Research article
When does a double-layer potential equal to a single-layer one?

Alexander G. Ramm*
Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

* Correspondence: Email: ramm@ksu.edu.

Abstract

Let D be a bounded domain in \mathbb{R}^{3} with a closed, smooth, connected boundary S, N be the outer unit normal to $S, k>0$ be a constant, $u_{N^{ \pm}}$are the limiting values of the normal derivative of u on S from D, respectively $D^{\prime}:=\mathbb{R}^{3} \backslash \bar{D} ; g(x, y)=\frac{e^{i k|x-y|}}{4 \pi \mid x-y, y}, w:=w(x, \mu):=\int_{S} g_{N}(x, s) \mu(s) d s$ be the double-layer potential, $u:=u(x, \sigma):=\int_{S} g(x, s) \sigma(s) d s$ be the single-layer potential. In this paper it is proved that for every w there is a unique u, such that $w=u$ in D and vice versa. This result is new, although the potential theory has more than 150 years of history. Necessary and sufficient conditions are given for the existence of u and the relation $w=u$ in D^{\prime}, given w in D^{\prime}, and for the existence of w and the relation $w=u$ in D^{\prime}, given u in D^{\prime}.

Keywords: potential theory
Mathematics Subject Classification: 31A10, 35C15, 35J05

1. Introduction

Let D be a bounded domain in \mathbb{R}^{3} with a closed, smooth, connected boundary $S, N=N_{s}$ be the outer unit normal to S at the point $s \in S, k>0$ be a constant, $g(x, y)=\frac{e^{i k|x-y|}}{4 \pi \mid x-y,}, w:=w(x, \mu):=$ $\int_{S} g_{N}(x, s) \mu(s) d s$ be the double-layer potential, $w^{ \pm}$are the limiting values of w on S from D, respectively, from $D^{\prime}, u:=u(x, \sigma):=\int_{S} g(x, s) \sigma(s) d s$ be the single-layer potential, $u_{N^{ \pm}}$are the limiting values of the normal derivative of u on S from D, respectively $D^{\prime}:=\mathbb{R}^{3} \backslash \bar{D}, \bar{D}$ is the closure of $D, \bar{\sigma}$, denotes the complex conjugate of $\sigma, H^{0}:=L^{2}(S), H^{1}:=W_{2}^{1}(S)$ is the Sobolev space, $\mu \in H^{0}$. We write iff for if and only if and use the known formulas for the limiting values of the potentials on S, see [3], pp. 148, 153 :

$$
\begin{equation*}
w^{ \pm}=0.5\left(A^{\prime} \mp I\right) \mu ; \quad u_{N}^{ \pm}=0.5(A \pm I) \sigma ; \quad w_{N}^{+}=w_{N}^{-} ; \quad Q(\sigma):=\int_{S} g(t, s) \sigma(s) d s \tag{1.1}
\end{equation*}
$$

where $A^{\prime} \mu=\int_{S} g_{N_{t}}(t, s) \mu(s) d s, A \sigma=\int_{S} g_{N_{s}}(t, s) \sigma(s) d s$. In this paper it is proved that for every w in D there is a unique u, such that $w=u$ in D, and vice versa.

Necessary and sufficient conditions are given for $w=u$ in D^{\prime} and for $u=w$ in D^{\prime}.
In [4] the problem for the Laplace's equations was studied in Lipschitz domains. In this case the integral equations, based on potential of double layer, are uniquely solvable for any right-hand side. This is not so, in general, for the corresponding equations for the Helmholtz operator. Our method of proof and the results are new. We assume that the boundary S is smooth and connected. This is done for brevity and simplicity: we do not want to make the presentation more difficult for the reader than it is necessary. Our results and proofs are valid for Lipschitz boundaries. Theorem 1 can be used for looking for the solution of the Dirichlet problem in the form of the single-layer potential.

Let us state these results:
Theorem 1. For every w, defined in D, there is a unique u such that $w=u$ in D, and vice versa. For every w, defined in D^{\prime}, there is a unique u such that $w=u$ in D^{\prime} iff

$$
\begin{equation*}
\int_{S} w^{-} p d s=0 \quad \forall p \in N(Q) \tag{1.2}
\end{equation*}
$$

For every u, defined in D^{\prime}, there is a unique w such that $w=u$ in D^{\prime} iff

$$
\begin{equation*}
\int_{S} u r d s=0 \quad \forall r \in N(A+I) \tag{1.3}
\end{equation*}
$$

This result is new, although the potential theory has more than 150 years of history.
In Section 2 proofs are given. In Section 3 it is proved that $Q: H^{0} \rightarrow H^{1}$ is a Fredholm operator.

2. Proofs

a) Assume that $w=w(x, \mu)$ is given in D. Let us prove that $u=u(x, \sigma)$ exists such that $u=w$ in D, and u is uniquely defined by w. First, let us prove the last claim. Suppose $u_{1}=w$ and $u_{2}=w$ in D. Let $u_{1}-u_{2}:=u, u=\int_{S} g(x, s) \sigma d s$ in $D, \sigma=\sigma_{1}-\sigma_{2}$. Then $\left.u\right|_{S}=0,\left(\nabla^{2}+k^{2}\right) u=0$ in D^{\prime} and u satisfies the radiation condition, so $u=0$ in D^{\prime}. Thus, $u=0$ in $D \cup D^{\prime}, u_{1}=u_{2}$, and the claim is proved.

Let us now prove the existence of u such that $w=u$ in D. One has

$$
\begin{equation*}
w^{+}=0.5\left(A^{\prime}-I\right) \mu=\left.u\right|_{S}=Q(\sigma) \tag{2.1}
\end{equation*}
$$

This is an equation for σ while w^{+}is given.
Note that $Q=Q_{0}+Q_{1}$, where $Q_{0} \sigma=\int_{S} g_{0}(t, s) \sigma(s) d s, g_{0}(t, s):=\frac{1}{4 \pi|t-s|}$. The operator Q_{0} is an isomorphism of H^{0} onto H^{1}, see Lemma 1 in Section 3. Therefore, the operator Q_{0}^{-1} is well defined and maps H^{1} onto H^{0}.

Consequently, equation (2.1) is equivalent to

$$
\begin{equation*}
w^{+}=\left(I+Q_{1} Q_{0}^{-1}\right) Q_{0}(\sigma)=\left(I+Q_{1} Q_{0}^{-1}\right) \eta, \quad \eta:=Q_{0} \sigma, \quad \sigma=Q_{0}^{-1} \eta . \tag{2.2}
\end{equation*}
$$

The operator $Q_{1} Q_{0}^{-1}$ is compact in H^{0}, see Section 3. Therefore a necessary and sufficient condition for the solvability of equation (2.2), and the equivalent equation (2.1), is:

$$
\begin{equation*}
\int_{S} w^{+} \bar{\eta} d s=0 \quad \forall \eta \in N\left(\left(I+Q_{1} Q_{0}^{-1}\right)^{\star}\right), \tag{2.3}
\end{equation*}
$$

where $N(B)$ is the null space of the operator B and B^{\star} is the adjoint operator to B in $H^{0}, B=I+Q_{1} Q_{0}^{-1}$, B is of Fredholm type in H^{0}. The kernel $g(t, s)$ of Q, the function $g(t, s)=\frac{e^{i k l-s t}}{4 \pi \mid t-s}$, is symmetric: $g(t, s)=g(s, t)$. Therefore, the kernel of Q^{\star} is $\bar{g}(t, s)$. Clearly, $\left(I+Q_{1} Q_{0}^{-1}\right)^{\star} \eta=0$ iff $\left(I+Q_{0}^{-1} \bar{Q}_{1}\right) \eta=0$, or, taking the complex conjugate,

$$
\begin{equation*}
\left(I+Q_{0}^{-1} Q_{1}\right) \bar{\eta}=0, \tag{2.4}
\end{equation*}
$$

where we have used the real-valuedness of the kernel of Q_{0}. Applying the operator Q_{0} to the last equation, one gets an equivalent equation

$$
\begin{equation*}
\left(Q_{0}+Q_{1}\right) \bar{\eta}=0 \tag{2.5}
\end{equation*}
$$

since Q_{0} is an isomorphism. Let $u=u(x, \bar{\eta})$. Then $\left.u\right|_{S}=0$ according to equation (2.5). Since $\left(\nabla^{2}+k^{2}\right) u=0$ in D^{\prime} and u satisfies the radiation condition, it follows that $u=0$ in D^{\prime} and $\bar{\eta}=$ $u_{N}^{+}-u_{N}^{-}=u_{N}^{+}$. Therefore, using the Green's formula, one obtains:

$$
\int_{S} w^{+} \bar{\eta} d s=\int_{S} w^{+} u_{N}^{+} d s=\int_{S} w_{N}^{+} u d s=0
$$

and, since $u=0$ on S, it follows that condition (2.3) is always satisfied. Thus, the necessary and sufficient condition (2.3) for the solvability of equation (2.1) is always satisfied. Therefore, $u(x, \eta)=$ $w(x, \mu)$ in $D, Q_{0}^{-1} \eta=\sigma$.
b) Asume now that u is given in D and let us prove the existence of a unique w such that $u=w$ in D. First, we prove that w is uniquely determined by u if $u=w$ in D.

Indeed, assume that there are two $w_{j}, j=1,2$, such that $u=w_{j}$ in D. Then $w:=w_{1}-w_{2}=0$ in D. Therefore $w_{N^{+}}=0$ on S. It is known (see [3], p. 154) that $w_{N^{+}}=w_{N^{-}}$, so $w_{N^{-}}=0$. Therefore, $\left(\nabla^{2}+k^{2}\right) w=0$ in $D^{\prime}, w_{N^{-}}=0$ on S, and w satisfies the radiation condition at infinity. This implies $w=0$ in D^{\prime}, so $w=0$ in $D \cup D^{\prime}$. Therefore $\mu=w^{-}-w^{+}=0$, so $w_{1}=w_{2}$ if $u=w_{j}, j=1,2$, in D. We have proved that w is uniquely determined by u if $u=w$ in D.

Let us now prove the existence of the solution μ to equation (2.1) and the relation $u=w$ in D.
The operator $A^{\prime}-I$ is Fredholm in H^{0}, so a necessary and sufficient condition for the equation (2.1) to be solvable is:

$$
\begin{equation*}
\int_{S} Q(\sigma) \bar{h} d s=0 \quad \forall h \in N\left(\left(A^{\prime}-I\right)^{\star}\right) \tag{2.6}
\end{equation*}
$$

One has $\left(A^{\prime}-I\right)^{\star} h=(\bar{A}-I) h=0$ iff $(A-I) \bar{h}=0$.
If $(A-I) \bar{h}=0$, then $u_{N}^{-}(s, \bar{h})=0$, so $u(s, \bar{h})=0$ in D^{\prime}. Note that $u(s, \bar{h})=Q(\bar{h})$. Therefore, $Q(\bar{h})=0$ in D^{\prime}. Since Q is a symmetric operator in H^{0}, one has:

$$
\int_{S} Q(\sigma) \bar{h} d s=\int_{S} \sigma Q(\bar{h}) d s=0
$$

Consequently, condition (2.6) is always satisfied, the solution μ to equation (2.1) exists and $u=w$ in D.
c) Assume that w is given in D^{\prime}. Let us prove that u exists such that $u=w$ in D^{\prime} iff

$$
\begin{equation*}
\int_{S} w^{-} \bar{p} d s=0 \quad \forall p \in N\left(Q^{\star}\right) . \tag{2.7}
\end{equation*}
$$

Consider the equation for σ :

$$
\begin{equation*}
w^{-}=Q(\sigma) . \tag{2.8}
\end{equation*}
$$

The operator $Q: H^{0} \rightarrow H^{1}$ is Fredholm-type. Thus, a necessary and sufficient condition for the solvability of the above equation is equation (2.7). If σ solves (2.8), then $u(x, \sigma)=w$ in D^{\prime} because the value of u on S determines uniquely u in D^{\prime}.
d) Assume now that u is given in D^{\prime}. Let us prove that w exists such that $u=w$ in D^{\prime} iff

$$
\begin{equation*}
\int_{S} u \bar{p} d s=0 \quad \forall p \in N(\bar{A}+I) . \tag{2.9}
\end{equation*}
$$

Note that $p \in N(A+I)$ iff $\bar{p} \in N(\bar{A}+I)$. The equation for μ, given u in D^{\prime}, is:

$$
\begin{equation*}
0.5\left(A^{\prime}+I\right) \mu=u \tag{2.10}
\end{equation*}
$$

Since the operator $A^{\prime}+I$ is Fredholm in H^{0}, a necessary and sufficient condition for the solvability of (2.10) for μ is:

$$
\begin{equation*}
\int_{S} u \bar{p} d s=0 \quad \forall p \in N\left(\left(A^{\prime}+I\right)^{\star}\right) \tag{2.11}
\end{equation*}
$$

If $p \in N\left(\left(A^{\prime}+I\right)^{\star}\right)$, then $p \in N(\bar{A}+I)$, so condition (2.9) is the same as (2.11). As in section c), the relation $u=w$ in D^{\prime} is a consequence of the fact that $u=w^{-}$on S.

Theorem 1 is proved.
Remark 1. Our proofs remain valid if $k=0$, that is, for the potentials corresponding to the Laplace equation, rather than the Helmholtz equation.

3. Auxiliary lemma

Recall that H^{1} is the Sobolev space on $S, H^{0}=L^{2}(S)$.
Lemma 1. The operator $Q=Q_{0}+Q_{1}: H^{0} \rightarrow H^{1}$ is of Fredholm-type, where Q_{0} is the operator with the kernel $\frac{1}{4 \pi|t-s|}$ and Q_{1} has the kernel $\frac{e^{i k l-s-1}-1}{4 \pi|s-t|}$. The operator Q_{0} is an isomorhism of H^{0} onto H^{1}, which has a continuous inverse. The operator $Q_{1} Q_{0}^{-1}$ is compact in H^{0}.

Proof. Let us check that $Q_{0}: H^{0} \rightarrow H^{1}$ is an isomorphism. The Fourier transform of the kernel $\frac{1}{4 \pi|x-y|}$ is positive: $\int_{\mathbb{R}^{3}} \frac{e^{\xi \xi x}}{4 \pi|x|} d x=\frac{1}{|\xi|^{2}}$. So, $Q_{0}: H^{0} \rightarrow H^{1}$ is injective. The kernel of the operator Q_{1} is smooth enough for $Q_{1}: H^{0} \rightarrow H^{1}$ to be compact. Let us check that $Q_{0}: H^{0} \rightarrow H^{1}$ is surjective. Let $f \in H^{1}$ and $Q_{0} \sigma=f$. Then $u:=u(x, \sigma)=\int_{S} g(x, s) \sigma d s$ solves the problem: $\nabla^{2} u=0$ in $D,\left.u\right|_{S}=f$. By the known elliptic estimates (see, e.g., [1]) one has $\|u\|_{H^{3 / 2}(D)} \leq\|u\|_{H^{1}(S)}$. Therefore, $\nabla u \in H^{1 / 2}(D)$ and, by the trace theorem, $\left.u\right|_{S} \in H^{0}(S)$. This proves surjectivity of $Q_{0}: H^{0} \rightarrow H^{1}$. Thus, Q_{0} is an isomorphism of H^{0} onto H^{1} which has a continuous inverse. The sum of an isomorphism Q_{0} and a compact operator Q_{1} is a Fredholm operator, see, e.g., [2]. The operator $Q_{1} Q_{0}^{-1}$ is compact in H^{0} because the kernel of Q_{1} is sufficiently smooth. Although the operator $Q_{1} Q_{0}^{-1}$ is defined on a dense subset H^{1} of H^{0}, but since this operator is bounded in H^{0} its closure is a bounded operator in H^{0}. Since the kernel of Q_{1} is $O(|s-t|)$, the kernel of $Q_{1} Q_{0}^{-1}$ is a continuous function of $|s-t|$ and the surface S is a compact set. Therefore, the operator $Q_{1} Q_{0}^{-1}$ is compact in H^{0}.

Lemma 1 is proved.

4. Conclusions

It is proved that every double layer potential w in a bounded domain is equal to a single layer potential u in a bounded domain D with a smooth closed connected boundary. Necessary and sufficient conditions are given for $w=u$ in the exterior domain D^{\prime}.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1983.
2. A. Kirillov, A. Gvishiani, Theorems and problems in functional analysis, Springer Verlag, Berlin, 1982. https://doi.org/10.1007/978-1-4613-8153-2
3. A. G. Ramm, Scattering of Acoustic and Electromagnetic Waves by Small Bodies of Arbitrary Shapes, Applications to Creating New Engineered Materials, Momentum Press, New York, 2013.
4. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611. https://doi.org/10.1016/0022-1236(84)900661

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

