Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article Special Issues

Existence and uniqueness of a positive solutions for the product of operators

  • In this paper, we prove the existence of a positive solution for some equations involving multiplication of concave (possibly nonlinear) operators. Also, we provide a successively sequence to approximate the solution for such equations. This kind of the solution is necessary for quadratic differential and integral equations.

    Citation: Golnaz Pakgalb, Mohammad Jahangiri Rad, Ali Salimi Shamloo, Majid Derafshpour. Existence and uniqueness of a positive solutions for the product of operators[J]. AIMS Mathematics, 2022, 7(10): 18853-18869. doi: 10.3934/math.20221038

    Related Papers:

    [1] Tao Xie, Wenqing Zheng . Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances. AIMS Mathematics, 2024, 9(2): 3097-3125. doi: 10.3934/math.2024151
    [2] Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226
    [3] Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262
    [4] Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214
    [5] Yinjie Qian, Lian Duan, Hui Wei . New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects. AIMS Mathematics, 2022, 7(9): 16962-16974. doi: 10.3934/math.2022931
    [6] Jiaqing Zhu, Guodong Zhang, Leimin Wang . Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control. AIMS Mathematics, 2024, 9(3): 7627-7644. doi: 10.3934/math.2024370
    [7] Qike Zhang, Wenxiang Fang, Tao Xie . Robustness analysis of exponential synchronization in complex dynamic networks with random perturbations. AIMS Mathematics, 2023, 8(9): 20487-20509. doi: 10.3934/math.20231044
    [8] Jingyang Ran, Tiecheng Zhang . Fixed-time synchronization control of fuzzy inertial neural networks with mismatched parameters and structures. AIMS Mathematics, 2024, 9(11): 31721-31739. doi: 10.3934/math.20241525
    [9] Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101
    [10] Ruoyu Wei, Jinde Cao, Wenhua Qian, Changfeng Xue, Xiaoshuai Ding . Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method. AIMS Mathematics, 2021, 6(7): 6915-6932. doi: 10.3934/math.2021405
  • In this paper, we prove the existence of a positive solution for some equations involving multiplication of concave (possibly nonlinear) operators. Also, we provide a successively sequence to approximate the solution for such equations. This kind of the solution is necessary for quadratic differential and integral equations.



    The memristors were initially introduced by Chua in 1971 to describe the relationship between charge and magnetic flux [1]. It was predicted to be the fourth fundamental circuit element, distinct from resistors, capacitors and inductors. In 2008, the research team at HP laboratories successfully created a practical memristor device with valuable applications [2]. Similar to conventional resistors, the memristors can handle safe currents through the device. Furthermore, its value changes based on the amount of charge passing through it, therefore the memristors have memory functionality [3,4,5,6,7]. As a result, an increasing number of researchers have been using memristors instead of traditional resistors to serve as connection weights between neurons and for self-feedback connection weights, forming a state-dependent nonlinear switching system known as a memristive neural networks (MNNs). Compared to conventional artificial neural networks (NNs), MNNs possess stronger computational capabilities and information capacity, thereby enhancing the applications of NNs in associative memory, signal processing and image processing [8,9,10,11,12,13].

    The dynamic behavior of MNNs is fundamental to their applications; therefore, it necessary to analyze their dynamic characteristics [10,14]. Among the various dynamic behaviors of MNNs, synchronization is an important and fundamental feature. The synchronization of MNNs has garnered extensive attention from researchers due to its numerous potential applications in artificial intelligence, information science, secure communications and various other fields [15,16,17]. In [5], Du et al. derived finite-time (FNT) synchronization criteria for fractional-order MNNs with delays using the fractional-order Gronwall inequality. The FNT/fixed time (FXT) stability of MNNs was tudied in [18], by designing a synovial membrane controller, the MNNs reaches the sliding-mode surface in FNT/FXT. In [10,11,12,13,14,15,16,17,18], synchronization criteria were obtained for MNNs with either delays or random interference. The above discussions mostly focus on the synchronization of MNNs with time delays, and few have considered the exponential synchronization (ESy) of MNNs with deviating arguments (DAs).

    The theory of DAs differential equations was proposed by Shah and Wiener in 1983 [19]. In [20], by transforming these equations into equivalent integral equations, new stability conditions were obtained. These equations involve DAs, combining the properties of discrete and continuous equations [21,22,23]. During the system's operation, the relevant arguments characteristics can be altered, allowing the system to become a combination of lag and advance equations [24,25]. As a result, systems with DAs have broader applications compared to systems with time delays. Reference [26] investigates recurrent neural networks with DAs and establishes criteria for the global exponential stability. In order to further explore the impact of DAs on the exponential stability (ESt) of the systems, the robustness analysis of a fuzzy cellular neural networks with DAs and stochastic disturbance is discussed in [23]. The signals transmitted between MNNs are inevitably subject to stochastic perturbations (SPs) caused by environmental uncertainties [27,28,29,30,31]. For systems with SPs, the feature can significantly impact the dynamic behavior of the system, leading to either synchronization or desynchronization under certain levels of SPs [32,33,34]. For example, for the following simple linear systems dx(t)=ax(t)dt and dy(t)=ay(t)dt, the error system is de(t)=ae(t)dt. The system is stable only when a<0. However, the stability of the system is affected by SPs. Therefore, consider the following system de(t)=ae(t)dt+be(t)dB(t). The system is almost surely ESt if and only if the condition b2>2a is satisfied [35]. Then, the error system is ESt, it implies that x(t) and y(t) are exponential synchronization (ESy). Based on the above discussions, we reach the following conclusion: SPs can disrupt the ESy of a system that was synchronized or facilitate the ESy of a system that was initially unsynchronized. If a MNNs with SPs are ESy, can we obtain upper bounds such that the MNNs remains ESy when the SPs are smaller than the bounds?

    Based on the discussion above, MNNs can lose synchronization when subjected to disturbances from external perturbations and DAs, provided that the intensity of perturbations and the width of arguments exceed certain limits. In [27,30,31,32,33,34,36,37], there are important results regarding the synchronization of MNNs under external disturbances. In [21,22,23], scholars research on MNNs with DAs. It is important to note that the aforementioned literature primarily focuses on the synchronization of MNNs than its robustness. Therefore, an interesting question arises: Under the control strategy, how much argument length and perturbation intensity can MNNs with ESy endure without losing synchronization?

    The major contributions of this paper include the following aspects:

    Compared to the references [5,6,7,11,16], we focus on the synchronization of MNNs with DAs. The systems with DAs have broader applications compared to traditionally time-delayed systems.

    The references [8,9,10,11,12,13,14,15,16,17] extensively investigated MNNs with time delays, providing various stability and synchronization criteria. In references [28,29,33,34], the robustness of ESt in systems with both time delays and SPs was further explored. In references [23,27], Fang et al. studied the robustness of ESt in fuzzy cellular neural networks with DAs. In contrast to the aforementioned literatures, we focus on the robustness of ESy in MNNs, utilizing the set-valued mapping method, differential inclusion theory and Gronwall inequalities, we derive the upper bounds for the DAs and SPs.

    Compared to the references [22,23,24,25,32,33,34]. The MNNs with state switching that we consider and results in a more complex system structure.

    The paper is organized as follows. In Section Ⅱ, we introduce the model, assumptions and some preliminary lemmas. In Section Ⅲ, we present the theorems and lemmas derived in this paper. In Section Ⅵ, we provide several examples to validate the feasibility of our results. Finally, in Section Ⅴ, we have summarized the work carried out in this paper.

    In the paper, Rn is Euclidean space, N represents integers, ||χ(t)|| is the norm of vector χ(t), where χ(t)Rn and ||χ(t)||=np=1|χ(t)|, the norm ||A|| of the matrix A is given by ||A||, where A=max1qnnp=1|apq|. For two real-valued sequences ρk,ηk, where kN, it holds that ρk<ρk+1, ρkηkρk+1 for all kN with ηk as k.

    Let (Ω,F,{Ft}tt0,P) is a complete probability space with a filtration {Ft}tt0 (the filtration contains all P-null sets and is right continuous). LPF0([τ,0];Rn) is the family of all F0-measurable C([τ,0];Rn), the state variable ξ={ξ(s);τξ(s)0} satisfies supτs0E(||ξ(s)||P). E() is the mathematical expectation in the probability space.

    Consider the MNNs as the derive system with the SPs,

    dwp(t)=[dpwp(t)+nq=1apq(wq(t))fq(wq(t))+Ip(t)]dt+σwp(t)dω(t), (2.1)

    where p=1,2,,n, wp(t) are the state variables, and fq(wq(t)) are the activation functions; dp>0 is a self-feedback connection weights and Ip(t) is the external inputs, apq(wq(t)) is the memristive connection weights, σ is the interference intensity. ωi(t) represents Brownian motion on the compete space.

    For convenience, we use wp,wq, apq(wq),up, ω to replace wp(t),wq(t),apq(wq(t)),up(t), ω(t), respectively. The initial conditions of (2.1) is

    wp(t0)=φp.

    The corresponding response system,

    dvp(t)=[dpvp(t)+nq=1apq(vq(t))fq(vq(t))+Ip(t)+up(t)]dt+σvp(t)dω(t). (2.2)

    For convenience, we use vp,vq, apq(vq),up to replace vp(t),vq(t),apq(vq(t)),up(t), respectively. Then, the memristive parameter of (2.1) and (2.2) are expressed as

    aij(wq)={aˊ

    where i, j\in \mathbb{N} , weights \acute{{a}_{pq}} , \grave{a}_{pq} and switching jumps T_{q} > 0 . The initial value of (2) are

    \begin{aligned} v_{p}(t_{0}) = \phi_{p}. \end{aligned}

    The linear feedback controller u_{p} is designed as follows

    \begin{array}{c} u_{p}(t) = -\xi_{p}(v_{p}(t)-w_{p}(t)). \end{array}

    The error system between the drive system (2.1) and the response system (2.2) is defined as

    \begin{equation} \begin{aligned} &e_{p} = v_{p}-w_{p},\; \psi_{p}^{1} = \phi_{p}-\varphi_{p},\; p\in \mathbb{N}.\\ \end{aligned} \end{equation} (2.3)

    Remark 1. We can observe that MNNs can be categorized as discontinuous switched systems, which necessitates considering the solution to MNNs (1) using the Filippov's sense. In the following, we will introduce certain definitions pertaining to set-valued maps and the Filippov solution.

    Definition 1. (Set-valued map [38]) Consider a set E\in\mathbb{R}^{n} . A set-valued map is defined as follows: For each point x in the set E , there exists a nonempty set F(x)\in \mathbb{R}^{n} such that x is mapped to F(x) .

    Definition 2. (Differential inclusion [38]) For a discontinuous differential system \dot{r}(t) = \mathbb{F}(t, r_{t}) , t\geq 0 , the function r_{t} is the solution of the differential equation in the Filippov sense, t\in [0, t_{1}] , t_{1}\geq 0 , if is absolutely continuous and satisfies the following differential inclusion:

    \begin{aligned} \dot{r}\in \mathbb{G}(t,r_{t}), \end{aligned}

    where t\in [0, +\infty] , r\in \mathbb{R}^{n} , the initial condition r(0) = r_{0}\in \mathbb{C}([-\tau, 0], \mathbb{R}^{n}) . The \mathbb{G}(t, r_{t}) is a set-valued mapping, satisfies

    \begin{aligned} \mathbb{G}(t, r_{t}) = \bigcap\limits_{\varGamma > 0} \bigcap\limits_{\delta (\mathbb{N}) = 0} \overline {\operatorname{co}}[f(\mathbb{B}(r_{t},\varGamma ) \backslash \mathbb{N})], \end{aligned}

    where \overline {\operatorname{co}} is the convex closure hull of a set, \mathbb{B}(r_{t}, \varGamma) = \{x:\|x-r_{t}\| \leq \varGamma\} , \varGamma > 0 and \delta(\mathbb{N}) is Lebesgue measure of set \mathbb{N} .

    The set value mapps of memristive parameters is as follows:

    K\left[a_{pq}\left(w_{q}\right)\right] = \left\{\begin{array}{ll} \acute{a}_{pq}, & \left|w_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{a}_{pq}, \grave{a}_{pq}\right\}, & \left|w_{q}\right| = T_{q}, \\ \grave{a}_{pq}, & \left|w_{q}\right| > T_{q}, \end{array}\right.\; K\left[a_{pq}\left(v_{q}\right)\right] = \left\{\begin{array}{ll} \acute{a}_{pq}, & \left|v_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{a}_{pq}, \grave{a}_{pq}\right\}, & \left|v_{q}\right| = T_{q}, \\ \grave{a}_{pq}, & \left|w_{q}\right| > T_{q}, \end{array}\right.

    where p, q\in \mathbb{N} . K[a_{pq} (w_{q})] and K[a_{pq}(v_{q})] are all closed, convex and compact about w_{q} , v_{q} .

    According to Definitions 1 and 2, the Filippov solution of the systems (1) and (2) can be written as:

    \begin{equation} \begin{aligned} dw_{p}(t)\in&[-d_{p}w_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(w_{q})] f_{q}(w_{q})+I_{p}]ds +\sigma w_{p}d\omega. \end{aligned} \end{equation} (2.4)
    \begin{equation} \begin{aligned} dv_{p}(t)\in&[-d_{p}v_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(v_{q})]f_{q}(v_{q}) +I_{p}+u_{p}]dt+\sigma w_{p}(t) d\omega.\\ \end{aligned} \end{equation} (2.5)

    Similarly, there exist

    \begin{array}{ll} \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right],\; \check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq} \left(v_{q}\right)\right], \end{array}

    such that

    \begin{equation} \begin{aligned} dw_{p} = &[-d_{p}w_{p} +\sum\limits_{q = 1}^{n}\bar{a}_{pq}(w_{q})f_{q}(w_{q})+I_{p}]ds +\sigma w_{p}d\omega,\\ d{v}_{p} = &[-d_{p}v_{p} +\sum\limits_{q = 1}^{n}\check{a}_{pq}(v_{q})f_{q}(v_{q}) +I_{p}+u_{p}]dt+\sigma w_{p}d\omega.\\ \end{aligned} \end{equation} (2.6)

    From (6), let e_{p} = v_{p}-w_{p} ,

    \begin{equation} \begin{aligned} de_{p} = -[(d_{p}+\xi_{p})e_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(e_{q}) f_{q}(e_{p})]dt +\sigma e_{p}d\omega, \end{aligned} \end{equation} (2.7)

    where \hat{a}_{pq}(e_{q})f_{q}(e_{q}) = \bar{a}_{pq}(w_{q})f_{q}(w_{q}) -\check{a}_{pq}(v_{q})f_{q}({v_{q}}) .

    The following error system without random disturbance:

    \begin{equation} \begin{aligned} \dot{z}_{p} = &-(d_{p}+\xi_{p})z_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(z_{q})f_{q}(z_{q}).\\ \end{aligned} \end{equation} (2.8)

    The initial conditions is

    \begin{aligned} z_{p}(t_{0}) = \psi_{p}^{2},\; p = 1,\cdots,n. \end{aligned}

    The (2.7) and (2.8) can be rewritten as

    \begin{equation} \begin{array}{l} de(t) = [-(D+C)e(t)+\hat{A} F(e(t))]dt +\sigma e(t) d\omega(t)\\ \dot{z}(t) = -(D+C)z(t)+\hat{A}F(z(t)), \end{array} \end{equation} (2.9)

    where e(t) = (e_{1}(t), \cdots, e_{n}(t))\; ^{T} , z(t) = (z_{1}(t), \cdots, z_{n}(t))^{T} , C = \operatorname{diag}\left\{\xi_{1}, \xi_{2}, \; \cdots\; , \xi_{n}\right\} , D = \operatorname{diag}\left\{d_{1}, d_{2}, \; \cdots\; , d_{n}\right\} , \hat{A} = \left(\hat{a}_{pq}\right)_{n \times n} , F(e(t)) = (f_{1}(e_{1}(t)), \cdots, f_{n}(e_{n}(t)))^{T} .

    The mian result of the paper are base on the following definitions, assumptions and lemmas.

    Definition 3. (Exponential synchronization (ESy)) If the error system \chi(t) is exponential stability (ESt). Then, the MNNs (2.1) and (2.2) are described as ESy, there exsit two nonnegative constant \alpha and \beta ,

    \begin{array}{c} ||\chi(t)||\le \alpha||\psi^{1}||\exp(-\beta(t-t_{0})), \end{array}

    where \psi^{1} = (\psi^{1}_{1}, \cdots, \psi^{1}_{n})^{T} is any initial condition, t\le 0 .

    Definition 4. (Mean square exponential synchronization (MSESy)) The state \chi(t) of system (2.7) is said to be MSESt. Then the MNNs (2.1) and (2.2) are described as MSESy, if for any t_{0}\in\mathbb{R}^{+} , \psi^{1}\in\mathbb{R}^{n} , there exist \theta > 0 and \vartheta > 0 such that

    \begin{aligned} E||\chi(t)||^{2}\le \theta||\psi^{1}||^{2}\exp\{-2\vartheta(t-t_{0})\}. \end{aligned}

    Assumption 1. The activation functions f_{q}(\cdot) and g_{q}(\cdot) satisfy

    \begin{aligned} ||f_{q}(w_{p}) -f_{q}(v_{p})||\le f^{*}_{q}||w_{p}-v_{p}||,\; ||g_{q}(w_{p}) -f_{q}(v_{p})||\le g^{*}_{q}||w_{p}-v_{p}||, \end{aligned}

    where f^{*}_{q}, g^{*}_{q} > 0 are Lipschitz constants, w_{p}, v_{p}\in \mathbb{R}^{n} .

    Under Assumption 1, we have the following conclude: The MSESt of system (2.7) implies the almost sure ESt of system (2.7), see [39].

    Assumption 2. f_{q}\left(\pm T_{q}\right) = g_{q}\left(\pm T_{q}\right) = 0 .

    Lemma 1. [14] From Assumptions 1 and 2, then

    \begin{array}{l} \left|K\left[a_{pq}\left(v_{q}\right)\right] f_{q}\left(v_{q}\right)-K\left[a_{pq}\left(w_{q}\right)\right] f_{q}\left(w_{q}\right)\right| \leq a_{pq}^{*} f_{q}^{*} \left|v_{q}-w_{q}\right| \end{array}

    for i, j \in \mathbb{N} .

    That is, for any \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right], \check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq}\left(v_{q}\right)\right] .

    \begin{array}{c} \left|\check{a}_{j}\left(v_{q}\right) f_{q} \left(v_{q}\right)-\bar{a}_{pq}\left(w_{q}\right) f_{q}\left(w_{q}\right)\right| \leq a_{pq}^{*} f_{q}^{*}\left|v_{q}-w_{q}\right|, \end{array}

    where a_{pq}^{*} = \max\left\{\left|\acute{a}_{pq}\right|, \left|\grave{a}_{pq}\right|\right\} .

    Lemma 2. [40] (Granwall inequalities) Suppose \vartheta(t) , \theta(t) and u(t) are continuous real-valued functions, and \theta(t) is integrable over the interval I = [t_{0}, t] , if \vartheta (t)\geq 0 and u (t) satisfies

    \begin{aligned} u(t) \leq \theta(t)+\int_{t_{0}}^{t}\vartheta (s) u(s) d s, \end{aligned}

    then,

    \begin{aligned} u(t) \leq \theta(t)+\int_{t_{0}}^{t} \theta(s) \vartheta (s) \exp \left(\int_{s}^{t} \vartheta (r) d r\right) d s, \end{aligned}

    where t > t_{0} .

    In addition, if \theta(t) is non-decreasing, then

    \begin{aligned} u(t) \leq \theta(t) \exp \left(\int_{t_{0}}^{t} \vartheta (s) d s\right) . \end{aligned}

    Assumption 3. There exists a nonnegative constant \rho that satisfies, \rho_{k+1}-\rho_{k}\le \rho , for all k\in\mathbb{N} .

    Assumption 4. h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\} < 1 ,

    where h_{1} = ||B^{*}||||G^{*}||\rho , h_{2} = ||C||+||D||+||A^{*}||||F^{*}|| .

    Assumption 5. \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) < 1 ,

    where l_{1} = 9\rho^{2}||B^{*}||^{2}||G^{*}||^{2} , l_{2} = 3\rho(2||C||^{2} +2||D||^{2}+||A^{*}||^{2}||F^{*}||^{2}) +\theta^{2} .

    Under the influence of the linear controller, the error system (2.7) can achieve ESt, that is, systems (2.1) and (2.2) can achieve ESy. The next question is how much the SPs and DAs intensities can make the system can maintain ESy.

    Theorem 1. Let Assumption 1 hold, MNNs (2.8) is ESt. Then MNNs (2.7) is ESt, that is, the master system MNNs (2.1) and the slave system MNNs (2.2) are ESy. if |\sigma|\le\bar\sigma , \bar\sigma is the unique nonnegative solution of the transcendental equation below.

    \begin{equation} \begin{aligned} &(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2}\\ &+||C||^{2}+3||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} = 1, \end{aligned} \end{equation} (3.1)

    where \mathbb{T} > \ln(2\theta)/(4\vartheta) > 0 , A^{*} = (a_{pq}^{*})_{n\times n} , F^{*} = \max_{j\in\mathbb{N}}\{f_{q}^{*}\} , \mathbb{T} is the time interval.

    Proof. z(t) and e(t) have the same initial value, \psi^{1} = \psi^{2} ,

    \begin{aligned} z(t)-e(t) = &\int_{t_{0}}^{t} [-D(z(s)-e(s))+\hat{A}F(z(s))-\hat{A}F(e(s)) -C(z(s)-e(s))]dt-\int_{t_{0}}^{t}\sigma e(s)d\omega (t).\\ \end{aligned}

    The ESt of the MNNs (2.8), when t > t_{0} ,

    \begin{aligned} \int_{t_{0}}^{t}E||z(s)||^{2} = & \int_{t_{0}}^{t}\theta ||\psi^{2}||\exp\{-2\vartheta(t-t_{0})\} \le \theta ||\psi^{2}||^{2}/2\vartheta.\\ \end{aligned}

    When t\le t_{o}+2\mathbb{T} , by utilizing the Cauchy-Schwarz inequalities and Lemma 1, we can conclude the following:

    \begin{aligned} E||z(t)-e(t)||^{2}\le& 2E||\int_{t_{0}}^{t} \left[-D\left(z(s)-e(s)\right)+\hat{A}F(z(s)) -\hat{A}F(e(s)) -C(z(s)-e(s))\right]ds||^{2}\\ &-2E||\int_{t_{0}}^{t}\sigma e(t)d\omega (s)||^{2}\\ \le&2E\int_{t_{0}}^{t}1ds\int_{t_{0}}^{t} \left[||-D(z(s)-e(s)) +\hat{A}F(z(s))-\hat{A}F(e(s)) -C(z(s) -e(s))||\right]^{2}dt\\ &+2\sigma^{2}\int_{t_{0}}^{t} E||e(s) -z(s)+z(s)||^{2}ds\\ \le&4\mathbb{T}E\int_{t_{0}}^{t} 4(||D||^{2}||z(s)-e(s)||^{2} +||A^{*}||^{2} ||F^{*}||^{2}||z(s)||^{2} +||A^{*}||^{2} ||F^{*}||^{2}||e(s)||^{2}\\ &+||C||^{2} ||z(s)-e(s)||^{2})ds+2\sigma^{2}\int_{t_{0}}^{t} E||e(s) -z(s)+z(s)||^{2}ds.\\ \end{aligned}

    Then,

    \begin{equation} \begin{aligned} E||z(t)-e(t)||^{2}\le&\left[16\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right] \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds\\ &+\left(16\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right)\int_{t_{0}}^{t} E||z(s)||^{2}ds\\ \le&\left[16\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right] \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds\\ &+\left(8\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +2\sigma^{2}\right)\theta||\psi^{2}|| ^{2}/\vartheta, \end{aligned} \end{equation} (3.2)

    When t_{0}+\mathbb{T}\le t\le t_{0}+2\mathbb{T} , by applying Lemma 2,

    \begin{equation} \begin{aligned} E||z(t)-e(t)||^{2} \le& \left(8\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +2\sigma^{2}\right)\theta||\psi^{2}|| ^{2}/\vartheta \exp\Big\{(16\mathbb{T}(||D||^{2}\\ &+||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2})(t-t_{0})\Big\}\\ \le&\left(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2}\right)\theta/\vartheta \exp\Big\{8\mathbb{T}(4(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2}\Big\}\\ &\times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+2\mathbb{T}}E||z(t)||^{2}\biggr). \end{aligned} \end{equation} (3.3)

    When t_{0}+\mathbb{T}\le t\le t_{0}+2\mathbb{T} ,

    \begin{equation} \begin{aligned} E||e(t)||^{2}\le& 2E||z(t)-e(t)||^{2} +2E||z(t)||^{2}\\ \le&\biggl((24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\biggr)\\ &\times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+\mathbb{T}}E||z(t)||^{2}\biggr) +2\theta ||\psi^{2}||^{2}\exp\{-2\vartheta (t-t_{0})\}\\ \le&\biggl(\Big(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2}\Big)\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\\ &+2\theta \exp\{-4\vartheta \mathbb{T}\}\biggr) \times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+\mathbb{T}}||e(t)||^{2}\biggr). \end{aligned} \end{equation} (3.4)

    From (11), when |\sigma| < \bar\sigma ,

    \begin{aligned} &(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+3||A^{*}||^{2}k^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} < 1. \end{aligned}

    Let

    \begin{aligned} \gamma = -\ln\biggl\{(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+3||A^{*}||^{2}k^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} \biggr\}/\mathbb{T}. \end{aligned}

    So, \gamma > 0 ,

    \begin{equation} \begin{aligned} \sup _{t_{0}+\mathbb{T} \leq t \leq t_{0} +2 \mathbb{T}}||e(t)|| \leq \exp (-\gamma \mathbb{T}) \left(\sup _{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e(t)||\right). \end{aligned} \end{equation} (3.5)

    Then, for any nonnegative integer \mathbb{M} = 1, 2, \cdots , when t\geq t_{0}+(\mathbb{M}-1)\mathbb{T} ,

    \begin{equation} \begin{aligned} e\left(t ; t_{0}, e_{0}\right) = e\left(t ; t_{0}+(\mathbb{M}-1)\mathbb{T}, e(t_{0}+(\mathbb{M}-1)\mathbb{T})\right). \end{aligned} \end{equation} (3.6)

    From (3.5) and (3.6)

    \begin{aligned} \sup\limits_{t_{0}+\mathbb{M}\mathbb{T} \leq t \leq t_{0} +(m+1)\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)|| & = \Biggl(\sup _{t_{0}+(\mathbb{M}-1)\mathbb{T}+\mathbb{T} \leq t \leq t_{0}+(\mathbb{M}-1)\mathbb{T}+2 T} ||e\left(t ; t_{0}+(\mathbb{M}-1)\mathbb{T}, e\left(t_{0}+(\mathbb{M}-1)\mathbb{T} ; t_{0}, e_{0} \right)\right)|| \Biggr) \\ &\leq \exp (-\gamma \mathbb{T})\left(\sup _{t_{0}+(\mathbb{M}-1)\mathbb{T} \leq t \leq t_{0} +m\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||\right) \\ &\leq \exp (-\gamma \mathbb{M}\mathbb{T})\left(\sup _{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||\right) \\ & = \aleph \exp (-\gamma \mathbb{M}\mathbb{T}), \\ \end{aligned}

    where

    \begin{aligned} \aleph = \sup\limits_{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||. \end{aligned}

    So for \forall t > t_{0}+\mathbb{T} , there have a nonnegative integer \mathbb{M} such that t_{0}+\mathbb{M}\mathbb{T} \leq t \leq t_{0}+(\mathbb{M}+1)\mathbb{T} ,

    \begin{array}{l} ||e\left(t ; t_{0}, e_{0}\right)|| \leq \aleph \exp \left(-\gamma t+\gamma t_{0}+\gamma T\right) = (\aleph \exp (\gamma T)) \exp \left(-\gamma\left(t-t_{0}\right)\right) . \end{array}

    The condition is also genuine when t_{0} \leq t \leq t_{0}+\mathbb{T} . So system (2.7) is ESt.

    The following analysis considers the influence of the DAs on the ESy of the master-slave system.

    Consider the derive system with the DAs,

    \begin{equation} \begin{aligned} \dot{w}_{p}(t) = &-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(w_{q}(\gamma(t)))g_{q}(w_{q}(\gamma(t))) +I_{p}(t)\\ w_{p}(t_{0}) = &\varphi _{0}, \end{aligned} \end{equation} (3.7)

    where g_{q}(w_{q}(t)) is the activation functions with DAs, a_{pq}(w_{q}(t)) and b_{pq}(w_{q}(\gamma(t))) are the memristive connection weights without and with DAs respectively.

    The corresponding response system:

    \begin{equation} \begin{aligned} &\dot{v}_{p}(t) = -d_{p}v_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t))) +I_{p}(t)+u_{p}(t)\\ &v_{p}(t_{0}) = \phi_{0}. \end{aligned} \end{equation} (3.8)

    The Filippov solution of the systems (3.7) and (3.8) are

    \begin{equation} \begin{aligned} \dot{w}_{p}\in&-d_{p}w_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(w_{q})] f(w_{q}) +\sum\limits_{q = 1}^{n}K[b_{pq}(w_{q}(\gamma))] g(w_{q}(\gamma))+w_{p}, \end{aligned} \end{equation} (3.9)
    \begin{equation} \begin{aligned} \dot{v}_{p}\in&-d_{p}v_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(v_{q})]f(v_{q}) +\sum\limits_{q = 1}^{n}K[b_{pq}(v_{q}(\gamma))] g(v_{q}(\gamma))+w_{p}+u_{p},\\ \end{aligned} \end{equation} (3.10)

    in which w(\gamma) = w(\gamma(t)) , v(\gamma) = v(\gamma(t)) .

    The set-valued maps be defined as follows

    K\left[b_{pq}\left(\tilde{w}_{q}\right)\right] = \left\{\begin{array}{ll} \acute{b}_{pq}, & \left|\tilde{w}_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{b}_{pq}, \grave{b}_{pq}\right\}, & \left|\tilde{w}_{q}\right| = T_{q}, \\ \grave{b}_{pq}, & \left|\tilde{w}_{q}\right| > T_{q}, \end{array}\right. K\left[b_{pq}\left(\tilde{v}_{q}\right)\right] = \left\{\begin{array}{ll} \acute{b}_{pq}, & \left|\tilde{v}_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{b}_{pq}, \grave{b}_{pq}\right\}, & \left|\tilde{v}_{q}\right| = T_{q}, \\ \grave{b}_{pq}, & \left|\tilde{v}_{q}\right| > T_{q}, \end{array}\right.

    where \tilde{w}_{q}, \tilde{v}_{q} to replace w_{q}(\gamma), v_{q}(\gamma) . K[a_{pq} (\tilde{w}_{q})] and K[a_{pq}(\tilde{v}_{q})] are all closed, convex and compact about \tilde{w}_{q} , \tilde{v}_{q} .

    There exist

    \begin{array}{ll} \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right], & \bar{b}_{pq} \left(\tilde{w}_{q}\right) \in K\left[b_{pq}\left(\tilde{w}_{q}\right)\right], \\ \\\check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq} \left(v_{q}\right)\right], &\check{b}_{pq}\left(\tilde{v}_{q}\right) \in K\left[b_{pq} \left(\tilde{v}_{q}\right)\right]. \end{array}

    Let e_{p} = v_{p}-w_{p} ,

    \begin{equation} \begin{aligned} \dot{e}_{p} = &-(d_{p}+\xi_{p})e_{q} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(e_{q}) f_{q}(e_{q}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq} (e_{q}(\gamma)) g_{q}(e_{p}(\gamma)), \end{aligned} \end{equation} (3.11)

    where \hat{b}_{pq}(e_{q})g_{q}(e_{p}) = \bar{b}_{pq}(w_{q})g_{q}(w_{p}) -\check{b}_{pq}(v_{q})g_{q}({v_{p}}) .

    The following error system without DAs,

    \begin{equation} \begin{aligned} \dot{z}_{p} = -(d_{p}+\xi_{p})z_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(z_{q})f_{q}(z_{q}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq}(z_{q})g_{q}(z_{q}).\\ \end{aligned} \end{equation} (3.12)

    The (3.11) and (3.12) can be rewritten as

    \begin{equation} \begin{aligned} &\dot{e}(t) = -De(t)+\hat{A}Fe(t)+\hat{B}G(e(\gamma(t)))-Ce(t),\\ \end{aligned} \end{equation} (3.13)
    \begin{equation} \begin{aligned} &\dot{z}(t) = -Dz(t)+\hat{A}Fz(t)+\hat{B}G(e(t))-Cz(t),\\ \end{aligned} \end{equation} (3.14)

    where \hat{B} = \left(\hat{b}_{pq}\right)_{n \times n} , G(e(t)) = (g_{1}(e_{1}(t)), \cdots, g_{n}(e_{n}(t)))^{T} .

    Lemma 3. Consider the MNNs (3.11) with DAs and the Assumptions 3 and 4 hold, the following inequality is established,

    \begin{equation} \begin{aligned} e(\gamma(t))\le \mu e(t). \end{aligned} \end{equation} (3.15)

    Proof. For \gamma(t) = \eta_{k} and \eta_{k} \in [\rho_{k}, \rho_{k+1}] ,

    \begin{aligned} e(t) = &e(\eta_{k})+\int_{\eta_{k}}^{t} (-De(s)+\hat{A}F(e(s)) +\hat{B}(G(e(s)))-Ce(s))ds. \end{aligned}

    Utilizing Lemmas 1 and 2,

    \begin{aligned} ||e(t)||\le& ||e(\eta_{k})||+||\int_{\eta_{k}}^{t} (-De(s)+\hat{A}F(e(s)) +\hat{B}Ge(\eta_{k})-Ce(s))ds||\\ \le&(1+||B^{*}||||G^{*}||\rho)||e(\eta_{k})||+\int_{\eta_{k}}^{t} (||C||+||D|| +||A^{*}||||F^{*}||)||e(s)||ds\\ \le& [(1+||B^{*}||G^{*}||\rho)||e(\eta_{k})||] \exp\{(||C||+||D|| +||A^{*}||||F^{*}||)\rho\},\\ \end{aligned}

    where B^{*} = (b_{pq}^{*})_{n\times n} , G^{*} = \max_{q\in\mathbb{N}}\{g_{q}^{*}\} , then

    \begin{aligned} ||e(\eta_{k})||\le&||e(t)||+\rho||B^{*}||||G^{*}|| ||e(\eta_{k})|| +\int_{\eta_{k}}^{t}(||C||+||D||+ ||A^{*}||||F^{*}||)||e(s)||ds\\ \le&||e(t)||+(h_{1}\rho+h_{2}\rho(1+h_{1}\rho)) ||e(\eta_{k})||\exp\{h_{2}\rho\}, \end{aligned}

    where h_{1} = ||B^{*}||||G^{*}|| , h_{2} = ||C||+||D||+||A^{*}||||F^{*}|| .

    \begin{aligned} \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)||e(\eta_{k})|| \le||e(t)||. \end{aligned}

    Therefore, for Assumption 4,

    \begin{equation} \begin{aligned} ||e(\eta_{k})||\le& \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)^{-1}||e(t)||\\ = &\mu ||e(t)||, \end{aligned} \end{equation} (3.16)

    where \mu = \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)^{-1} , for t \in [\rho_{k}, \rho_{k+1}] . With regards to arbitrary values of t and k , (3.16) holds for t\in \mathbb{R}^{+} .

    Remark 2. When considering MNNs (3.11) on the interval [\rho_{k}, \rho_{k+1}] , where k\in\mathbb{N} , if \rho_{k}\le t < \eta_{k} , MNNs (3.11) behaves as an advanced system. Conversely, if \eta_{k} < t \le \rho_{k+1} , MMN (3.11) behaves as a retarded system.

    Theorem 2. If Assumptions 1–4 hold, MNNs (3.11) is ESt. Then MMNs (3.12) is ESt, that is, the derive system MNNs (3.7) and the response system MNNs (3.8) are ESy. If |\rho|\le \min\{\bar{\rho}, \tilde{\rho}\} , where \bar{\rho} is a unique nonnegative solution of the transcend equation:

    \begin{equation} \begin{aligned} k_{2}\alpha/\beta\exp\{2k_{1}\mathbb{T}\}+ \alpha\exp\{-\beta \mathbb{T}\} = 1, \end{aligned} \end{equation} (3.17)

    where \mathbb{T} > \ln(\alpha)/\beta , k_{1} = ||C||+||D||+||A^{*}||||F^{*}||+ \mu||B^{*}||||G^{*}|| , k_{2} = (1+\mu)||B^{*}||||G^{*}|| .

    The \tilde{\rho} is a unique positive solution of the transcend equation:

    \begin{equation} \begin{aligned} (h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\}) = 1. \end{aligned} \end{equation} (3.18)

    Proof. Utilizing Lemmas 1 and 3, initial value \psi^{1} = \psi^{2} , we can conclude the following

    \begin{equation} \begin{aligned} ||z(t)-e(t)||\le&||\int_{t_{0}}^{t} \left[-(C+D)(z(s)-e(s))+\hat{A}F(z(s)) -\hat{A}F(e(s))+\hat{B}G(z(s))- \hat{B}G((\gamma(s)))\right]ds\\ \le&\int_{t_{0}}^{t} \left((||C||+||D|| +||A^{*}|||F^{*}||) ||z(s)-e(s)||ds +||B^{*}||||G^{*}|| ||z(s)|| +||B^{*}||||G^{*}||||e(\gamma(s))||\right)ds\\ \le&\int_{t_{0}}^{t} ((||C||+||D||+||A^{*}|||F^{*}||)||z(s) -e(s)||\\ &+||B^{*}||||G^{*}|| ||z(s)|| +\mu||B^{*}||||G^{*}||||e(s)-z(s)+z(s)||)ds\\ \le&\int_{t_{0}}^{t} (||C||+||D||+||A^{*}|||F^{*}|| +\mu||B^{*}||||G^{*}||) ||z(s)-e(s)||ds\\ &+\int_{t_{0}}^{t}((1+\mu)||B^{*}||||G^{*}||) ||z(s)||ds\\ \le&\int_{t_{0}}^{t}k_{1}(z(s)-e(s))ds +k_{2}||\psi^{2}||\alpha/\beta, \end{aligned} \end{equation} (3.19)

    where k_{1} = ||C||+||D||+||A^{*}||||F^{*}||+ \mu||B^{*}||||G^{*}|| , k_{2} = (1+\mu)||B^{*}||||G^{*}|| .

    By Lemma 2, when t_{0}+\mathbb{T}-\rho\le t\le t_{0}+2\mathbb{T} ,

    \begin{aligned} ||e(t)-z(t)||\le k_{2}\alpha/\beta||\psi^{2}||\exp\{2k_{1} \mathbb{T}\}. \end{aligned}

    So, when t_{0}+\mathbb{T} -\rho\le t\le t_{0}+2\mathbb{T} , from (3.19) and the global exponential stability of (3.12),

    \begin{equation} \begin{aligned} ||e(t)|| = &||e(t)-z(t)+z(t)||\\ \le&k_{2}\alpha/\beta||\psi^{2}||\exp\{2k_{1}\mathbb{T}\} +\alpha||\psi^{2}||\exp\{-\beta \mathbb{T}\}\\ \le&\Big(k_{2}\alpha/\beta\exp\{2k_{1}\mathbb{T}\} +\alpha\exp\{-\beta \mathbb{T}\}\Big) \biggl(\sup _{t_{0}-\rho \leq t \leq t_{0} +\mathbb{T}}||e(t)||\Biggr). \end{aligned} \end{equation} (3.20)

    From (3.20), when |\rho|\le\bar{\rho} ,

    \begin{aligned} k_{2}\alpha/\beta\exp\{2k_{1}T\}+ \alpha\exp\{-\beta T\} < 1. \end{aligned}

    Let \kappa_{1} = -(\ln (k_{2}\alpha/\beta\exp\{2k_{1}T\}+ \alpha\exp\{-\beta T\}))/\mathbb{T}, \kappa_{1} > 0 , when t_{0}-\rho+\mathbb{T}\le t\le t_{0}+ 2\mathbb{T} ,

    \begin{equation} \begin{aligned} \sup\limits_{t_{0}-\rho+\mathbb{T}\le t\le t_{0}+2\mathbb{T}}||e(t)|| \le \exp (-\rho \mathbb{T}) \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}}||e(t)||. \end{aligned} \end{equation} (3.21)

    Consider the existence and uniqueness of the solution e(t) of (8), when t > t_{0}-\xi+(\mathbb{M}-1)\mathbb{T} ,

    \begin{equation} \begin{aligned} e(t,t_{0},x_{0}) = &e(t,t_{0}-\xi+(\mathbb{M}-1)\mathbb{T}, e(t_{0}-\xi+(\mathbb{M}-1)\mathbb{T},t_{0},x_{0})). \end{aligned} \end{equation} (3.22)

    From (3.21) and (3.22),

    \begin{aligned} \sup\limits_{t_{0}-\rho+m\mathbb{T}\le t\le t_{0}+(m+1)\mathbb{T} }||e(t,t_{0},e_{0})|| & = \sup\limits_{t_{0}-\rho+(\mathbb{M}-1)\mathbb{T}+\mathbb{T} \le t\le t_{0}+(\mathbb{M}-1)\mathbb{T}+2\mathbb{T}} ||e(t,t_{0}-\rho+(\mathbb{M}-1)\mathbb{T}, \\e(t_{0}-\rho +(\mathbb{M}-1)\mathbb{T} ;t_{0},e_{0}))|| &\le \exp(-\rho \mathbb{T})\sup\limits_{t_{0}-\rho+(\mathbb{M}-1)\mathbb{T} \le t\le t_{0}+m\mathbb{T}} ||e(t;t_{0},e_{0})||\\ &\le \exp (-\rho m\mathbb{T})\sup\limits_{t_{0}-\rho\le t\le t_{0}+ \mathbb{T}}||e(t;t_{0},e_{0})||\\ & = \kappa_{2} \exp {-\rho m\mathbb{T}}, \end{aligned}

    where \kappa_{2} = \sup_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} ||e(t; t_{0}, e_{0})|| .

    To go a step further, there is the only scalar m\in \mathbb{N} such that t_{0}-\rho +(\mathbb{M}-1)\mathbb{T} \le t\le t_{0}+\mathbb{M}\mathbb{T} ,

    \begin{equation} \begin{aligned} ||e(t;t_{0},x_{0})||&\le \kappa_{2}\exp(-\rho \mathbb{M}\mathbb{T} ) \le \kappa_{2}\exp(\rho\mathbb{T})\exp(-\rho(t-t_{0})). \end{aligned} \end{equation} (3.23)

    Clerly, (3.23) holds for t_{0}-\rho\le t\le t_{0}+\mathbb{T} .

    The following consider MNNs with SPs and DAs,

    \begin{equation} \begin{aligned} dw_{p}(t) = &[-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t)))+w_{p}(t)]dt +\sigma w_{p}(t)d\omega(t).\\ \end{aligned} \end{equation} (3.24)

    The corresponding response system,

    \begin{equation} \begin{aligned} d{v}_{p}(t) = &[-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(v_{q}(t))f(v_{q}(t))+\sum\limits_{q = 1}^{n}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t)))+w_{p}(t)+u_{p}(t)]ds\\ & +\sigma v_{p}(t)d\omega(t).\\ \end{aligned} \end{equation} (3.25)

    Let e_{p} = v_{p}-w_{p} ,

    \begin{equation} \begin{aligned} de_{p} = &[-d_{p}e_{p}+\sum\limits_{q = 1}^{n} \hat{a}_{pq}(e_{q})f_{q}(e_{p}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq}(e_{q}(\gamma)) g_{q}(e_{q}(\gamma))-\xi_{p}e_{p}]ds +\sigma e_{p}d\omega.\\ \end{aligned} \end{equation} (3.26)

    The original system is

    \begin{equation} \begin{aligned} \dot{z}_{p} = &-d_{p}z_{p}+\sum\limits_{q = 1}^{n} \hat{a}_{pq}(z_{q})f_{q}(z_{q}) +\hat{b}_{pq}(z_{q}) g_{q}(z_{q})-\xi_{p}e_{p}.\\ \end{aligned} \end{equation} (3.27)

    Further,

    \begin{aligned} &de(t) = [-De(t)+\hat{A}Fe(t)+\hat{B}G((\gamma(t))) -Ce(t)]dt+\sigma e(t)d\omega(t)\\ &\dot{z}(t) = -De(t)+\hat{A}Fe(t)+\hat{B}G((t))-Ce(t). \end{aligned}

    Lemma 4. Let Assumptions 3 and 5 hold, then the following inequality

    \begin{equation} \begin{aligned} E||e(\gamma(t))||^{2}\le \lambda ||e(t)||^{2} \end{aligned} \end{equation} (3.28)

    holds for all t\in \mathbb{R}^{+} , where \lambda = 3(1-\varpi)^{-1} , \varpi = \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) .

    Proof. For \gamma(t) = \eta_{k} , t\in [\rho_{k}, \rho_{k+1}] , \forall t\in \mathbb{R}^{+} , \exists k\in \mathbb{N} , we have

    \begin{aligned} E||e(t)||^{2}\le& E||e(\eta_{k})+ \int_{\eta_{k}}^{t} \left[-(C+D)e(s) +\hat{A}F(e(s)) +\hat{B}G((\eta_{k}))\right]ds +\int_{\eta_{k}}^{t}\sigma e(s)d\omega(s)||^{2}\\ \le&3\left[E||e(\eta_{k})||^{2}+E||\int_{\eta_{k}}^{t} \left[-(C+D)e(s)+\hat{A}F(e(s)) +\hat{B}G((\eta_{k}))\right]ds||^{2}+E||\int_{\eta_{k}}^{t} \sigma e(s)d\omega(s)||^{2}\right]\\ \le &3\Big[E||e(\eta_{k})||^{2}+3\rho E\int_{\eta_{k}} ^{t}2(||C||^{2}+||D||^{2})||e(s)||^{2} +||A^{*}||^{2}||F^{*}||^{2}||e(s)||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2}||e(\eta_{k})||^{2} +\sigma^{2}\int_{\eta_{k}}^{t}E||e(s)||^{2}ds\Big]\\ \le&3(1+3\rho^{2}||B^{*}||^{2}||G^{*}||^{2})E||e(\eta_{k})||^{2} +3(3\rho(2||C||^{2}+2||D||^{2}+ ||A^{*}||^{2} ||F^{*}||^{2}) +\sigma^{2})\int_{\eta_{k}}^{t}E||e(s)|| ^{2}ds.\\ \end{aligned}

    Applying Lemma 2,

    \begin{aligned} E||e(t)||^{2}\le&(3+9\rho^{2}||B^{*}||^{2}||G^{*}||^{2}) E||e(\eta_{k})||^{2} \exp\{3\rho(3\rho(2||C||^{2} +2||D||^{2} +||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\\ = &(3+l_{1})E||e(\eta_{k})||^{2}\exp\{3\rho l_{2}\}, \end{aligned}

    where l_{1} = 9\rho^{2}||B^{*}||^{2}||G^{*}||^{2} , l_{2} = 3\rho(2||C||^{2} +2||D||^{2}+||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2} .

    Similarly, for t \in [\rho_{k}, \rho_{k+1}] ,

    \begin{aligned} E||e(\eta_{k})||^{2}\le&3\biggl[E||e(s)||^{2} +E||\int_{eta_{k}}^{t}(-(C+D)e(s) +\hat{A}Fe(s)+\hat{B}Ge(s))ds||^{2} +E||\int_{\eta_{k}}^{t}\sigma e(s)d\omega(s)||^{2} \biggr]\\ \le&3\biggl[E||e(s)||^{2} +3\rho E\int_{eta_{k}}^{t}(2(||C||^{2} +||D||^{2})||e(s)||^{2} +||A^{*}||^{2}||F^{2}||||e(s)||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2}||e(\eta_{k})||^{2})ds +\sigma^{2}\int_{\eta_{k}}^{t} E||e(s)||^{2}ds\biggr]\\ = &3E||e(s)||^{2}+9\rho^{2}||B^{*}||^{2} ||G^{*}||^{2}||e(\eta_{k})||^{2} +3(3\rho((2||C^{*}||^{2}+2||D^{*}||^{2})\\ &+||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\int_{\eta_{k}}^{t} E||e(s)||^{2}ds\\ = &3E||e(s)||^{2}+\rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2})\exp\{3\rho l_{2}\} ||e(\eta_{k})||^{2}. \end{aligned}

    By the Assumption 5,

    \begin{equation} \begin{aligned} E||e(\eta_{k})||^{2}\le&3(1-\varpi)^{-1} E||e(s)||^{2}\\ = &\lambda E||e(s)||^{2},\\ \end{aligned} \end{equation} (3.29)

    where \varpi = \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) , \lambda = 3(1-\varpi)^{-1} . Therefore, (3.29) holds for t \in [\rho_{k}, \rho_{k+1}] . By the randomicities of t and k , (3.29) holds for all t\in\mathbb{R} .

    In the following, we investigate the effects of DAs and SPs on the robustness of ESy of MNNs (3.26).

    Theorem 3. If {Assumptions 3–5} and {Definition 4} hold, MNNs (3.27) is ESt. Then MMNs (3.26) is ESt, that is, the derive system MNNs (3.24) and the response system MNNs (3.25) are ESy. If |\sigma|\le \bar{\sigma} , |\rho| \le\min\{\bar{\rho}, \tilde{\rho}\} where \bar{\rho} is a unique nonnegative solution of the transcend equation:

    \begin{equation} \begin{array}{c} \upsilon_{2}\theta ||\psi^{2}||^{2} /\beta\exp\{2\upsilon_{1}\mathbb{T}\} +2\theta ||\psi^{2}||^{2}\exp\{-2\mathbb{T}\beta\} = 1, \end{array} \end{equation} (3.30)

    where \upsilon_{1} = (24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) , \upsilon_{2} = (12\mathbb{T}(2+2\lambda^{2}) ||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2}) . The \tilde{\rho} is a unique nonnegative solution of the transcend equation:

    \begin{equation} \begin{aligned} l_{1} +9\rho l_{1}l_{2}\exp\{3\rho l_{2}\} = 1. \end{aligned} \end{equation} (3.31)

    The \bar{\sigma} is a unique nonnegative solution of the transcend equation:

    \begin{equation} \begin{aligned} &(36\mathbb{T}(||A^{*}||^{2} ||F^{*}||^{2}+||B^{*}||^{2}||G^{*}||^{2}) +2\sigma^{2})\theta/\vartheta \exp\{12\mathbb{T}(4\mathbb{T}(||D||^{2}\\ &+||C||^{2}+3||A^{*}||^{2}||F^{*}||^{2} +3||B^{*}||^{2}||G^{*}||^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} = 1. \end{aligned} \end{equation} (3.32)

    Proof. When t_{0}-\rho\le t\le t_{0}+2\mathbb{T} , By applying Lemma 4, initial value \psi^{1} = \psi^{2} ,

    \begin{aligned} E||z(t)-e(t)||^{2}\le& 2E||\int_{t_{0}}^{t} [-(C+D)(z(s)-e(s)) +\hat{A}F(z(s))-\hat{A}F(e(s)) +\hat{B}G(z(s))-\hat{B}G((\gamma(s)))]ds||^{2}\\ &+2E||\int_{t_{0}}^{t} \sigma e(s)d\omega(s)||^{2}\\ \le&2E\int_{t_{0}}^{t}1^{2}ds\int_{t_{0}}^{t} 6[(||C||^{2}+||D||^{2}) +||A^{*}||^{2}||F^{*}||^{2} ||z(s)||^{2} +||A^{*}||^{2}||F^{*}||^{2}||e(s)||^{2}\\ & +||B^{*}||^{2}||G^{*}||^{2}||z(s)||^{2}+||B^{*}||^{2}||G^{*}||^{2}|| e(\gamma(s))||^{2}]ds +2\sigma^{2}||\int_{t_{0}}^{t}\ E|| e(s)||^{2}ds\\ \le&4\mathbb{T}E\int_{t_{0}}^{t} 6[(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2}) ||z(s)-e(s)||^{2} +(2||A^{*}||^{2}||F^{*}||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2})||z(s)||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2}|| e(s)-z(s)+z(s)||^{2}]ds\\ &+2\sigma^{2}\int_{t_{0}}^{t}\ E|| e(s)-z(s)+z(s)||^{2}ds\\ \le&(24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}\\ &+(24\mathbb{T}(2+2\lambda^{2})||B^{*}||^{2}||G^{*}||^{2} +4\sigma^{2})\int_{t_{0}}^{t}E||e(s)||^{2}\\ \le&(24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) \int_{t_{0}}^{t}E||z(s) -e(s)||^{2}\\ &+(12\mathbb{T}(2+2\lambda^{2})||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2})\theta ||\psi^{2}||^{2}/\vartheta \\ = &\upsilon _{1}\int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds +\upsilon_{2}\theta ||\psi^{2}||^{2}/\vartheta, \end{aligned}

    where \upsilon_{1} = (24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) , \upsilon_{2} = (12\mathbb{T}(2+2\lambda^{2}) ||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2}) .

    When t_{0}-\rho\le t\le t_{0}+2\mathbb{T} , By applying Lemma 2,

    \begin{aligned} E||z(t)-e(t)||^{2} \le &\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} \times \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||z(t)||^{2}. \end{aligned}

    Then,

    \begin{aligned} E||e(t)||^{2}\le&2E||z(t)-e(t)||^{2}+2E||z(t)||^{2}\\ \le&\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||z(t)||^{2} +2\theta ||\psi^{2}||^{2}\exp\{-2\vartheta (t-t_{0})\}\\ \le&(\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} +2\theta\exp\{-2\mathbb{T}\vartheta \}) \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||e(t)||^{2}.\\ \end{aligned}

    When |\rho|\le\min\{\bar{\rho}, \tilde{\rho}\} , |\sigma|\le\bar{\sigma} ,

    \begin{aligned} \upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} +2\theta ||\psi^{2}||^{2}\exp\{-2\mathbb{T}\beta\}\le 1. \end{aligned}

    We demonstrate the aforementioned theoretical results through three numerical simulations.

    Example 1. Consider two dimensional MNNs with SPs.

    \begin{equation} \begin{aligned} dw_{p}(t) = &[-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +w_{p}(t)]dt+\sigma w_{p}(t)d\omega(t),\; i = 1,2,\\ \end{aligned} \end{equation} (4.1)

    where

    a_{11}\left(w_{1}\right) = \left\{ \begin{array}{l} 0.1, \quad\left|w_{1}\right| \leq 1, \\ -0.1, \quad\left|w_{1}\right| > 1, \end{array}\right. a_{12}\left(w_{2}\right) = \left\{ \begin{array}{l} 0.2, \quad\left|w_{2}\right| \leq 1, \\ -0.2, \quad\left|w_{2}\right| > 1, \end{array}\right.
    a_{21}\left(w_{1}\right) = \left\{ \begin{array}{l} 0.1, \quad\left|w_{1}\right| \leq 1, \\ -0.1, \quad\left|w_{1}\right| > 1, \end{array}\right. a_{22}\left(w_{2}\right) = \left\{ \begin{array}{l} 0.2, \quad\left|w_{2}\right| \leq 1, \\ -0.2, \quad\left|w_{2}\right| > 1, \end{array}\right.

    w_{1} = (w_{1}, w_{2}) , d_{1} = d_{2} = 1, q = 1, 2 , f_{q}(w_{q}) = tanh(w_{q}) , w_{1} = w_{2} = 0 , \phi_{1} = (0.3, 0.35)^{T}, \phi_{2} = (0.2, 0.25)^{T} .

    The response system is

    \begin{equation} \begin{aligned} dv_{p}(t) = &[-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t))f(v_{q}(t)) +w_{p}(t)+u_{p}(t)]dt +\sigma w_{p}(t)d\omega(t),\; i = 1,2,\\ \end{aligned} \end{equation} (4.2)

    where \varphi_{1} = (-0.1, -0.15)^{T}, \varphi_{2} = (-0.2, -0.25)^{T} .

    Let \theta = 1.1 , \vartheta = 0.2 , \mathbb{T}\le\ln(\theta)/\vartheta = 0.01 , ||A^{*}|| = 0.1, ||F^{*}|| = 1, ||C|| = 0.7, ||D|| = 1 .

    Solving the following transcedental equation,

    \begin{aligned} 2.2(24&\times0.01\times0.01+2\sigma)\exp\{ 0.08(0.04(1+0.49 +0.03)+\sigma)\} +2.2\exp\{-4.4\times 0.2\} = 1. \end{aligned}

    We can obtain \bar{\sigma} = 0.1364 , let \sigma = 0.04 , \sigma = 0.06 , \sigma = 0.1 , The state trajectories of MMNs (4.1) and MNNs (4.2) are shown in Figures 13, respectively. It can be seen from the figures that when time tends to infinity, the states of a and b tend to 0 This can show that when the perturbations intensity \sigma is less than \bar{\sigma} , the drive-response systems can achieve Esy. When \sigma = 0.25 , The states are illustrated in Figure 4.

    Figure 1.  State of x(t) and y(t) with \sigma = 0.04 .
    Figure 2.  State of x(t) and y(t) with \sigma = 0.06 .
    Figure 3.  State of x(t) and y(t) with \sigma = 0.1 .
    Figure 4.  State of x(t) and y(t) with \sigma = 0.25 .

    Example 2. Consider two-dimensional MNNs with DAs,

    \begin{equation} \begin{aligned} \dot{w}_{p}(t) = &-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t)) f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t))) +w_{p}(t),\; i = 1,2,\\ \end{aligned} \end{equation} (4.3)

    where

    a_{11}\left(w_{1}\right) = \left\{ \begin{aligned} 0.125, &\quad\left|w_{1}\right| \leq 1, \\ -0.125, &\quad\left|w_{1}\right| > 1, \end{aligned}\right.\; a_{12}\left(w_{2}\right) = \left\{ \begin{aligned} 0.15, &\quad\left|w_{2}\right| \leq 1, \\ -0.15, &\quad\left|w_{2}\right| > 1, \end{aligned}\right.
    a_{21}\left(w_{1}\right) = \left\{ \begin{aligned} 0.125, &\quad\left|w_{1}\right| \leq 1, \\ -0.125, &\quad\left|w_{1}\right| > 1, \end{aligned}\right.\; a_{22}\left(w_{2}\right) = \left\{ \begin{aligned} 0.15, &\quad\left|w_{2}\right| \leq 1, \\ -0.15, &\quad\left|w_{2}\right| > 1, \end{aligned}\right.
    b_{11}\left(\tilde{w}_{1}\right) = \left\{ \begin{aligned} 0.2, &\quad\left|\tilde{w}_{1}\right| \leq 1, \\ -0.2, &\quad\left|\tilde{w}_{1}\right| > 1, \end{aligned}\right.\; b_{12}\left(\tilde{w}_{2}\right) = \left\{ \begin{aligned} 0.1, &\quad\left|\tilde{w}_{2}\right| \leq 1, \\ -0.1, &\quad\left|\tilde{w}_{2}\right| > 1, \end{aligned}\right.
    b_{21}\left(\tilde{w}_{1}\right) = \left\{ \begin{aligned} 0.2, \quad\left|\tilde{w}_{1}\right| \leq 1, \\ -0.2, \quad\left|\tilde{w}_{1}\right| > 1, \end{aligned}\right.\; b_{22}\left(\tilde{w}_{2}\right) = \left\{ \begin{aligned} 0.1, &\quad\left|\tilde{w}_{2}\right| \leq 1, \\ -0.1, &\quad\left|\tilde{w}_{2}\right| > 1, \end{aligned}\right.

    where \tilde{w}_{q} = w_{q}(\gamma) , w_{1} = (w_{1}, w_{2}) , d_{1} = d_{2} = 1, q = 1, 2 , f_{q}(w_{q}) = tanh(w_{q}) , g_{q}(w_{q}) = |w_{q}+1|-|w_{q}-1| , w_{1} = w_{2} = 0 , \phi_{1} = (3, 4)^{T}, \phi_{2} = (1, 2)^{T} .

    The response system is

    \begin{equation} \begin{aligned} \dot{v}_{p}(t) = &-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t))) +w_{p}(t)+u_{p}(t),\; i = 1,2,\\ \end{aligned} \end{equation} (4.4)

    where \varphi_{1} = (-3, -4)^{T}, \varphi_{2} = (-1, -2)^{T} .

    Let \alpha = 1.1 , \beta = 0.5 , \mathbb{T}\le\ln(\theta)/\vartheta = 0.01 , ||A^{*}|| = 0.726, ||B^{*}||^{2} = 0.1 ||F^{*}|| = 1, ||G^{*}|| = 1 ||C|| = 0.01, ||D|| = -1 .

    Solving the following transcedental equations,

    \begin{aligned} 0.001\rho+1.772\rho(1+1.772\rho) \exp\{1.772\rho\} = 1, \end{aligned}
    \begin{aligned} &0.22(1+\mu)\exp\{0.02(1.772+0.1\mu)\} +1.1\exp\{-0.5\times0.01\} = 1. \end{aligned}

    We can obtain \bar{\rho} = 0.2506 , \tilde{\rho} = 0.3314 , let \rho = 0.2 , \rho = 0.15 , \rho = 0.1 , \rho = 0.25 , when the length of the DAs in the systems is less than the calculated upper bound, we have that MNNs (4.3) and (4.4) with the controllers is ESy. The states of the MNNs (4.3) and (4.4) are shown in Figures 48, respectively.

    Figure 5.  The state with \rho = 0.2 .
    Figure 6.  The state with \rho = 0.15 .
    Figure 7.  The state with \rho = 0.1.
    Figure 8.  The state with \rho = 0.25.

    Example 3. Consider two-dimensional MNNs with DAs and SPs.

    \begin{equation} \begin{aligned} dw_{p}(t) = &-[d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t)) f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t)))\\ &+w_{p}(t)]dt+\sigma w_{p}d\omega(t).\; i = 1,2.\\ \end{aligned} \end{equation} (4.5)

    All other parameters remain the same as in Example 2. The response system is,

    \begin{equation} \begin{aligned} dv_{p}(t) = &-[d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t)))\\ &+w_{p}(t)+u_{p}(t)]dt+\sigma v_{p}d\omega(t),\; i = 1,2.\\ \end{aligned} \end{equation} (4.6)

    Solving the transcedental equations. We can obtain \bar{\rho} = 0.1567 , \tilde{\rho} = 0.4374 , \bar{\sigma} = 0.2463 , let \rho = 0.1 , \sigma = 0.04 , we have that MNNs (4.5) and (4.6) is ESy, the state trajectories are shown in Figure 9. when \rho = 0.05 , \sigma = 0.04 , the state trajectories are shown in Figure 10. When \rho = 0.9 , \sigma = 0.1 , the state trajectories are shown in Figure 11.

    Figure 9.  The state of MMNs (51) and (52) with \sigma = 0.1 and \rho = 0.04.
    Figure 10.  The state of MMNs (51) and (52) with \sigma = 0.05 and \rho = 0.04.
    Figure 11.  The state of MMNs (51) and (52) with \sigma = 0.1 and \rho = 0.9.

    In this paper, the robustness analysis of MNNs exponential synchronization problem with DAs and SPs is studied by using the Granwall inequalities and inequality techniques, and a method different from Linear Matrix Inequality method (LMI) and Lyapunov theory is used to solve the synchronization robustness of MNNs.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 602–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114
    [2] J. Banaś, K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput. Model., 38 (2003), 245–250. https://doi.org/10.1016/S0895-7177(03)90084-7 doi: 10.1016/S0895-7177(03)90084-7
    [3] A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite \varphi-Laplacian-type equations, Open Math., 19 (2021), 163–183. https://doi.org/10.1515/math-2021-0003 doi: 10.1515/math-2021-0003
    [4] S. Chandrasekhar, Radiative transfer, New York: Dover Publications, 1960.
    [5] F. Chouia, T. Moussaoui, Some fixed point theorems in ordered Banach spaces and application, Appl. Math. E-Notes, 19 (2019), 433–444.
    [6] Y. Cheng, T. Carson, M. B. M. Elgindi, A note on the proof of the Perron-Frobenius theorem, Appl. Math., 3 (2012), 1697–1701. https://doi.org/10.4236/am.2012.311235 doi: 10.4236/am.2012.311235
    [7] C. Zhai, C. Guo, On \alpha-convex operators, J. Math. Anal. Appl., 316 (2006), 556–565. https://doi.org/10.1016/j.jmaa.2005.04.064 doi: 10.1016/j.jmaa.2005.04.064
    [8] M. Cichoń, M. M. A. Metwali, On a fixed point theorem for the product of operators, J. Fixed Point Theory Appl., 18 (2016), 753–770. https://doi.org/10.1007/s11784-016-0319-7 doi: 10.1007/s11784-016-0319-7
    [9] M. Cichoń, M. M. A. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0
    [10] K. Cichoń, M. Cichoń, M. M. A. Metwali, On some fixed point theorems in abstract duality pairs, Rev. Union Math. Argent., 61 (2020), 249–266. https://doi.org/10.33044/revuma.v61n2a04 doi: 10.33044/revuma.v61n2a04
    [11] M. Cichoń, M. M. A. Metwali, On the Banach algebra of integral-variation type Holder spaces and quadratic fractional integral equations, Banach J. Math. Anal., 16 (2022), 34. https://doi.org/10.1007/s43037-022-00188-4 doi: 10.1007/s43037-022-00188-4
    [12] C. Cowan, A. Razani, Singular solutions of a Lane-Emden system, Discrete Cont. Dyn. Syst., 41 (2021), 621–656. http://dx.doi.org/10.3934/dcds.2020291 doi: 10.3934/dcds.2020291
    [13] B. C. Dhage, On some variants of Schauder's fixed point principle and applications to nonlinear integral equations, J. Math. Phys. Sci., 25 (1988), 603–611.
    [14] G. Garcia, G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl., 472 (2019), 1220–1235. https://doi.org/10.1016/j.jmaa.2018.11.073 doi: 10.1016/j.jmaa.2018.11.073
    [15] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988.
    [16] S. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl., 156 (2008), 333–342. https://doi.org/10.1016/j.jmaa.2007.03.091 doi: 10.1016/j.jmaa.2007.03.091
    [17] A. Jeribi, B. Krichen, B. Mefteh, Fixed point theory in WC-Banach algebras, Turk. J. Math., 40 (2016), 283–291. https://doi.org/10.3906/mat-1504-42 doi: 10.3906/mat-1504-42
    [18] M. A. Krasnoselskii, L. A. Ladyzhenskii, The scope of the concept of a u_{0}-concave operator, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1959), 112–121.
    [19] M. A. Krasnosel'skii, L. A. Ladyzhenskii, The structure of the spectrum of positive nonhomogeneous operators, Tr. Mosk. Mat. Obs., 3 (1954), 321–346.
    [20] M. A. Krasnoselskii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Moscow, 1975.
    [21] M. Kunze, On a special class of nonlinear integral equations, J. Integral Equ. Appl., 7 (1995), 329–350. https://doi.org/10.1216/jiea/1181075882 doi: 10.1216/jiea/1181075882
    [22] K. Li, J. Liang, T. J. Xiato, A fixed point theorem for convex and decreasing operators, Nonlinear Anal., 63 (2005), 206–209. https://doi.org/10.1016/j.na.2004.12.014 doi: 10.1016/j.na.2004.12.014
    [23] Z. D. Liang, W. X. Wang, S. J. Li, On concave operators, Acta Math. Sinica, 22 (2006), 577–582. https://doi.org/10.1007/s10114-005-0687-1 doi: 10.1007/s10114-005-0687-1
    [24] Mohamed M. A. Metwali, Solvability of Gripenberg's equations of fractional order with perturbation term in weighted L_p-spaces on R^+, Turk. J. Math., 22 (2022), 481–498. https://doi.org/10.3906/mat-2106-84 doi: 10.3906/mat-2106-84
    [25] E. Picard, Traite d'analyse, Tome Ⅲ, Paris: Gauthier-Villars, 1908.
    [26] A. J. B. Potter, Applications of Hilbert's projective metric to certain classes of non-homogenous operators, Q. J. Math., 28 (1977), 93–99. https://doi.org/10.1093/qmath/28.1.93 doi: 10.1093/qmath/28.1.93
    [27] W. Rudin, Functional analysis, 2 Eds., New York: McGraw-Hill, 1991.
    [28] Y. Sang, Y. Ren, Nonlinear sum operator equations and applications to elastic beam equation and fractional differential equation, Bound. Value Probl., 2019 (2019), 49. https://doi.org/10.1186/s13661-019-1160-x doi: 10.1186/s13661-019-1160-x
    [29] Y. Sang, L. He, Existence of an approximate solution for a class of fractional multi-point boundary value problems with the derivative term, Bound. Value Probl., 2021 (2021), 20. https://doi.org/10.1186/s13661-021-01497-7 doi: 10.1186/s13661-021-01497-7
    [30] S. Song, L. Zhang, B. Zhou, N.Zhang, Existence-uniqueness of positive solutions to nonlinear impulsive fractional differential systems and optimal control, Bound. Value Probl., 2020 (2020), 162. https://doi.org/10.1186/s13661-020-01461-x doi: 10.1186/s13661-020-01461-x
    [31] Y. Yang, D. Ji, Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function, AIMS Math., 5 (2020), 7359–7371. https://doi.org/10.3934/math.2020471 doi: 10.3934/math.2020471
    [32] C. Zhai, Li. Wang, \varphi-(h, e)-concave operators and applications, J. Math. Anal. Appl., 454 (2017), 571–584. https://doi.org/10.1016/j.jmaa.2017.05.010 doi: 10.1016/j.jmaa.2017.05.010
    [33] C. Zhai, F. Wang, Properties of positive solutions for the operator Ax = \lambda x and applications to fractional diffeential equations with integral boundary conditions, Adv. Differ. Equ., 2015 (2015), 366. https://doi.org/10.1186/s13662-015-0704-3 doi: 10.1186/s13662-015-0704-3
    [34] C. Zhai, C. Yang, X. Zhang, Positive solutions for nonlinear operator equations and several classes of applications to functional equations, Math. Z., 266 (2010), 43–63. https://doi.org/10.1007/s00209-009-0553-4 doi: 10.1007/s00209-009-0553-4
    [35] C. Zhai, C. Yang, C. M. Guo, Positive solutions of operator equation on ordered Banach spaces and applications, Comput. Math. Appl., 56 (2008), 3150–3156. https://doi.org/10.1016/j.camwa.2008.09.005 doi: 10.1016/j.camwa.2008.09.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1903) PDF downloads(83) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog