Research article Special Issues

Existence of infinitely many normalized radial solutions for a class of quasilinear Schrödinger-Poisson equations in $ \mathbb{R}^3 $

  • Received: 11 July 2022 Revised: 14 August 2022 Accepted: 23 August 2022 Published: 31 August 2022
  • MSC : 35A15, 35B38, 49J35

  • In this paper, we study the existence of infinitely many normalized radial solutions for the following quasilinear Schrödinger-Poisson equations:

    $ \begin{equation*} -\Delta u-\lambda u+(|x|^{-1}*|u|^2)u-\Delta(u^2)u-|u|^{p-2}u = 0,\; x\in\mathbb{R}^3, \end{equation*} $

    where $ p\in (\frac{10}{3}, 6) $, $ \lambda\in \mathbb{R} $. Firstly, the quasilinear equations are transformed into semilinear equations by making a appropriate change of variables, whose associated variational functionals are well defined in $ H_r^1(\mathbb{R}^3) $. Secondly, by constructing auxiliary functional and combining pohožaev identity, we prove that under constraints, the energy functionals related to the equation have bounded Palais-Smale sequences on each level set. Finally, it is obtained that there are infinitely many normalized radial solutions for this kind of quasilinear Schrödinger-Poisson equations.

    Citation: Jinfu Yang, Wenmin Li, Wei Guo, Jiafeng Zhang. Existence of infinitely many normalized radial solutions for a class of quasilinear Schrödinger-Poisson equations in $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2022, 7(10): 19292-19305. doi: 10.3934/math.20221059

    Related Papers:

  • In this paper, we study the existence of infinitely many normalized radial solutions for the following quasilinear Schrödinger-Poisson equations:

    $ \begin{equation*} -\Delta u-\lambda u+(|x|^{-1}*|u|^2)u-\Delta(u^2)u-|u|^{p-2}u = 0,\; x\in\mathbb{R}^3, \end{equation*} $

    where $ p\in (\frac{10}{3}, 6) $, $ \lambda\in \mathbb{R} $. Firstly, the quasilinear equations are transformed into semilinear equations by making a appropriate change of variables, whose associated variational functionals are well defined in $ H_r^1(\mathbb{R}^3) $. Secondly, by constructing auxiliary functional and combining pohožaev identity, we prove that under constraints, the energy functionals related to the equation have bounded Palais-Smale sequences on each level set. Finally, it is obtained that there are infinitely many normalized radial solutions for this kind of quasilinear Schrödinger-Poisson equations.



    加载中


    [1] C. Bardos, F. Golse, A. Gottlieb, N. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pure. Appl., 82 (2003), 665–683. https://doi.org/10.1016/S0021-7824(03)00023-0 doi: 10.1016/S0021-7824(03)00023-0
    [2] P. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1987), 33–97. https://doi.org/10.1007/BF01205672 doi: 10.1007/BF01205672
    [3] E. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules, and solids, Adv. Math., 23 (1977), 22–116. https://doi.org/10.1016/0001-8708(77)90108-6 doi: 10.1016/0001-8708(77)90108-6
    [4] N. Mauser, The Schrödinger-Poisson-$X^\alpha$ equation, Appl. Math. Lett., 14 (2001), 759–763. https://doi.org/10.1016/S0893-9659(01)80038-0 doi: 10.1016/S0893-9659(01)80038-0
    [5] J. Bellazzini, G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267–280. https://doi.org/10.1007/s00033-010-0092-1 doi: 10.1007/s00033-010-0092-1
    [6] J. Bellazzini, G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486–2507. https://doi.org/10.1016/j.jfa.2011.06.014 doi: 10.1016/j.jfa.2011.06.014
    [7] I. Catto, J. Dolbeault, O. S$\acute{a}$nchez, J. Soler, Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Mod. Meth. Appl. S., 23 (2013), 1915–1938. https://doi.org/10.1142/S0218202513500541 doi: 10.1142/S0218202513500541
    [8] L. Jeanjean, T. Luo, Sharp non-existence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937–954. https://doi.org/10.1007/s00033-012-0272-2 doi: 10.1007/s00033-012-0272-2
    [9] O. S$\acute{a}$nchez, J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Stat. Phys., 114 (2004), 179–204. https://doi.org/10.1023/B:JOSS.0000003109.97208.53 doi: 10.1023/B:JOSS.0000003109.97208.53
    [10] J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, P. Lond. Math. Soc., 107 (2013), 303–339. https://doi.org/10.1112/plms/pds072 doi: 10.1112/plms/pds072
    [11] T. Luo, Multiplicity of normalized solutions for a class of nonlinear Schrödinger-Poisson-Slater equations, J. Math. Anal. Appl., 416 (2014), 195–204. https://doi.org/10.1016/j.jmaa.2014.02.038 doi: 10.1016/j.jmaa.2014.02.038
    [12] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal.-Theor., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008
    [13] J. Liu, Y. Wang, Z. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [14] Y. Xue, C. Tang, Existence of a bound state solution for quasilinear Schrödinger equations, Adv. Nonlinear Anal., 8 (2019), 323–338. https://doi.org/10.1515/anona-2016-0244 doi: 10.1515/anona-2016-0244
    [15] T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. https://doi.org/10.1007/s00013-012-0468-x doi: 10.1007/s00013-012-0468-x
    [16] S. Chen, X. Tang, S. Yuan, Normalized solutions for Schrödinger-Poisson equations with general nonlinearities, J. Math. Anal. Appl., 481 (2019), 123447. https://doi.org/10.1016/j.jmaa.2019.123447 doi: 10.1016/j.jmaa.2019.123447
    [17] W. Xie, H. Chen, H. Shi, Existence and multiplicity of normalized solutions for a class of Schrödinger-Poisson equations with general nonlinearities, Math. Method. Appl. Sci., 43 (2020), 3602–3616. https://doi.org/10.1002/mma.6140 doi: 10.1002/mma.6140
    [18] M. Willem, Minimax theorems, progress in nonlinear differential equations and their applications, Boston: Birkhauser, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1
    [19] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal.-Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [20] P. Agarwal, J. Merker, G. Schuldt, Singular integral Neumann boundary conditions for semilinear elliptic PDEs, Axioms, 10 (2021), 74. https://doi.org/10.3390/axioms10020074 doi: 10.3390/axioms10020074
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1607) PDF downloads(103) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog