Research article Special Issues

When does a double-layer potential equal to a single-layer one?

  • Received: 11 April 2022 Revised: 01 August 2022 Accepted: 25 August 2022 Published: 31 August 2022
  • MSC : 31A10, 35C15, 35J05

  • Let $ D $ be a bounded domain in $ {{\mathbb R}}^3 $ with a closed, smooth, connected boundary $ S $, $ N $ be the outer unit normal to $ S $, $ k > 0 $ be a constant, $ u_{N^{\pm}} $ are the limiting values of the normal derivative of $ u $ on $ S $ from $ D $, respectively $ D': = {{\mathbb R}}^3\setminus \bar{D} $; $ g(x, y) = \frac{e^{ik|x-y|}}{4\pi |x-y|} $, $ w: = w(x, \mu): = \int_S g_{N}(x, s)\mu(s)ds $ be the double-layer potential, $ u: = u(x, \sigma): = \int_S g(x, s)\sigma(s)ds $ be the single-layer potential.

    In this paper it is proved that for every $ w $ there is a unique $ u $, such that $ w = u $ in $ D $ and vice versa. This result is new, although the potential theory has more than 150 years of history.

    Necessary and sufficient conditions are given for the existence of $ u $ and the relation $ w = u $ in $ D' $, given $ w $ in $ D' $, and for the existence of $ w $ and the relation $ w = u $ in $ D' $, given $ u $ in $ D' $.

    Citation: Alexander G. Ramm. When does a double-layer potential equal to a single-layer one?[J]. AIMS Mathematics, 2022, 7(10): 19287-19291. doi: 10.3934/math.20221058

    Related Papers:

  • Let $ D $ be a bounded domain in $ {{\mathbb R}}^3 $ with a closed, smooth, connected boundary $ S $, $ N $ be the outer unit normal to $ S $, $ k > 0 $ be a constant, $ u_{N^{\pm}} $ are the limiting values of the normal derivative of $ u $ on $ S $ from $ D $, respectively $ D': = {{\mathbb R}}^3\setminus \bar{D} $; $ g(x, y) = \frac{e^{ik|x-y|}}{4\pi |x-y|} $, $ w: = w(x, \mu): = \int_S g_{N}(x, s)\mu(s)ds $ be the double-layer potential, $ u: = u(x, \sigma): = \int_S g(x, s)\sigma(s)ds $ be the single-layer potential.

    In this paper it is proved that for every $ w $ there is a unique $ u $, such that $ w = u $ in $ D $ and vice versa. This result is new, although the potential theory has more than 150 years of history.

    Necessary and sufficient conditions are given for the existence of $ u $ and the relation $ w = u $ in $ D' $, given $ w $ in $ D' $, and for the existence of $ w $ and the relation $ w = u $ in $ D' $, given $ u $ in $ D' $.



    加载中


    [1] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1983.
    [2] A. Kirillov, A. Gvishiani, Theorems and problems in functional analysis, Springer Verlag, Berlin, 1982. https://doi.org/10.1007/978-1-4613-8153-2
    [3] A. G. Ramm, Scattering of Acoustic and Electromagnetic Waves by Small Bodies of Arbitrary Shapes, Applications to Creating New Engineered Materials, Momentum Press, New York, 2013.
    [4] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572–611. https://doi.org/10.1016/0022-1236(84)90066-1 doi: 10.1016/0022-1236(84)90066-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1254) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog