@
@

@
@

@R ?

S TB

TE

θ

µ ̂

we call it is a triangulation of µ. Denote aθ = θa, then θ̂a = µa, µa : aa◦E → a◦aE, e 7→ a◦ea, e ∈ aa◦E.

Lemma 2.5. (Lemma 2.3 [12]) Let S be an inverse semigroup with semilattice of idempotents E and
let B be a band with skeleton E. For every a ∈ S , let the domain and codomain of µa be eaE (so
that ea = aa◦) and faE (so that fa = a◦a). Let θ be a triangulation of µ. Then given a, b ∈ S and
e, f , u, v ∈ B such that eLea, fR fa, uLeb, vR fb, we have

e · ( f u)θ̄a◦Leab and ( f u)θ̄b · vR fab.

Corollary 2.1. (Corollary 2.4 [12]) If

W = W(B, S , θ) = {(e, a, f ) ∈ B × S × B : eLea, fR fa}
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then the prescription
(e, a, f )(u, b, v) = (e( f u)θ̄a◦ , ab, ( f u)θ̄bv)

defines a binary operation on W.

Theorem 2.3. (Throrem 2.5 [12]) W(B, S , θ) is an orthodox semigroup whose band of idempotents is
isomorphic to B.

Theorem 2.4. (Theorem 2.7 [12]) The orthodox semigroup W = W(B, S , θ) is split and W/γ � S .

Theorem 2.5. (Theorem 2.8 [12]) Let T be a split orthodox semigroup with band B of idempotents. If
π : T/γ → T is a splitting morphism then the set E = B∩ Imπ of idempotents of Imπ is a skeleton of B
and Sp(E) = Imπ. Moreover, if θ : Imπ → TB is given by aθ = θa, where the domain of θa is aa◦Baa◦,
the codomain of θa is a◦aBa◦a and bθa = a◦ba, then θ is a triangulation of µ : Imπ→ TB and

T � W(B, Imπ, θ).

3. Split adtitively orthodox semirings

Let (S ,+, ·) be a semiring. Then the Green’s relation on (S ,+) denoted by
+

R,
+

L and
+

H . The set of
additive idempotents and the set of multiplicative idempotents of S are denoted by E+(S ) and E•(S )
respectively.

We also denote the additive inverse of x ∈ S by x′, (x′)′ by x′′, and all the additive inverses of x by
+

V(x) respectively.

Lemma 3.1. Let (S ,+, ·) be a semiring. ∀x, y ∈ S , if x′ ∈
+

V(x) , ∅, then (xy)′ = x′y and (yx)′ = yx′.

Proof: Clearly. □
In this section, we introduce the concept of split additively orthodox semirings. For convenience, T

is denoted the additively orthodox semiring whose additive idempotents forms an idempotent semiring

always. The letter
+

D will always denote the Green’s relation on (
+

E(S ),+). Since
+

D is congruence on

(
+

E(S ),+, ·) and every
+

D-class is an idempotent semiring for which the additive reduct is a rectangular
band. Such idempotent semiring will be called additive rectangular idempotent semiring in this paper.

T is an additively orthodox semiring, so (T ,+) is an orthodox semigroup. Then we have the
following corollary.

Corollary 3.1. The relation

γ = {(x, y) ∈ T × T :
+

V(x) =
+

V(y)}

is the smallest additively inverse semiring congruence on T .

Proof: ∀x, y, a ∈ T, xγy, then
+

V(x) =
+

V(y). ∀(ax)′ ∈
+

V(ax), (ax)′ = ax′. Since x′ ∈
+

V(x) =
+

V(y),
then

ax′ + ay + ax′ = a(x′ + y + x′) = ax′

and
ay + ax′ + ay = a(y + x′ + y) = ay.
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So
+

V(ax) ⊆
+

V(ay). Similarly, we can show the other side. Hence, γ is the semiring congruence on T .
Moreover, γ is an additively inverse semiring congruence on T , since T/γ is an additively inverse

semiring.
Now, let ρ to be a semiring congruence on T such that T/ρ is an additively inverse semiring. For

(x, y) ∈ γ, let a ∈
+

V(x)(=
+

V(y)). Then both xρ and yρ are inverses of aρ in the additively inverse
semiring T/ρ. So xρy which implies that γ ⊆ ρ.

Therefore, γ is the smallest additively inverse semiring congruence on T . □

Moveover, on an idempotent semiring I, γ is the same to
+

D, i.e. I/γ = I/
+

D which is b-lattice.

Example 3.1. Let S 1 = {0, a, b} whose additive and multiplicative Cayley tables as following:

+ 0 a b
0 0 a b
a a 0 b
b b b b

• 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

Then (S 1,+, ·) forms an additively inverse semiring.
Let I1 = {p, q} and Λ1 = {u, v} whose additive and multiplicative Cayley tables as following:

+ p q
p p p
q q q

• p q
p p p
q p q

+ u v
u u v
v u v

• u v
u u u
v u v

It is easy to verify that (I1,+, ·) and (Λ1,+, ·) form idempotent semirings. The additive reduct of (I1,+, ·)
is a left zero band, and its multiplicative reduct is a semilattice. The additive reduct of (Λ1,+, ·) is a
right zero band, and its multiplicative reduct is a semilattice.

Then the direct product T = I1 × S 1 × Λ1 forms an additively regular semiring, and E+(T ) =
I1 × E+(S 1) × Λ1 is an idempotent semiring, hence T is an additively orthodox semiring.
∀(i, x, y) ∈ T,

(k, y, l) ∈
+

V((i, x, j))⇔ y ∈
+

V(x)⇔ y = x.

It implies that
(i, x, y)γ(k, y, l)⇔ y = x,∀(i, x, y), (k, y, l) ∈ T.

So, T/γ = {I1 × {x} × Λ1|x ∈ S 1} � S 1. Therefore, γ is the smallest additively inverse semiring
congruence on T .

Definition 3.1. Let T be an additively orthodox semiring whose additive idempotents forms an
idempotent semiring and ♮ : T → T/γ be natural morphism. Then we shall say that T is split if there
is a morphism π : T/γ → T such that π♮ = idT/γ.

Some additively orthodox semirings are neither completely regular semirings nor split additively
orthodox semirings, see the following example.

Example 3.2. Let S 1 as shown in Example 3.1. Then it is also a completely regular semiring. Although
the set E+(S 1) = {0, b} is an ideal of S 1, (S 1,+, ·) is not a generalized Clifford semiring [20].

Let I2 = {p, q} and Λ2 = {u, v} whose additive and multiplicative Cayley tables as following:

AIMS Mathematics Volume 7, Issue 6, 11345–11361.
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+ p q
p p p
q q q

• p q
p p q
q q p

+ u v
u u v
v u v

• u v
u u v
v v u

We can verify that (I2,+, ·) and (Λ2,+, ·) form semirings. The additive reduct of (I2,+, ·) is a left
zero band, and its multiplicative reduct is a group. The additive reduct of (Λ2,+, ·) is a right zero band,
and its multiplicative reduct is a group.

Then the direct product T = I2 × S 1 × Λ2 forms an additively regular semiring, and E+(T ) =
I2 × E+(S 1) × Λ2 forms its subsemiring, hence T is an additively orthodox semiring. But E•(T ) =
{p} × E+(S 1)× {u}, according to Lemma 2.5 in [21], thus (T,+, ·) is not a completely regular semiring.
Since E+(T ) is not an idempotent semiring, T is not a split additively orthodox semiring. Moreover,
{(p, x, u)|x ∈ S 1} is an additively inverse semiring transversal of T [9].

A split additively orthodox semiring may not be a completely regular semiring, see the following
example.

Example 3.3. Let S 2 = {0, i, a, e, f , x, y} whose additive and multiplicative Cayley tables as following:

+ 0 i a e f x y
0 0 0 0 0 0 0 0
i 0 i a e f x y
a 0 a i y x f e
e 0 e x e 0 x 0
f 0 f y 0 f 0 y
x 0 x e 0 x 0 e
y 0 y f y 0 f 0

• 0 i a e f x y
0 0 0 0 0 0 0 0
i i i i i i i i
a a a a a a a a
e e e e e e e e
f f f f f f f f
x x x x x x x x
y y y y y y y y

It is easy to verify that (S 2,+, ·) forms an additively inverse semiring, but
+

Hx = {x} is not a skew-ring,
so S 2 is not a completely regular semiring or a generalized Clifford semiring.

Let I1 and Λ1 as shown in Example 3.1. Then the direct product T = I1 × S 2 ×Λ1 forms a additively
regular semiring, and E+(T ) = I1 × E+(S 2) × Λ1 is an idempotent semiring, hence T is an additively
orthodox semiring. Additionally, T/γ = {I1 × {x} × Λ1|x ∈ S 2}. Let π : T/γ → {p} × S 2 × {u}, I1 ×

{x} × Λ1 7→ (p, x, u). It is easy to verify that π is a split morphism, so T is a split additively orthodox
semiring. Moreover, Imπ is an additively inverse semiring transversal of T . But Imπ � S 2 which

means that it is not a generalized Clifford semiring transversal of T . In addition,
+

H(p,x,u) = {(p, x, u)}
is not a skew-ring, so T is not a completely regular semiring.

A split additively orthodox semiring may be also a completely regular semiring, see the following
example.

Example 3.4. Let T as shown in Example 3.1. So T is an additively orthodox semiring, and T/γ = {I1×

{x}×Λ1|x ∈ S 1} � S 1. Let π : T/γ → {p}×S 1×{u}, I1×{x}×Λ1 7→ (p, x, u). It is easy to verify that π is
a split morphism, so T is a split additively orthodox semiring. What is more, Imπ = {(p, x, u)|x ∈ S 1} is
an additively inverse semiring transversal of T . But Imπ � S 1 which means that it is not a generalized
Clifford semiring transversal of T . Meanwhile, T is a completely regular semiring.
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Theorem 3.1. Let T be an additively orthodox semiring with a generalized Clifford semiring
transversal S . Then the following statements are equivalent:
(1) T is a completely regular semiring;
(2) T is a split additively orthodox semiring.

Proof: (1)⇒(2): T is an additively orthodox semiring which means that E+(T ) forms a band.
Moreover, E+(T ) ⊆ E•(T ), since T is a completely regular semiring. Let π : T/γ → S , γx 7→ x◦, x◦ ∈
+

V(x) ∩ S . It is easy to verify that π is a split morphism.
(2)⇒(1): By Theorem 4.1 in [9], T is a b-lattice of additively orthodox semirings with skew-

ring transversals. For each additively orthodox semiring with skew-ring transversals S α, S α is an
additively completely simple semiring by Theorem 3.1 in [9]. Moreover, E+(T ) ⊆ E•(T ). Hence, S α is
a completely simple semiring. Therefore, T is a b-lattice of completely simple semiring which means
that T is a completely regular semiring. □

By Definition 2.1 and Definition 3.1, if there is a split morphism π on the idempotent semiring I,
then π is a split morphism on band (I,+).

Definition 3.2. Let I = ∪{Iα : α ∈ Y} be an idempotent semiring, where Y is a b-lattice. Then by
a skeleton of I shall mean a subset E = {xα : α ∈ Y} such that xα ∈ Iα for every α ∈ Y, and
xα + xβ = xα+β = xβ + xα and xαxβ = xαβ for all α, β ∈ Y.

Example 3.5. Let Y = {0, e} whose additive and multiplicative Cayley tables as following:

+ 0 e
0 0 e
e e e

• 0 e
0 0 0
e 0 e

It is easy to verify that (Y,+, ·) forms a b-lattice. Let I1 and Λ1 as shown in Example 3.1. Then the
direct product I = I1 × Y × Λ1 forms an idempotent semiring.

Additionally, I/γ = {I1 × {x} × Λ1|x ∈ Y} � Y. Denote I1 × {x} × Λ1 by γx, then I = γ0 ∪ γe.
Let E = {(p, 0, u), (p, e, u)}. Then (p, 0, u) ∈ γ0 and (p, e, u) ∈ γe. Moreover,

(p, 0, u) + (p, e, u) = (p, e, u) = (p, e, u) + (p, 0, u),

and
(p, 0, u) · (p, e, u) = (p, 0 · e, u) = (p, 0, u),

where (p, 0, u) ∈ γ0e

Therefore, E is a skeleton of I.

By Definition 2.2 and Definition 3.2, we easily get that if E is a skeleton of I then (E, +) is a skeleton
of (I, +).

Lemma 3.2. An idempotent semiring I is split if and only if it has a skeleton. If π : I/
+

D → I is splitting
morphism then Imπ is a skeleton of I.

Proof: By Lemma 2.1, Definition 3.1, and Definition 3.2, it is clear. □
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4. The structure theorem

From now on, we explore the structure of split additively orthodox semirings.

Lemma 4.1. Let T be a split additively orthodox semiring whose additive idempotents forms an
idempotent semiring I. Then E = I ∩ Imπ is a skeleton of I.

Proof: Imπ is an additively inverse subsemiring of T , and meets every γ-class of T exactly once.
As a result, E = I∩Imπ is the set of all the additive idempotents of Imπ forms b-lattice, and E meets

every
+

D-class of I exactly once, hence it is a skeleton of I. □
The span of E is also the important set:

Sp(E) = {a ∈ T : (∃e, f ∈ E)e
+

Ra
+

L f }.

By Lemma 2.2, the following lemma is obtained directly.

Lemma 4.2. Let T be a split additively orthodox semiring whose additive idempotents forms an
idempotent semiring I. Then Sp(E) meets every γ-class of T exactly once.

Noting that for every a ∈Sp(E), exist e, f ∈ E satisfy that e
+

Ra
+

L f , then
+

Le∩
+

R f contains an additive
inverse a′ of a, and a′ ∈Sp(E). By Lemma 4.2, we get that a′ is the unique inverse of a in Sp(E), which
is denoted by a◦ hereafter. Moreover, e = a + a◦ and f = a◦ + a. Actually, we can get more from the
following theorem.

Theorem 4.1. Let T be an additively orthodox semiring with an idempotent semiring of additive
idempotent I and suppose that I has a skeleton E. Then the following statements are equivalent:
(1) There is an additively inverse subsemiring S of T that meets every γ-class of T exactly once and
has E as b-lattice of additive idempotents;
(2) a + E + a◦ ⊆ E for every a ∈ Sp(E);
(3) Sp(E) is a subsemiring of T .

Proof: (1)⇒(2): By Theorem 2.2, it is clear.
(2)⇒(3): By Theorem 2.2, Sp(E) is close under addition. Now we show that it is close under

multiplication. Given a, b ∈ Sp(E), there exist ea, eb, fa, fb ∈ E such that ea

+

Ra
+

L fa, and eb

+

Ra
+

L fb.

Since
+

R and
+

L are multiplicative congruence on S , then eaeb

+

Rab
+

L fa fb. Since eaeb, fa fb ∈ E, it
follows that Sp(E) is a subsemiring of T .
(3)⇒(1): If Sp(E) is a subsemiring, by the remarks following Lemma 4.2, Sp(E) is an additively
orthodox subsemiring which meets every γ-class exactly once and has E as its set of additive
idempotents. □

By Lemma 2.2, the following corollary is obtained directly.

Corollary 4.1. Let T be a split additively orthodox semiring whose additive idempotents forms an
idempotent semiring I. Then Sp(E) = Imπ.

For every a ∈Imπ, let ea = a + a◦, fa = a◦ + a. Define θa : ea + I + ea → fa + I + fa by
xθa = a◦ + x + a. According to the proof of Theorem 2.5 (i.e. Theorem 2.8 in [12]), θa is a skeleton-
preserving isomorphism from (ea + I + ea,+) to ( fa + I + fa,+) satisfies that

(∀ f ∈ I) f θ ∈ E ⇔ f ∈ E.
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Denote all the skeleton-preserving isomorphisms φ between the subbands such as e+ I + e of (I, +)

by
+

T I , where e ∈ I. Then define the addition on
+

T I as composition of maps, i.e. e(φ + ϕ) ≜ (eφ)ϕ. By

Lemma 2.3, we get that (
+

T I ,+) is an inverse semigroup.

Lemma 4.3. Let T be a split additively orthodox semiring whose additive idempotents forms an
idempotent semiring I. E = I ∩ Imπ. TE is the Munn semigroup of (E,+). For µa ∈ TE, define

θ : Imπ →
+

T I by aθ = θa, where the domain of θa is a + a◦ + I + a + a◦, and the codomain is
a◦ + a + I + a◦ + a. Moreover, bθa = a◦ + b + a, then θ is a triangulation of µ : Imπ→ TE.

Proof: According to the proof of Theorem 2.3 (i.e. Theorem 2.5 in [12]), the mapping θ : Imπ→
+

T I defined by aθ = θa is a morphism from (Imπ,+) to (
+

T I ,+). By the definition of θa, we obtain that
θ̂a = µa, where µa ∈ TE. TE is the Munn semigroup of (E,+), and define eµa = a◦ + e + a which is an
isomorphism from (a+a◦+E,+) to (a◦+a+E,+). As a result, θ is a triangulation of µ : Imπ→ TE. □

Moreover, we can extend each θ ∈
+

T I to a mapping θ̄ : I → I by defining

(∀b ∈ B)bθ̄ = (eθ + b + eθ)θ.

And define the addition between two maps as composition of maps. By Lemma 2.4, we get that

(∀θ, ϕ ∈ TB)θ + ϕ = θ̄ + ϕ̄.

Theorem 4.2. Let S be an additively inverse semiring with b-lattice of additive idempotents E and I
be an idempotent semiring with skeleton E. For every a ∈ S , let the domain and codomain of µa ∈ TE

be ea + E (so that ea = a + a◦) and fa + E (so that fa = a◦ + a). Let θ be a triangulation of µ. Then

given a, b ∈ S and e, f , u, v ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb, we have

(1) (e + ( f + u)θ̄a◦)
+

Lea+b and (( f + u)θ̄b + v)
+

R fa+b;

(2) ab
+

H(ab)◦ and eab = fab = ea fb = faeb = eaeb = fa fb;

(3) eu
+

Leab and f v
+

R fab.

Proof: (1) By Lemma 2.5, it is clear.

(2) Since ea

+

La◦
+

R fa and fb

+

Lb
+

Reb, then ea fb

+

La◦b
+

R faeb. Similarly, we can get that ea fb

+

Rab◦
+

L faeb. By

Lemma 3.1, a◦b = (ab)◦ = ab◦. So ea fb

+

L(ab)◦
+

L faeb and ea fb

+

R(ab)◦
+

R faeb, that is ea fb

+

H(ab)◦
+

H faeb.

Similarly, we get that eaeb

+

Hab
+

H fa fb. Consequently, ab
+

H(ab)◦ and eab = fab = ea fb = faeb = eaeb =

fa fb.

(3) Since e
+

Lea and u
+

Leb, then eu
+

Leaeb = eab. Similarly, f v
+

R fab. □

Theorem 4.3. Let T be a split additively orthodox semiring whose additive idempotents forms an

idempotent semiring I. For any a, b ∈ Imπ and e, f , u, v ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb, then

(e + a + f )(u + b + v) = eu + ab + f v.

Proof: Firstly, on the one hand, since f
+

L(e + a + f )
+

Re and v
+

L(u + b + v)
+

Ru, then f v
+

L(e + a +

f )(u + b + v)
+

Reu. On the other hand, since e
+

Lea, f
+

R fa, u
+

Leb and v
+

R fb, then eu
+

Leab and f v
+

R fab, so

f v
+

L(eu + ab + f v)
+

Reu. Hence, (e + a + f )(u + b + v)
+

H(eu + ab + f v).
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Secondly, since e
+

Lea

+

La◦ and f
+

R fa

+

Ra◦, then

e + a + f + a◦ + e + a + f = e + a + a◦ + a + f = e + a + f

and
a◦ + e + a + f + a◦ = a◦ + a + a◦ = a◦,

so a◦ ∈
+

V(e+a+ f ), i.e. a◦ is the unique additive inverse of e+a+ f in Imπ. Similarly, (u+b+v)◦ = b◦

and (eu + ab + f v)◦ = (ab)◦. Thus,

((e + a + f )(u + b + v))◦ = (e + a + f )(u + b + v)◦ = (e + a + f )b◦ = (e + a + f )◦b = a◦b = (ab)◦.

Consequently, (e + a + f )(u + b + v) = eu + ab + f v as required. □

Theorem 4.4. Let T be a split additively orthodox semiring whose additive idempotents forms an

idempotent semiring I. For any a, b, c ∈ Imπ and e, f , u, v, g, h ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb,

g
+

Lec, h
+

R fc, then satisfies the following four equations:

ge + g · ( f + u)θ̄a◦ = ge + (h f + gu)θ̄ca◦ ,

h · ( f + u)θ̄b + hv = (h f + gu)θ̄cb + hv,

eg + ( f + u)θ̄a◦ · g = eg + ( f h + ug)θ̄aoc,

and
( f + u)θ̄b · h + vh = ( f h + ug)θ̄bc + vh.

Proof: For any a, b, c ∈ Imπ and e, f , u, v, g, h ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb, g
+

Lec, h
+

R fc.
On the one hand, by Theorem 4.2, we get that

(e + ( f + u)θ̄a◦)
+

Lea+b and (( f + u)θ̄b + v)
+

R fa+b,

then
g(e + ( f + u)θ̄a◦)

+

Lecea+b and h(( f + u)θ̄b + v)
+

R fc fa+b,

that is
(ge + g( f + u)θ̄a◦)

+

Lec(a+b) and (h( f + u)θ̄b + hv)
+

R fc(a+b),

where
ec(a+b) = c(a + b) + (c(a + b))◦ = c(a + b) + c◦(a + b)

and
fc(a+b) = (c(a + b))◦ + c(a + b) = c◦(a + b) + c(a + b).

So,
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ge + g( f + u)θ̄a◦

= ge + g( f + u)θ̄a◦ + ec(a+b)

= ge + g( f + u)θ̄a◦ + c(a + b) + c◦(a + b)
= ge + g( f + u)θ̄a◦ + c(a + b) + fc(a+b) + c◦(a + b)
= ge + g( f + u)θ̄a◦ + c(a + b) + h( f + u)θ̄b + hv + fc(a+b) + c◦(a + b)
= ge + g( f + u)θ̄a◦ + c(a + b) + h( f + u)θ̄b + hv + c◦(a + b)
= (g + c + h)(e + ( f + u)θ̄a◦ + a + b + ( f + u)θ̄b + v) + c◦(a + b)
= (g + c + h)(e + ( fa + f + u + fa)θa◦ + a + b + (eb + f + u + eb)θb + v) + c◦(a + b)
= (g + c + h)(e + (a + fa + f + u + fa + a◦) + a + b + (b◦ + eb + f + u + eb + b) + v) + c◦(a + b)
= (g + c + h)(e + (a + f + u + a◦) + a + b + (b◦ + f + u + b) + v) + c◦(a + b)
= (g + c + h)(e + a + f + u + (a◦ + a) + (b + b◦) + f + u + b + v) + c◦(a + b)
= (g + c + h)(e + a + f + u + (b + b◦) + (a◦ + a) + f + u + b + v) + c◦(a + b)
= (g + c + h)(e + a + f + u + f + u + b + v) + c◦(a + b)
= (g + c + h)(e + a + f + u + b + v) + c◦(a + b).

On the other hand, since
+

L and
+

R are multiplicative congruence on T , then

ge
+

Lecea = eca,

h f
+

R fc fa = fca,

gu
+

Leceb = ecb,

hv
+

R fc fb = fcb.

By Theorem 4.2, we get that

(ge + (h f + gu)θ̄(ca)◦)
+

Leca+cb and ((h f + gu)θ̄cb + hv)
+

R fca+cb,

that is
(ge + (h f + gu)θ̄ca◦)

+

Leca+cb and ((h f + gu)θ̄cb + hv)
+

R fca+cb,

where
eca+cb = ca + cb + (ca + cb)◦ = ca + cb + (c(a + b))◦ = c(a + b) + c◦(a + b)

and
fca+cb = (ca + cb)◦ + c(a + b) = (c(a + b))◦ + c(a + b) = c◦(a + b) + c(a + b).

So,
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ge + (h f + gu)θ̄(ca)◦

= ge + (h f + gu)θ̄(ca)◦ + eca+cb

= ge + (h f + gu)θ̄(ca)◦ + ca + cb + (ca + cb)◦

= ge + (h f + gu)θ̄(ca)◦ + ca + cb + fca+cb + (ca + cb)◦

= ge + (h f + gu)θ̄(ca)◦ + ca + cb + (h f + gu)θ̄cb + hv + fca+cb + (ca + cb)◦

= ge + ( fca + h f + gu + fca)θ(ca)◦ + ca + cb + (ecb + h f + gu + ecb)θcb + hv + (ca + cb)◦

= ge + (ca + h f + gu + (ca)◦) + ca + cb + (cb◦ + h f + gu + cb) + hv + (ca + cb)◦

= ge + ca + h f + gu + ((ca)◦ + ca) + (cb + (cb)◦) + h f + gu + cb + hv + (ca + cb)◦

= ge + ca + h f + gu + (cb + (cb)◦) + ((ca)◦ + ca) + h f + gu + cb + hv + (ca + cb)◦

= ge + ca + h f + gu + ecb + fca + h f + gu + cb + hv + (ca + cb)◦

= ge + ca + h f + gu + h f + gu + cb + hv + (ca + cb)◦

= ge + ca + h f + gu + cb + hv + (ca + cb)◦

= (g + c + h)(e + a + f ) + (g + c + h)(u + b + v) + (ca + cb)◦

= (g + c + h)[(e + a + f ) + (u + b + v)] + (ca + cb)◦

= (g + c + h)(e + a + f + u + b + v) + (ca + cb)◦.

Therefore,
ge + g · ( f + u)θ̄a◦ = ge + (h f + gu)θ̄ca◦

as required. Similarly, we can show the following three equations:

h · ( f + u)θ̄b + hv = (h f + gu)θ̄cb + hv,

eg + ( f + u)θ̄a◦ · g = eg + ( f h + ug)θ̄aoc,

and
( f + u)θ̄b · h + vh = ( f h + ug)θ̄bc + vh.

□

Theorem 4.5. Let S be an additively inverse semiring with b-lattice of additive idempotents E and I
be an idempotent semiring with skeleton E. For every a ∈ S , let the domain and codomain of µa ∈ TE

be ea+E (so that ea = a+a◦) and fa+E (so that fa = a◦+a). Let θ be a triangulation of µ. Then given

a, b ∈ S and e, f , u, v ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb, g
+

Lec, h
+

R fc, and satisfies the following
four equations:

ge + g · ( f + u)θ̄a◦ = ge + (h f + gu)θ̄ca◦ ,

h · ( f + u)θ̄b + hv = (h f + gu)θ̄cb + hv,

eg + ( f + u)θ̄a◦ · g = eg + ( f h + ug)θ̄aoc,

and
( f + u)θ̄b · h + vh = ( f h + ug)θ̄bc + vh.
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Define two binary operations

(e, a, f ) + (u, b, v) = (e + ( f + u)θ̄a◦ , a + b, ( f + u)θ̄b + v)

and
(e, a, f )(u, b, v) = (eu, ab, f v)

on

W = W(I, S , θ) = {(e, a, f ) ∈ I × S × I : e
+

Lea, f
+

R fa}.

Then W is a split additively orthodox semiring whose additive idempotents form an idempotent
semiring which is isomorphic to I, and W/γ � S .

Conversely, every split additively orthodox semiring is of the form W(I, S , θ).

Proof: By Theorem 2.3, (W,+) is an orthodox semigroup. And the associativity of multiplication is
clear. We only need to prove the distributivity of the semiring W. Give (e, a, f ), (u, b, v), (g, c, h) ∈ W,
by the four equations,

(g, c, h)[(e, a, f ) + (u, b, v)]
= (g, c, h)(e + ( f + u)θ̄a◦ , a + b, ( f + u)θ̄b + v)
= (g(e + ( f + u)θ̄a◦), c(a + b), h(( f + u)θ̄b + v))
= (ge + g · ( f + u)θ̄a◦ , ca + cb, h · ( f + u)θ̄b + hv)
= (ge + (h f + gu)θ̄ca◦ , ca + cb, (h f + gu)θ̄cb + hv)
= (ge, ca, h f ) + (gu, cb, hv).

Thus the distributivity on left is hold. And the distributivity on right can be proved similarly. Hence W
is additively orthodox semiring as required.

By the proof of Theorem 2.3 (i.e. Theorem 2.5 in [12]), we get that
+

E(W) = {(e, a, f ) ∈ W : a ∈
+

E(S )}, moreover, the map ϕ defined from
+

E(W) to I by (e, a, f )ϕ = e + f is bijective and preserves

addition. So we need to show it also preserves multiplication well. For any (e, a, f ), (u, b, v) ∈
+

E(W),

since a, b ∈
+

E(S ) then a◦ = a and b◦ = b, we find that ea = a + a◦ = a + a = a = a◦ + a = fa and

eb = b + b◦ = b + b = b = b◦ + b = fb, so e
+

La
+

R f and u
+

Lb
+

Rv. On the one hand, by Theorem 2.1, we

get that e
+

R(e+ f )
+

L f and u
+

R(u+ v)
+

Lv, so eu
+

R(e+ f )(u + v)
+

L f v since
+

R and
+

L are both multiplicative

congruence on I. On the other hand, we get that eu
+

Lab
+

R f v, then eu
+

R(eu + f v)
+

L f v by Theorem 2.1.

Therefore, (e + f )(u + v)
+

H(eu + f v) which means that (e + f )(u + v) = eu + f v. Hence,

[(e, a, f )(u, b, v)]ϕ = (eu, ab, f v)ϕ = eu + f v = (e + f )(u + v) = (e, a, f )ϕ(u, b, v)ϕ.

Thus ϕ is an isomorphism as require.
By the proof of Theorem 2.3 (i.e. Theorem 2.5 in [12]), we get that

(e, a, f )γ(u, b, v)⇔ a◦ = b◦ ⇔ a = b,
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and the mapping π : W/γ → W given by γ(e,a, f )π = (ea, a, fa) preserves addition and satisfies that
π♮ = idW/γ. Now we will show that it also preserves multiplication:

γ(e,a, f )πγ(u,b,v)π = (ea, a, fa)(eb, b, fb) = (eaeb, ab, fa fb) = (eab, ab, fab) = γ(e,a, f )(u,b,v)π.

Finally, it is clear that
W/γ � Imπ � S ,

the second isomorphism being that given by (ea, a, fa)↔ a.
Conversely, let T be a split additively orthodox semiring with the idempotent semiring I of additive

idempotents, and mapping π : T/γ → T be a splitting morphism. By Lemma 4.1 and Corollary 4.1,
the set E = I∩Imπ of additive idempotents of Imπ is a skeleton of I and Sp(E)=Imπ.

Moreover, define θ : Imπ → TI by aθ = θa, where the domain of θa is a + a◦ + I + a + a◦, the
codomain of θa is a◦ + a + I + a◦ + a and bθa = a◦ + b + a. By Lemma 4.3, θ is a triangulation of
µ : Imπ → TE. By Theorem 4.4, W(I, Imπ, θ) satisfies the four equations. We can therefore construct
the split additively orthodox semiring W = W(I, Imπ, θ).

Define the map ψ : W → T by
(e, a, f )ψ = e + a + f .

By the proof shown in [12]. ψ is bijection and preserves addition.

Since for any a, b ∈ Imπ and e, f , u, v ∈ I such that e
+

Lea, f
+

R fa, u
+

Leb, v
+

R fb, then

(e + a + f )(u + b + v) = eu + ab + f v.

So it also preserves multiplication clearly.
Therefore, ψ is a semiring isomorphism. □
As shown in [20], a generalized Clifford semiring S is not only an additively orthodox semiring,

but also a strong b-lattice T of skew-rings Rα(α ∈ T ), i.e. S =< T,Rα, ϕα,β >. Hence, S/γ = T . Let
π : T/γ → S , α 7→ x ∈ Rα. It is easy to verify that π is a split morphism, so S is a split additively
orthodox semiring.

Remark 1. From Theorem 4.5, we can see that the class of split additively orthodox semiringsis
actually not only a general extension of the class of Clifford semirings and generalized Clifford
semirings studied in [20], but also a general extension of the class of split orthodox semigroups
in [12].

5. Conclusions

In this paper, we introduce and explore split additively orthodox semirings. Some property theorems
are obtained, and a structure theorem is established by using idempotent semirings, additively inverse
semirings, and Munn semigroup. It not only extends and strengthens the corresponding results of
Clifford semirings and split orthodox semigroups but also develops a new way to study semirings.
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