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Abstract: Let D be a bounded domain in R3 with a closed, smooth, connected boundary S , N be the
outer unit normal to S , k > 0 be a constant, uN± are the limiting values of the normal derivative of
u on S from D, respectively D′ := R3 \ D̄; g(x, y) = eik|x−y|

4π|x−y| , w := w(x, µ) :=
∫

S
gN(x, s)µ(s)ds be the

double-layer potential, u := u(x, σ) :=
∫

S
g(x, s)σ(s)ds be the single-layer potential.

In this paper it is proved that for every w there is a unique u, such that w = u in D and vice versa. This
result is new, although the potential theory has more than 150 years of history.
Necessary and sufficient conditions are given for the existence of u and the relation w = u in D′, given
w in D′, and for the existence of w and the relation w = u in D′, given u in D′.
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1. Introduction

Let D be a bounded domain in R3 with a closed, smooth, connected boundary S , N = Ns be the
outer unit normal to S at the point s ∈ S , k > 0 be a constant, g(x, y) = eik|x−y|

4π|x−y| , w := w(x, µ) :=∫
S

gN(x, s)µ(s)ds be the double-layer potential, w± are the limiting values of w on S from D, respec-
tively, from D′, u := u(x, σ) :=

∫
S

g(x, s)σ(s)ds be the single-layer potential, uN± are the limiting values
of the normal derivative of u on S from D, respectively D′ := R3 \ D̄, D̄ is the closure of D, σ̄, denotes
the complex conjugate of σ, H0 := L2(S ), H1 := W1

2 (S ) is the Sobolev space, µ ∈ H0. We write iff for
if and only if and use the known formulas for the limiting values of the potentials on S , see [3], pp.
148, 153:

w± = 0.5(A′ ∓ I)µ; uN
± = 0.5(A ± I)σ; w+

N = w−N; Q(σ) :=
∫

S
g(t, s)σ(s)ds, (1.1)

where A′µ =
∫

S
gNt(t, s)µ(s)ds, Aσ =

∫
S

gNs(t, s)σ(s)ds. In this paper it is proved that for every w in D
there is a unique u, such that w = u in D, and vice versa.
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Necessary and sufficient conditions are given for w = u in D′ and for u = w in D′.
In [4] the problem for the Laplace’s equations was studied in Lipschitz domains. In this case the

integral equations, based on potential of double layer, are uniquely solvable for any right-hand side.
This is not so, in general, for the corresponding equations for the Helmholtz operator. Our method of
proof and the results are new. We assume that the boundary S is smooth and connected. This is done
for brevity and simplicity: we do not want to make the presentation more difficult for the reader than
it is necessary. Our results and proofs are valid for Lipschitz boundaries. Theorem 1 can be used for
looking for the solution of the Dirichlet problem in the form of the single-layer potential.

Let us state these results:
Theorem 1. For every w, defined in D, there is a unique u such that w = u in D, and vice versa.
For every w, defined in D′, there is a unique u such that w = u in D′ iff∫

S
w−pds = 0 ∀p ∈ N(Q). (1.2)

For every u, defined in D′, there is a unique w such that w = u in D′ iff∫
S

urds = 0 ∀r ∈ N(A + I). (1.3)

This result is new, although the potential theory has more than 150 years of history.
In Section 2 proofs are given. In Section 3 it is proved that Q : H0 → H1 is a Fredholm operator.

2. Proofs

a) Assume that w = w(x, µ) is given in D. Let us prove that u = u(x, σ) exists such that u = w in D,
and u is uniquely defined by w. First, let us prove the last claim. Suppose u1 = w and u2 = w in D. Let
u1 − u2 := u, u =

∫
S

g(x, s)σds in D, σ = σ1 − σ2. Then u|S = 0, (∇2 + k2)u = 0 in D′ and u satisfies
the radiation condition, so u = 0 in D′. Thus, u = 0 in D ∪ D′, u1 = u2, and the claim is proved.

Let us now prove the existence of u such that w = u in D. One has

w+ = 0.5(A′ − I)µ = u|S = Q(σ) (2.1)

This is an equation for σ while w+ is given.
Note that Q = Q0 + Q1, where Q0σ =

∫
S

g0(t, s)σ(s)ds, g0(t, s) := 1
4π|t−s| . The operator Q0 is an

isomorphism of H0 onto H1, see Lemma 1 in Section 3. Therefore, the operator Q−1
0 is well defined

and maps H1 onto H0.
Consequently, equation (2.1) is equivalent to

w+ = (I + Q1Q−1
0 )Q0(σ) = (I + Q1Q−1

0 )η, η := Q0σ, σ = Q−1
0 η. (2.2)

The operator Q1Q−1
0 is compact in H0, see Section 3. Therefore a necessary and sufficient condition

for the solvability of equation (2.2), and the equivalent equation (2.1), is:∫
S

w+η̄ds = 0 ∀η ∈ N((I + Q1Q−1
0 )?), (2.3)
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where N(B) is the null space of the operator B and B? is the adjoint operator to B in H0, B = I + Q1Q−1
0 ,

B is of Fredholm type in H0. The kernel g(t, s) of Q, the function g(t, s) = eik|t−s|

4π|t−s| , is symmetric:
g(t, s) = g(s, t). Therefore, the kernel of Q? is ḡ(t, s). Clearly, (I + Q1Q−1

0 )?η = 0 iff (I + Q−1
0 Q̄1)η = 0,

or, taking the complex conjugate,
(I + Q−1

0 Q1)η̄ = 0, (2.4)

where we have used the real-valuedness of the kernel of Q0. Applying the operator Q0 to the last
equation, one gets an equivalent equation

(Q0 + Q1)η̄ = 0, (2.5)

since Q0 is an isomorphism. Let u = u(x, η̄). Then u|S = 0 according to equation (2.5). Since
(∇2 + k2)u = 0 in D′ and u satisfies the radiation condition, it follows that u = 0 in D′ and η̄ =

u+
N − u−N = u+

N . Therefore, using the Green’s formula, one obtains:∫
S

w+η̄ds =

∫
S

w+u+
Nds =

∫
S

w+
Nuds = 0,

and, since u = 0 on S , it follows that condition (2.3) is always satisfied. Thus, the necessary and
sufficient condition (2.3) for the solvability of equation (2.1) is always satisfied. Therefore, u(x, η) =

w(x, µ) in D, Q−1
0 η = σ.

b) Asume now that u is given in D and let us prove the existence of a unique w such that u = w in
D. First, we prove that w is uniquely determined by u if u = w in D.

Indeed, assume that there are two w j, j = 1, 2, such that u = w j in D. Then w := w1 − w2 = 0 in
D. Therefore wN+ = 0 on S . It is known (see [3], p. 154) that wN+ = wN− , so wN− = 0. Therefore,
(∇2 + k2)w = 0 in D′, wN− = 0 on S , and w satisfies the radiation condition at infinity. This implies
w = 0 in D′, so w = 0 in D ∪ D′. Therefore µ = w− − w+ = 0, so w1 = w2 if u = w j, j = 1, 2, in D. We
have proved that w is uniquely determined by u if u = w in D.

Let us now prove the existence of the solution µ to equation (2.1) and the relation u = w in D.
The operator A′ − I is Fredholm in H0, so a necessary and sufficient condition for the equation (2.1)

to be solvable is: ∫
S

Q(σ)h̄ds = 0 ∀h ∈ N((A′ − I)?). (2.6)

One has (A′ − I)?h = (Ā − I)h = 0 iff (A − I)h̄ = 0.
If (A− I)h̄ = 0, then u−N(s, h̄) = 0, so u(s, h̄) = 0 in D′. Note that u(s, h̄) = Q(h̄). Therefore, Q(h̄) = 0

in D′. Since Q is a symmetric operator in H0, one has:∫
S

Q(σ)h̄ds =

∫
S
σQ(h̄)ds = 0.

Consequently, condition (2.6) is always satisfied, the solution µ to equation (2.1) exists and u = w in
D.

c) Assume that w is given in D′. Let us prove that u exists such that u = w in D′ iff∫
S

w− p̄ds = 0 ∀p ∈ N(Q?). (2.7)
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Consider the equation for σ:
w− = Q(σ). (2.8)

The operator Q : H0 → H1 is Fredholm-type. Thus, a necessary and sufficient condition for the
solvability of the above equation is equation (2.7). If σ solves (2.8), then u(x, σ) = w in D′ because
the value of u on S determines uniquely u in D′.

d) Assume now that u is given in D′. Let us prove that w exists such that u = w in D′ iff∫
S

up̄ds = 0 ∀p ∈ N(Ā + I). (2.9)

Note that p ∈ N(A + I) iff p̄ ∈ N(Ā + I). The equation for µ, given u in D′, is:

0.5(A′ + I)µ = u. (2.10)

Since the operator A′ + I is Fredholm in H0, a necessary and sufficient condition for the solvability of
(2.10) for µ is: ∫

S
up̄ds = 0 ∀p ∈ N((A′ + I)?). (2.11)

If p ∈ N((A′ + I)?), then p ∈ N(Ā + I), so condition (2.9) is the same as (2.11). As in section c), the
relation u = w in D′ is a consequence of the fact that u = w− on S .

Theorem 1 is proved. �

Remark 1. Our proofs remain valid if k = 0, that is, for the potentials corresponding to the Laplace
equation, rather than the Helmholtz equation.

3. Auxiliary lemma

Recall that H1 is the Sobolev space on S , H0 = L2(S ).
Lemma 1. The operator Q = Q0 + Q1 : H0 → H1 is of Fredholm-type, where Q0 is the operator

with the kernel 1
4π|t−s| and Q1 has the kernel eik|t−s|−1

4π|s−t| . The operator Q0 is an isomorhism of H0 onto H1,
which has a continuous inverse. The operator Q1Q−1

0 is compact in H0.
Proof. Let us check that Q0 : H0 → H1 is an isomorphism. The Fourier transform of the kernel

1
4π|x−y| is positive:

∫
R3

eiξ·x

4π|x|dx = 1
|ξ|2

. So, Q0 : H0 → H1 is injective. The kernel of the operator Q1 is
smooth enough for Q1 : H0 → H1 to be compact. Let us check that Q0 : H0 → H1 is surjective. Let
f ∈ H1 and Q0σ = f . Then u := u(x, σ) =

∫
S

g(x, s)σds solves the problem: ∇2u = 0 in D, u|S = f .
By the known elliptic estimates (see, e.g., [1]) one has ‖u‖H3/2(D) ≤ ‖u‖H1(S ). Therefore, ∇u ∈ H1/2(D)
and, by the trace theorem, u|S ∈ H0(S ). This proves surjectivity of Q0 : H0 → H1. Thus, Q0 is
an isomorphism of H0 onto H1 which has a continuous inverse. The sum of an isomorphism Q0 and
a compact operator Q1 is a Fredholm operator, see, e.g., [2]. The operator Q1Q−1

0 is compact in H0

because the kernel of Q1 is sufficiently smooth. Although the operator Q1Q−1
0 is defined on a dense

subset H1 of H0, but since this operator is bounded in H0 its closure is a bounded operator in H0. Since
the kernel of Q1 is O(|s − t|), the kernel of Q1Q−1

0 is a continuous function of |s − t| and the surface S
is a compact set. Therefore, the operator Q1Q−1

0 is compact in H0.
Lemma 1 is proved. �
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4. Conclusions

It is proved that every double layer potential w in a bounded domain is equal to a single layer
potential u in a bounded domain D with a smooth closed connected boundary. Necessary and sufficient
conditions are given for w = u in the exterior domain D′.
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