In this paper, we prove the existence of a positive solution for some equations involving multiplication of concave (possibly nonlinear) operators. Also, we provide a successively sequence to approximate the solution for such equations. This kind of the solution is necessary for quadratic differential and integral equations.
Citation: Golnaz Pakgalb, Mohammad Jahangiri Rad, Ali Salimi Shamloo, Majid Derafshpour. Existence and uniqueness of a positive solutions for the product of operators[J]. AIMS Mathematics, 2022, 7(10): 18853-18869. doi: 10.3934/math.20221038
In this paper, we prove the existence of a positive solution for some equations involving multiplication of concave (possibly nonlinear) operators. Also, we provide a successively sequence to approximate the solution for such equations. This kind of the solution is necessary for quadratic differential and integral equations.
[1] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 602–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114 |
[2] | J. Banaś, K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput. Model., 38 (2003), 245–250. https://doi.org/10.1016/S0895-7177(03)90084-7 doi: 10.1016/S0895-7177(03)90084-7 |
[3] | A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite $\varphi$-Laplacian-type equations, Open Math., 19 (2021), 163–183. https://doi.org/10.1515/math-2021-0003 doi: 10.1515/math-2021-0003 |
[4] | S. Chandrasekhar, Radiative transfer, New York: Dover Publications, 1960. |
[5] | F. Chouia, T. Moussaoui, Some fixed point theorems in ordered Banach spaces and application, Appl. Math. E-Notes, 19 (2019), 433–444. |
[6] | Y. Cheng, T. Carson, M. B. M. Elgindi, A note on the proof of the Perron-Frobenius theorem, Appl. Math., 3 (2012), 1697–1701. https://doi.org/10.4236/am.2012.311235 doi: 10.4236/am.2012.311235 |
[7] | C. Zhai, C. Guo, On $\alpha$-convex operators, J. Math. Anal. Appl., 316 (2006), 556–565. https://doi.org/10.1016/j.jmaa.2005.04.064 doi: 10.1016/j.jmaa.2005.04.064 |
[8] | M. Cichoń, M. M. A. Metwali, On a fixed point theorem for the product of operators, J. Fixed Point Theory Appl., 18 (2016), 753–770. https://doi.org/10.1007/s11784-016-0319-7 doi: 10.1007/s11784-016-0319-7 |
[9] | M. Cichoń, M. M. A. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0 |
[10] | K. Cichoń, M. Cichoń, M. M. A. Metwali, On some fixed point theorems in abstract duality pairs, Rev. Union Math. Argent., 61 (2020), 249–266. https://doi.org/10.33044/revuma.v61n2a04 doi: 10.33044/revuma.v61n2a04 |
[11] | M. Cichoń, M. M. A. Metwali, On the Banach algebra of integral-variation type Holder spaces and quadratic fractional integral equations, Banach J. Math. Anal., 16 (2022), 34. https://doi.org/10.1007/s43037-022-00188-4 doi: 10.1007/s43037-022-00188-4 |
[12] | C. Cowan, A. Razani, Singular solutions of a Lane-Emden system, Discrete Cont. Dyn. Syst., 41 (2021), 621–656. http://dx.doi.org/10.3934/dcds.2020291 doi: 10.3934/dcds.2020291 |
[13] | B. C. Dhage, On some variants of Schauder's fixed point principle and applications to nonlinear integral equations, J. Math. Phys. Sci., 25 (1988), 603–611. |
[14] | G. Garcia, G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl., 472 (2019), 1220–1235. https://doi.org/10.1016/j.jmaa.2018.11.073 doi: 10.1016/j.jmaa.2018.11.073 |
[15] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988. |
[16] | S. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl., 156 (2008), 333–342. https://doi.org/10.1016/j.jmaa.2007.03.091 doi: 10.1016/j.jmaa.2007.03.091 |
[17] | A. Jeribi, B. Krichen, B. Mefteh, Fixed point theory in WC-Banach algebras, Turk. J. Math., 40 (2016), 283–291. https://doi.org/10.3906/mat-1504-42 doi: 10.3906/mat-1504-42 |
[18] | M. A. Krasnoselskii, L. A. Ladyzhenskii, The scope of the concept of a $u_{0}$-concave operator, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1959), 112–121. |
[19] | M. A. Krasnosel'skii, L. A. Ladyzhenskii, The structure of the spectrum of positive nonhomogeneous operators, Tr. Mosk. Mat. Obs., 3 (1954), 321–346. |
[20] | M. A. Krasnoselskii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Moscow, 1975. |
[21] | M. Kunze, On a special class of nonlinear integral equations, J. Integral Equ. Appl., 7 (1995), 329–350. https://doi.org/10.1216/jiea/1181075882 doi: 10.1216/jiea/1181075882 |
[22] | K. Li, J. Liang, T. J. Xiato, A fixed point theorem for convex and decreasing operators, Nonlinear Anal., 63 (2005), 206–209. https://doi.org/10.1016/j.na.2004.12.014 doi: 10.1016/j.na.2004.12.014 |
[23] | Z. D. Liang, W. X. Wang, S. J. Li, On concave operators, Acta Math. Sinica, 22 (2006), 577–582. https://doi.org/10.1007/s10114-005-0687-1 doi: 10.1007/s10114-005-0687-1 |
[24] | Mohamed M. A. Metwali, Solvability of Gripenberg's equations of fractional order with perturbation term in weighted $L_p$-spaces on $R^+$, Turk. J. Math., 22 (2022), 481–498. https://doi.org/10.3906/mat-2106-84 doi: 10.3906/mat-2106-84 |
[25] | E. Picard, Traite d'analyse, Tome Ⅲ, Paris: Gauthier-Villars, 1908. |
[26] | A. J. B. Potter, Applications of Hilbert's projective metric to certain classes of non-homogenous operators, Q. J. Math., 28 (1977), 93–99. https://doi.org/10.1093/qmath/28.1.93 doi: 10.1093/qmath/28.1.93 |
[27] | W. Rudin, Functional analysis, 2 Eds., New York: McGraw-Hill, 1991. |
[28] | Y. Sang, Y. Ren, Nonlinear sum operator equations and applications to elastic beam equation and fractional differential equation, Bound. Value Probl., 2019 (2019), 49. https://doi.org/10.1186/s13661-019-1160-x doi: 10.1186/s13661-019-1160-x |
[29] | Y. Sang, L. He, Existence of an approximate solution for a class of fractional multi-point boundary value problems with the derivative term, Bound. Value Probl., 2021 (2021), 20. https://doi.org/10.1186/s13661-021-01497-7 doi: 10.1186/s13661-021-01497-7 |
[30] | S. Song, L. Zhang, B. Zhou, N.Zhang, Existence-uniqueness of positive solutions to nonlinear impulsive fractional differential systems and optimal control, Bound. Value Probl., 2020 (2020), 162. https://doi.org/10.1186/s13661-020-01461-x doi: 10.1186/s13661-020-01461-x |
[31] | Y. Yang, D. Ji, Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function, AIMS Math., 5 (2020), 7359–7371. https://doi.org/10.3934/math.2020471 doi: 10.3934/math.2020471 |
[32] | C. Zhai, Li. Wang, $\varphi$-$(h, e)$-concave operators and applications, J. Math. Anal. Appl., 454 (2017), 571–584. https://doi.org/10.1016/j.jmaa.2017.05.010 doi: 10.1016/j.jmaa.2017.05.010 |
[33] | C. Zhai, F. Wang, Properties of positive solutions for the operator $Ax = \lambda x$ and applications to fractional diffeential equations with integral boundary conditions, Adv. Differ. Equ., 2015 (2015), 366. https://doi.org/10.1186/s13662-015-0704-3 doi: 10.1186/s13662-015-0704-3 |
[34] | C. Zhai, C. Yang, X. Zhang, Positive solutions for nonlinear operator equations and several classes of applications to functional equations, Math. Z., 266 (2010), 43–63. https://doi.org/10.1007/s00209-009-0553-4 doi: 10.1007/s00209-009-0553-4 |
[35] | C. Zhai, C. Yang, C. M. Guo, Positive solutions of operator equation on ordered Banach spaces and applications, Comput. Math. Appl., 56 (2008), 3150–3156. https://doi.org/10.1016/j.camwa.2008.09.005 doi: 10.1016/j.camwa.2008.09.005 |