The importance of convex and non-convex functions in the study of optimization is widely established. The concept of convexity also plays a key part in the subject of inequalities due to the behavior of its definition. The principles of convexity and symmetry are inextricably linked. Because of the considerable association that has emerged between the two in recent years, we may apply what we learn from one to the other. In this study, first, Hermite-Hadamard type inequalities for LR-$ p $-convex interval-valued functions (LR-$ p $-convex-I-V-F) are constructed in this study. Second, for the product of p-convex various Hermite-Hadamard (HH) type integral inequalities are established. Similarly, we also obtain Hermite-Hadamard-Fejér (HH-Fejér) type integral inequality for LR-$ p $-convex-I-V-F. Finally, for LR-$ p $-convex-I-V-F, various discrete Schur's and Jensen's type inequalities are presented. Moreover, the results presented in this study are verified by useful nontrivial examples. Some of the results reported here for be LR-$ p $-convex-I-V-F are generalizations of prior results for convex and harmonically convex functions, as well as $ p $-convex functions.
Citation: Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus[J]. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236
The importance of convex and non-convex functions in the study of optimization is widely established. The concept of convexity also plays a key part in the subject of inequalities due to the behavior of its definition. The principles of convexity and symmetry are inextricably linked. Because of the considerable association that has emerged between the two in recent years, we may apply what we learn from one to the other. In this study, first, Hermite-Hadamard type inequalities for LR-$ p $-convex interval-valued functions (LR-$ p $-convex-I-V-F) are constructed in this study. Second, for the product of p-convex various Hermite-Hadamard (HH) type integral inequalities are established. Similarly, we also obtain Hermite-Hadamard-Fejér (HH-Fejér) type integral inequality for LR-$ p $-convex-I-V-F. Finally, for LR-$ p $-convex-I-V-F, various discrete Schur's and Jensen's type inequalities are presented. Moreover, the results presented in this study are verified by useful nontrivial examples. Some of the results reported here for be LR-$ p $-convex-I-V-F are generalizations of prior results for convex and harmonically convex functions, as well as $ p $-convex functions.
[1] | M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30 |
[2] | M. Bombardelli, S. Varosanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073 |
[3] | M. A. Noor, K. I. Noor, M. U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Comput. Math. Inform., 24 (2015), 191–197. |
[4] | S. S. Dragomir, On the Hadamard's inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. |
[5] | S. S. Dragomir, B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonstr. Math., 31 (1998), 354–364. https://doi.org/10.1515/dema-1998-0214 doi: 10.1515/dema-1998-0214 |
[6] | S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, J. Inequal. Pure Appl. Math., 6 (2000), 129–134. |
[7] | S. S. Dragomir, A survey of Jensen type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces, Commun. Math. Anal., 10 (2011), 82–104. |
[8] | C. P. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Anal-Theor., 75 (2012), 662–669. https://doi.org/10.1016/j.na.2011.08.066 doi: 10.1016/j.na.2011.08.066 |
[9] | S. S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions, Khayyam J. Math., 3 (2017), 98–115. https://doi.org/10.22034/kjm.2017.47458 doi: 10.22034/kjm.2017.47458 |
[10] | M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis, 33 (2013), 367–375. https://doi.org/10.1524/anly.2013.1223 doi: 10.1524/anly.2013.1223 |
[11] | S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995 |
[12] | M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl., 2009 (2009), 283147. https://doi.org/10.1155/2009/283147 doi: 10.1155/2009/283147 |
[13] | M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2014), 134–147. https://doi.org/10.1080/10652469.2013.824436 doi: 10.1080/10652469.2013.824436 |
[14] | M. E. Ozdemir, E. Set, M. Z. Sarikaya, Some new Hadamard type inequalities for co-ordinated m-convex and (α, m)-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229. |
[15] | M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 1557–1567. |
[16] | M. A. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the coordinates, Int. Math. Forum., 4 (2009), 2327–2338. |
[17] | D. Singh, B. A. Dar, D. S. Kim, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063 |
[18] | I. Ahmad, D. Singh, B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19–45. |
[19] | T. M. Costa, H. Roman-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012 |
[20] | Y. Chalco-Cano, A. Flores-Franulic, H. Roman-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 475–472. |
[21] | A. Flores-Franulic, Y. Chalco-Cano, H. Roman-Flores, An Ostrowski type inequality for interval-valued functions, In: IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–1462. https://doi.org/10.1109/ifsa-nafips.2013.6608617 |
[22] | H. Roman-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2016), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7 |
[23] | D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[24] | Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics, 7 (2019), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436 |
[25] | H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741 |
[26] | H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2020), 705–718. |
[27] | L. Chen, M. S. Saleem, M. S. Zahoor, R. Bano, Some inequalities related to interval-valued-convex functions, J. Math., 2021 (2021), 6617074. https://doi.org/10.1155/2021/6617074 doi: 10.1155/2021/6617074 |
[28] | D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003 |
[29] | T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055 |
[30] | M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x |
[31] | M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 1–18. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175 |
[32] | M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci, 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408 |
[33] | M. Kunt, İ. İşcan, Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230. https://doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001 |
[34] | L. Fejer, Uber die Fourierreihen Ⅱ, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369–390. |
[35] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, UPB Sci. Bull. Ser. A, Appl. Math. Phys., 77 (2015), 5–16. |
[36] | V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005 |
[37] | R. E, Moore, Interval analysis. Prentice Hall, Englewood Cliffs, 1966. |
[38] | J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133. |
[39] | I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Anal. Appl., 11 (2016), 137–145. |
[40] | M. Kunt, İ. İşcan, Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230. https://doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001 |