In this article, we describe two classes of few-weight ternary codes, compute their minimum weight and weight distribution from mathematical objects called simplicial complexes. One class of codes described here has the same parameters with the binary first-order Reed-Muller codes. A class of (optimal) minimal linear codes is also obtained in this correspondence.
Citation: Yang Pan, Yan Liu. New classes of few-weight ternary codes from simplicial complexes[J]. AIMS Mathematics, 2022, 7(3): 4315-4325. doi: 10.3934/math.2022239
In this article, we describe two classes of few-weight ternary codes, compute their minimum weight and weight distribution from mathematical objects called simplicial complexes. One class of codes described here has the same parameters with the binary first-order Reed-Muller codes. A class of (optimal) minimal linear codes is also obtained in this correspondence.
[1] | M. Adamaszek, Face numbers of down-sets, Amer. Math. Mon., 122 (2015), 367–370. |
[2] | G. T. Bogdanova, I. G. Boukliev, New linear codes of dimension 5 over GF(3), In: Proceedings of the fourth International Workshop on Algebraic and Combinatorial Coding Theory, 1994, 41–43. |
[3] | S. Chang, J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167–2181. https://doi.org/10.1007/s10623-017-0442-5 doi: 10.1007/s10623-017-0442-5 |
[4] | C. S. Ding, D. Kohel, S. Ling, Elementary 2-group character codes, IEEE T. Inform. Theory, 46 (2000), 280–284. https://doi.org/10.1109/18.817529 doi: 10.1109/18.817529 |
[5] | J. Y. Hyun, H. K. Kimb, M. Nac, Optimal non-projective linear codes constructed from down-sets, Discrete Appl. Math., 254 (2019), 135–145. https://doi.org/10.1016/j.dam.2018.07.007 doi: 10.1016/j.dam.2018.07.007 |
[6] | N. Hamada, T. Helleseth, Ø. Ytrehus, The nonexistence of [51; 5; 33; 3]-codes, Ars Combinat., 25 (1993), 25–32. |
[7] | J. Y. Hyun, J. Lee, Y. Lee, Infinite families of optimal linear codes constructed from simplicial complexes, IEEE T. Inform. Theory, 66 (2020), 6762–6773. https://doi.org/10.1109/TIT.2020.2993179 doi: 10.1109/TIT.2020.2993179 |
[8] | M. J. Shi, X. X. Li, Two classes of optimal p-ary few-weight codes from down-sets, Discrete Appl. Math., 290 (2021), 60–67. https://doi.org/10.1016/j.dam.2020.10.027 doi: 10.1016/j.dam.2020.10.027 |
[9] | M. van Eupen, Four nonexistence results for ternary linear codes, IEEE T. Inform. Theory, 41 (1995), 800–805. https://doi.org/10.1109/18.382031 doi: 10.1109/18.382031 |
[10] | M. van Eupen, Some new results for ternary linear codes of dimension 5 and 6, IEEE T. Inform. Theory, 41 (1995), 2048–2051. https://doi.org/10.1109/18.476334 doi: 10.1109/18.476334 |
[11] | M. van Eupen, J. H. van Lint, On the minimum distance of ternary cyclic codes, IEEE T. Inform. Theory, 39 (1993), 409–422. https://doi.org/10.1109/18.212272 doi: 10.1109/18.212272 |
[12] | Y. S. Wu, X. M. Zhu, Q. Yue, Optimal few-weight codes from simplicial complexes, IEEE T. Inform. Theory, 66 (2020), 3657–3663. https://doi.org/10.1109/TIT.2019.2946840 doi: 10.1109/TIT.2019.2946840 |
[13] | X. M. Zhu, Y. J. Wei, Few-weight quaternary codes via simplicial complexes, AIMS Mathematics, 6 (2021), 5124–5132. https://doi.org/10.3934/math.2021303 doi: 10.3934/math.2021303 |