Research article

On approximate vector variational inequalities and vector optimization problem using convexificator

  • Received: 31 May 2022 Revised: 05 August 2022 Accepted: 07 August 2022 Published: 25 August 2022
  • MSC : 58E17, 49J40, 49J52

  • In the present article, we study a vector optimization problem involving convexificator-based locally Lipschitz approximately convex functions and give some ideas for approximate efficient solutions. In terms of the convexificator, we approximate Stampacchia-Minty type vector variational inequalities and use them to describe an approximately efficient solution to the nonsmooth vector optimization problem. Moreover, we give a numerical example that attests to the credibility of our results.

    Citation: Faizan A. Khan, Rohit K. Bhardwaj, Tirth Ram, Mohammed A. S. Tom. On approximate vector variational inequalities and vector optimization problem using convexificator[J]. AIMS Mathematics, 2022, 7(10): 18870-18882. doi: 10.3934/math.20221039

    Related Papers:

  • In the present article, we study a vector optimization problem involving convexificator-based locally Lipschitz approximately convex functions and give some ideas for approximate efficient solutions. In terms of the convexificator, we approximate Stampacchia-Minty type vector variational inequalities and use them to describe an approximately efficient solution to the nonsmooth vector optimization problem. Moreover, we give a numerical example that attests to the credibility of our results.



    加载中


    [1] D. Bhatia, A. Gupta, P. Arora, Optimality via generalized approximate convexity and quasiefficiency, Optim. Lett., 7 (2013), 127–135. http://dx.doi.org/10.1007/s11590-011-0402-3 doi: 10.1007/s11590-011-0402-3
    [2] L. C. Ceng, S. C. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521–535. http://dx.doi.org/10.1007/s10898-009-9436-9 doi: 10.1007/s10898-009-9436-9
    [3] L. C. Ceng, A. Latif, Characterizations of solution sets of set-valued generalized pseudoinvex optimization problems, J. Nonlinear Sci. Appl., 9 (2016), 6382–6395. http://dx.doi.org/10.22436/jnsa.009.12.38 doi: 10.22436/jnsa.009.12.38
    [4] L. C. Ceng, X. Li, X. Qin, Parallel proximal point methods for systems of vector optimization problems on Hadamard manifolds without convexity, Optimization, 69 (2020), 357–383. http://dx.doi.org/10.1080/02331934.2019.1625354 doi: 10.1080/02331934.2019.1625354
    [5] L. C. Ceng, B. S. Mordukhovich, J. C. Yao, Hybrid approximate proximal method with auxiliary variational inequalities for vector optimization, J. Optim. Theory Appl., 146 (2010), 267–303. http://dx.doi.org/10.1007/s10957-010-9667-4 doi: 10.1007/s10957-010-9667-4
    [6] L. C. Ceng, C. F. Wen, Y. C. Liou, On the existence of super efficient solutions and optimality conditions for set-valued vector optimization problems, Mathematics, 10 (2022), 3–16. http://dx.doi.org/10.3390/math10030316 doi: 10.3390/math10030316
    [7] L. C. Ceng, J. C. Yao, Existence theorems for generalized set-valued mixed quasi- variational inequalities in Banach spaces, J. Global Optim., 55 (2013), 27–51. http://dx.doi.org/10.1007/s10898-011-9811-1 doi: 10.1007/s10898-011-9811-1
    [8] L. C. Ceng, J. C. Yao, Generalized vector equilibrium-like problems with application to vector optimization problems, Linear Nonlinear Anal., 2 (2016), 53–68.
    [9] F. H. Clarke, Optimization and nonsmooth analysis, Wiley-Interscience, New York, 1983.
    [10] V. F. Demyanov, Exhausters and convexificators–new tools in nonsmooth analysis, Quasidifferentiability and Related Topics, Kluwer Academic Publishers, Dordrecht, 2000, 85–137.
    [11] V. F. Demyanov, Convexification and concavification of positively homogeneous functions by the same family of linear functions, Report, Universita di Pisa, 1994.
    [12] V. F. Demyanov, V. Jeyakumar, Hunting for a smaller convex subdifferential, J. Global Optim., 10 (1997), 305–326. http://dx.doi.org/10.1023/A:1008246130864 doi: 10.1023/A:1008246130864
    [13] J. Dutta, V. Vetrivel, On approximate minima in vector optimization, Numer. Funct. Anal. Optim., 22 (2001), 845–859. http://dx.doi.org/10.1081/NFA-100108312 doi: 10.1081/NFA-100108312
    [14] M. Golestani, S. Nobakhtian, Convexificator and strong Kuhn-Tucker conditions, Comput. Math. Appl., 64 (2012), 550–557. http://dx.doi.org/10.1016/j.camwa.2011.12.047 doi: 10.1016/j.camwa.2011.12.047
    [15] A. Gupta, A. Mehra, D. Bhatia, Approximate convexity in vector optimization, Bull. Aust. Math. Soc., 74 (2006), 207–218. http://dx.doi.org/10.1017/S0004972700035656 doi: 10.1017/S0004972700035656
    [16] D. Gupta, A. Mehra, Two types of approximate saddle points, Numer. Funct. Anal. Optim., 29 (2008), 532–550. http://dx.doi.org/10.1080/01630560802099274 doi: 10.1080/01630560802099274
    [17] P. Gupta, S. K. Mishra, On Minty variational principle for nonsmooth vector optimization problems with generalized approximate convexity, J. Math. Programm. Oper. Res., 67 (2018), 1157–1167. http://dx.doi.org/10.1080/02331934.2018.1466884 doi: 10.1080/02331934.2018.1466884
    [18] V. Jeyakumar, D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599–621. http://dx.doi.org/10.1023/A:1021790120780 doi: 10.1023/A:1021790120780
    [19] B. C. Joshi, On generalized approximate convex functions and variational inequalities, RAIRO-Oper. Res., 55 (2021), S2999–S3008. http://dx.doi.org/10.1051/ro/2020141 doi: 10.1051/ro/2020141
    [20] V. Laha, S. K. Mishra, On vector optimization problems and vector variational inequalities using convexifactor, J. Math. Program. Oper. Res., 66 (2017), 1837–1850. https://doi.org/10.1080/02331934.2016.1250268 doi: 10.1080/02331934.2016.1250268
    [21] X. F. Li, J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization, J. Optim. Theory Appl., 131 (2006), 429–452. http://dx.doi.org/10.1007/s10957-006-9155-z doi: 10.1007/s10957-006-9155-z
    [22] X. F. Li, J. Z. Zhang, Stronger Kuhn-Tucker type conditions in nonsmooth multiobjective optimization: Locally Lipschitz case, J. Optim. Theory Appl., 127 (2005), 367–388. http://dx.doi.org/10.1007/s10957-005-6550-9 doi: 10.1007/s10957-005-6550-9
    [23] X. J. Long, N. J. Huang, Optimality conditions for efficiency on nonsmooth multiobjective programming problems, Taiwanese J. Math., 18 (2014), 687–699. http://dx.doi.org/10.11650/tjm.18.2014.3730 doi: 10.11650/tjm.18.2014.3730
    [24] D. V. Luu, Convexifcators and necessary conditions for efficiency, Optimization, 63 (2013), 321–335. http://dx.doi.org/10.1080/02331934.2011.648636 doi: 10.1080/02331934.2011.648636
    [25] D. V. Luu, Necessary and sufficient conditions for efficiency via convexificators, J. Optim. Theory Appl., 160 (2014), 510–526. http://dx.doi.org/10.1007/s10957-013-0377-6 doi: 10.1007/s10957-013-0377-6
    [26] S. K. Mishra, V. Laha, On approximately star-shaped functions and approximate vector variational inequalities, J. Optim. Theory Appl., 156 (2013), 278–293. http://dx.doi.org/10.1007/s10957-012-0124-4 doi: 10.1007/s10957-012-0124-4
    [27] S. K. Mishra, V. Laha, On Minty variational principle for nonsmooth vector optimization problems with approximate convexity, Optim. Lett., 10 (2016), 577–589. http://dx.doi.org/10.1007/s11590-015-0883-6 doi: 10.1007/s11590-015-0883-6
    [28] S. K. Mishra, B. B. Upadhyay, Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency, Positivity, 17 (2013), 1071–1083. http://dx.doi.org/10.1007/s11117-013-0221-0 doi: 10.1007/s11117-013-0221-0
    [29] S. K. Mishra, S. Y. Wang, Vector variational-like inequalities and nonsmooth vector optimization problems, Nonlinear Anal., 64 (2006), 1939–1945. http://dx.doi.org/10.1016/j.na.2005.07.030 doi: 10.1016/j.na.2005.07.030
    [30] B. B. Upadhyay, P. Mishra, R. N. Mohapatra, S. K. Mishra, On relationships between vector variational inequality and nonsmooth vector optimization problems via strict minimizers, Adv. Nonlinear Var. Inequal., 20 (2017), 1–12.
    [31] B. B. Upadhyay, P. Mishra, R. N. Mohapatra, S. K. Mishra, On the applications of nonsmooth vector optimization problems to solve generalized vector variational inequalities using convexificators, Adv. Intell. Syst. Comput., 991 (2020), 660–671. http://dx.doi.org/10.1007/978-3-030-21803-4_66 doi: 10.1007/978-3-030-21803-4_66
    [32] X. Q. Yang, X. Y. Zheng, Approximate solutions and optimality conditions of vector variational inequalities in Banach spaces, J. Glob. Optim., 40 (2008), 455–462. http://dx.doi.org/10.1007/s10898-007-9183-8 doi: 10.1007/s10898-007-9183-8
    [33] L. C. Zeng, Necessary optimality conditions for super minimizers in structural problems of multiobjective optimization, Asian-Eur. J. Math., 2 (2009), 321–358. https://doi.org/10.1142/S1793557109000261 doi: 10.1142/S1793557109000261
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1280) PDF downloads(65) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog