In this paper, we study the finite time stability of stochastic $ \psi $-Hilfer fractional-order time-delay systems. Under the stochastic analysis techniques and the generalized Gronwall's inequality for $ \psi $-fractional derivative, the criterion of finite time stability of the solution for nonlinear stochastic $ \psi $-Hilfer fractional systems with time delay is obtained. An example is provided to illustrate the effectiveness of the proposed methods. Some known results in the literature are extended.
Citation: Qing Yang, Chuanzhi Bai, Dandan Yang. Finite-time stability of nonlinear stochastic $ \psi $-Hilfer fractional systems with time delay[J]. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037
In this paper, we study the finite time stability of stochastic $ \psi $-Hilfer fractional-order time-delay systems. Under the stochastic analysis techniques and the generalized Gronwall's inequality for $ \psi $-fractional derivative, the criterion of finite time stability of the solution for nonlinear stochastic $ \psi $-Hilfer fractional systems with time delay is obtained. An example is provided to illustrate the effectiveness of the proposed methods. Some known results in the literature are extended.
[1] | F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, Finite-time stability and control, London: Springer-Verlag, 2014. https://doi.org/10.1007/978-1-4471-5664-2 |
[2] | R. Yang, Y. Wang, Finite-time stability and stabilization of a class of nonlinear time-delay systems, SIAM J. Control Optim., 50 (2012), 3113–3131. https://doi.org/10.1137/11083798X doi: 10.1137/11083798X |
[3] | L. V. Hien, D. T. Son, Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays, Appl. Math. Comput., 251 (2015), 14–23. https://doi.org/10.1016/j.amc.2014.11.044 doi: 10.1016/j.amc.2014.11.044 |
[4] | L. Lee, Y. Liu, J. Liang, X. Cai, Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems, ISA Trans., 57 (2015), 172–178. https://doi.org/10.1016/j.isatra.2015.02.001 doi: 10.1016/j.isatra.2015.02.001 |
[5] | X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031 |
[6] | A. Jmal, O. Naifar, A. B. Makhlouf, N. Derbel, M. A. Hammami, On observer design for nonlinear Caputo fractional order systems, Asian J. Control, 20 (2018), 1533–1540. https://doi.org/10.1002/asjc.1645 doi: 10.1002/asjc.1645 |
[7] | O. Naifar, A. B. Makhlouf, M. A. Hammami, Comments on "Mittag-Leffler stability of fractional order nonlinear dynamic systems", Automatica, 75 (2017), 329. https://doi.org/10.1016/j.automatica.2016.09.023 doi: 10.1016/j.automatica.2016.09.023 |
[8] | M. P. Lazarevic, A. M. Spasic, Finite-time stability analysis of fractional order time-delay systems: Gronwall approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011 |
[9] | R. Wu, Y. Lu, L. Chen, Finite-time stability of fractional delayed neural networks, Neurocomputing, 149 (2015), 700–707. https://doi.org/10.1016/j.neucom.2014.07.060 doi: 10.1016/j.neucom.2014.07.060 |
[10] | M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. https://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063 |
[11] | F. Du, J. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079 |
[12] | P. Balasubramaniam, P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232–246. https://doi.org/10.1016/j.amc.2015.01.035 doi: 10.1016/j.amc.2015.01.035 |
[13] | Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677 |
[14] | C. Wei, Parameter estimation for partially observed stochastic differential equations driven by fractional Brownian motion, AIMS Math., 7 (2022), 12952–12961. https://doi.org/10.3934/math.2022717 doi: 10.3934/math.2022717 |
[15] | Y. Liu, M. Wnag, J. L. Wang, Stabilization of stochastic highly non-linear multi-links systems via aperiodically intermittent control, Automatica, 142 (2022), 110405. https://doi.org/10.1016/j.automatica.2022.110405 doi: 10.1016/j.automatica.2022.110405 |
[16] | L. Mchiri, A. B. Makhlouf, D. Baleanu, M. Rhaima, Finite-time stability of linear stochastic fractional-order systems with time delay, Adv. Differ. Equ., 2021 (2021), 345. https://doi.org/10.1186/s13662-021-03500-y doi: 10.1186/s13662-021-03500-y |
[17] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000. |
[18] | J. V. C. Sousa, E. C. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[19] | A. Suechoei, P. S. Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear $\psi$-Caputo fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 114. https://doi.org/10.1186/s13662-020-02570-8 doi: 10.1186/s13662-020-02570-8 |
[20] | W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for $\psi$-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Math., 6 (2021), 4119–4141. https://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244 |
[21] | D. Luo, K. Shah, Z. Luo, On the novel Ulam-Hyers stability for a class of nonlinear $\psi$-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16 (2019), 112. https://doi.org/10.1007/s00009-019-1387-x doi: 10.1007/s00009-019-1387-x |
[22] | A. M. Saeed, M. A. Almalahi, M. S. Abdo, Explicit iteration and unique solution for $\phi$-Hilfer type fractional Langevin equations, AIMS Math., 7 (2022), 3456–3476. https://doi.org/10.3934/math.2022192 doi: 10.3934/math.2022192 |
[23] | M. P. Lazarevic, A. M. Spasic, Finite-time stability analysis of fractional-order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011 |
[24] | Q. Dong, C. Liu, Z. Fan, Weighted fractional differential equations with infinite delay in Banach spaces, Open Math., 14 (2016), 370–383. https://doi.org/10.1515/math-2016-0035 doi: 10.1515/math-2016-0035 |
[25] | R. Almeida, A Gronwall inequality for a general Caputo fractional operator, Math. Inequal. Appl., 20 (2017), 1089–1105. https://doi.org/10.7153/mia-2017-20-70 doi: 10.7153/mia-2017-20-70 |
[26] | D. S. Oliveira, E. C. Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8 |
[27] | F. Wang, D. Chen, X. Zhang, Y. Wu, The existence and uniqueness theorem of the solution to a class of nonlinear fractional order system with time delay, Appl. Math. Lett., 53 (2016), 45–51. https://doi.org/10.1016/j.aml.2015.10.001 doi: 10.1016/j.aml.2015.10.001 |
[28] | J. Vanterler, J. V. V. Sousa, E. C. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. https://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02 |
[29] | S. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013 (2013), 549. https://doi.org/10.1186/1029-242x-2013-549 doi: 10.1186/1029-242x-2013-549 |
[30] | A. Seemab, J. Alzabut, M. Rehman, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal boundary conditions involving a $\psi$-Caputo fractional operator, 2020, arXiv: 2006.00391. |