Research article

Portfolio selection based on uncertain fractional differential equation

  • Received: 19 July 2021 Revised: 18 November 2021 Accepted: 06 December 2021 Published: 20 December 2021
  • MSC : 91G10, 34A08

  • Portfolio selection problems are considered in the paper. The securities in the proposed problems are suggested to follow uncertain fractional differential equations which have memory characteristics. By introducing the left semi-deviation of the wealth, two problems are proposed. One is to maximize the expected value and minimize the left semi-variance of the wealth. The other is to maximize the expected value of the wealth with a chance constraint that the left semi-deviation of the wealth is not less than a given number at a confidence level. The problems are equivalent to determinant ones which will be solved by genetic algorithm. Examples are provided to show the effectiveness of the proposed methods.

    Citation: Ling Rao. Portfolio selection based on uncertain fractional differential equation[J]. AIMS Mathematics, 2022, 7(3): 4304-4314. doi: 10.3934/math.2022238

    Related Papers:

  • Portfolio selection problems are considered in the paper. The securities in the proposed problems are suggested to follow uncertain fractional differential equations which have memory characteristics. By introducing the left semi-deviation of the wealth, two problems are proposed. One is to maximize the expected value and minimize the left semi-variance of the wealth. The other is to maximize the expected value of the wealth with a chance constraint that the left semi-deviation of the wealth is not less than a given number at a confidence level. The problems are equivalent to determinant ones which will be solved by genetic algorithm. Examples are provided to show the effectiveness of the proposed methods.



    加载中


    [1] F. B. Abdelaziz, B. Aouni, R. E. Fayedh, Multi-objective stochastic programming for portfolio selection, Eur. J. Oper. Res., 177 (2007), 1811–1823. https://doi.org/10.1016/j.ejor.2005.10.021 doi: 10.1016/j.ejor.2005.10.021
    [2] A. K. Bera, S. Y. Park, Optimal portfolio diversification using the maximum entropy principle, Econometric Rev., 27 (2008), 484–512. https://doi.org/10.1080/07474930801960394 doi: 10.1080/07474930801960394
    [3] M. Corazza, D. Favaretto, On the existence of solutions to the quadratic mixed-integer meanvariance portfolio selection problem, Eur. J. Oper. Res., 176 (2007), 1947–1960. https://doi.org/10.1016/j.ejor.2005.10.053 doi: 10.1016/j.ejor.2005.10.053
    [4] B. Dumas, E. Liucinao, An exact solution to a dynamic portfolio choice problem under transaction costs, J. Finance, 46 (1991), 577–595. https://doi.org/10.1111/j.1540-6261.1991.tb02675.x doi: 10.1111/j.1540-6261.1991.tb02675.x
    [5] R. R. Grauer, N. H. Hakansson, On the use of mean-variance and quadratic approximations in implementing dynamic investment strategies: A comparison of returns and investment policies, Manag. Sci., 39 (1993), 856–871. https://doi.org/10.1287/mnsc.39.7.856 doi: 10.1287/mnsc.39.7.856
    [6] N. H. Hakansson, Multi-period mean-variance analysis: Toward a general theory of portfolio choice, J. Finance, 26 (1971), 857–884. https://doi.org/10.2307/2325237 doi: 10.2307/2325237
    [7] M. Hirschberger, Y. Qi, R. E. Steuer, Randomly generatting portfolio-selection covariance matrices with specified distributional characteristics, Eur. J. Oper. Res., 177 (2007), 1610–1625. https://doi.org/10.1016/j.ejor.2005.10.014 doi: 10.1016/j.ejor.2005.10.014
    [8] X. X. Huang, Mean-risk model for uncertain portfolio selection, Fuzzy Optim. Decis. Making, 10 (2011), 71–89. https://doi.org/10.1007/s10700-010-9094-x doi: 10.1007/s10700-010-9094-x
    [9] X. X. Huang, A risk index model for portfolio selection with returns subject to experts' estimations, Fuzzy Optim. Decis. Making, 11 (2012), 451–463. https://doi.org/10.1007/s10700-012-9125-x doi: 10.1007/s10700-012-9125-x
    [10] Z. F. Jia, X. S. Liu, C. L. Li, Fixed point theorems applied in uncertain fractional differential equation with jump, Symmetry, 12 (2020), 1–20. https://doi.org/10.3390/sym12050765 doi: 10.3390/sym12050765
    [11] T. Jin, Y. Sun, Y. G. Zhu, Extreme values for solution to uncertain fractional differential equation and application to American option pricing model, Physica A, 534 (2019), 122357. https://doi.org/10.1016/j.physa.2019.122357 doi: 10.1016/j.physa.2019.122357
    [12] T. Jin, Y. Sun, Y. G. Zhu, Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model, Appl. Math. Comput., 372 (2020), 124991. https://doi.org/10.1016/j.amc.2019.124991 doi: 10.1016/j.amc.2019.124991
    [13] T. Jin, Y. G. Zhu, First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model, Chaos Soliton. Fract., 137 (2020), 109836. https://doi.org/10.1016/j.chaos.2020.109836 doi: 10.1016/j.chaos.2020.109836
    [14] B. D. Liu, Uncertainty theory, 2 Eds., Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/978-3-540-73165-8
    [15] B. D. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10.
    [16] B. D. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), 1–15. https://doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1
    [17] Z. Q. Lu, H. Y. Yan, Y. G. Zhu, European option pricing model based on uncertain fractional differential equation, Fuzzy Optim. Decis. Making, 18 (2019), 199–217. https://doi.org/10.1007/s10700-018-9293-4 doi: 10.1007/s10700-018-9293-4
    [18] Z. Q. Lu, Y. G. Zhu, Numerical approach for solution to an uncertain fractional differential equation, Appl. Math. Comput., 343 (2019), 137–148. https://doi.org/10.1016/j.amc.2018.09.044 doi: 10.1016/j.amc.2018.09.044
    [19] Z. Q. Lu, Y. G. Zhu, Q. Y. Lu, Stability analysis of nonlinear uncertain fractional differential equations with Caputo derivative, Fractals, 29 (2021), 2150057. https://doi.org/10.1142/S0218348X21500572 doi: 10.1142/S0218348X21500572
    [20] R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Econ. Theory, 3 (1971), 373–413. https://doi.org/10.1016/0022-0531(71)90038-X doi: 10.1016/0022-0531(71)90038-X
    [21] P. Murialdo, L. Ponta, A. Carbone, Inferring multi-period optimal portfolios via detrending moving average cluster entropy, Europhys. Lett., 133 (2021), 60004. https://doi.org/10.1209/0295-5075/133/60004
    [22] L. X. Sheng, Y. G. Zhu, Optimistic value model of uncertain optimal control, Int. J. Uncertain. Fuzz., 21 (2013), 75–83. https://doi.org/10.1142/S0218488513400060 doi: 10.1142/S0218488513400060
    [23] W. W. Wang, D. A. Ralescu, Option pricing formulas based on uncertain fractional differential equation, Fuzzy Optim. Decis. Making, 20 (2021), 471–495. https://doi.org/10.1007/s10700-021-09354-z doi: 10.1007/s10700-021-09354-z
    [24] J. Wang, Y. G. Zhu, Solution of linear uncertain fractional order delay differential equations, Soft Comput., 24 (2020), 17875–17885. https://doi.org/10.1007/s00500-020-05037-w doi: 10.1007/s00500-020-05037-w
    [25] X. Y. Zhou, D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim., 42 (2000), 19–33. https://doi.org/10.1007/s002450010003 doi: 10.1007/s002450010003
    [26] Y. G. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernet. Syst., 41 (2010), 535–547. https://doi.org/10.1080/01969722.2010.511552 doi: 10.1080/01969722.2010.511552
    [27] Y. G. Zhu, Uncertain fractional differential equations and an interest rate model, Math. Method. Appl. Sci., 38 (2015), 3359–3368. https://doi.org/10.1002/mma.3335 doi: 10.1002/mma.3335
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1637) PDF downloads(75) Cited by(3)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog