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1. Introduction

Nonsmooth phenomena happen often in optimization theory, leading to the advancement of
numerous concepts of subdifferentials and generalized directional derivatives. Convexificators
generalize various well-known subdifferentials, such as Mordukhovich, Michel-Penot, and Clarke
subdifferentials. In 1994, Demyanov [11] introduced and studied the concept of convexificators as
an overview of the lower concave and upper convex approximations. Convexificators for positively
homogeneous and locally Lipschitz functions were studied by Demyanov and Jeyakumar [12].
Recently, Golestani and Nobakhtian [14], Li and Zhang [22], Long and Huang [23] and Luu [24]
used convexificators to get the best possible conditions for nonsmooth optimization problems. For
more information on convexificators, see [10, 21, 25] and the references therein.
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Approximation methods are very crucial in optimization theory because finding an exact solution is
sometimes unattainable or computationally very expensive. As a result, approximate efficient solutions
(AESs) can permeate the challenges given by computational flaws and modeling constraints. Mishra
and Laha [27] using locally Lipschitz approximately convex functions gave the idea of AESs for a
vector optimization problem (VOP) and by using approximate vector variational inequalities (VVIs) of
the Minty and Stampacchia form about the Clarke subdifferentials describe these approximate efficient
solutions. We refer the reader to [1, 6, 4, 3, 8, 7, 2, 33, 5, 15, 16, 19, 32] and the references therein for
additional literature on approximation and its applications.

Laha and Mishra [20] define Stampacchia and Minty VVIs in terms of a convexificator and use
them to identify necessary and sufficient criteria for a point to be a vector minimum point of the VOP.
Mishra and Upadhyay [28] and Upadhyay et al. [30] identified connections between a nonsmooth
vector optimization problems (NVOPs) and VVIs. Gupta and Mishra [17] introduced generalized
approximate convex functions and related vector variational inequalities to vector optimization
problems using Clarke’s subdifferentials. Joshi [19] considered a VOP using locally Lipschitz convex
maps and formulated a Minty and Stampacchia inequality. Motivated and inspired by the recent work
in this direction, we show some relationships between nonsmooth VVI problems and NVOPs using a
convexificator.

In Section 2, we review some notions and definitions that will be used in this paper. In Section 3,
we formulate approximate Stampacchia-Minty type VVIs in terms of a convexificator and utilize them
to describe an AES to the NVOP. A numerical example has also been shown to check the credibility of
the main results.

2. Preliminaries

In this section, we review some concepts of nonsmooth analysis; for more details one may refer
to [9]. Suppose Rn is the Euclidean space, Rn

+ is its nonnegative orthant and intRn
+ is the positive

orthant of Rn. Let R = R ∪ {∞} and 〈., .〉 be the notations for the extended real line and Euclidean
inner product, respectively. Let (µ, ν) and [µ, ν] be the notations for the open and closed line segments
joining µ and ν, respectively.

For µ, ν ∈ Rn, the conventions for the inequalities and equality are as follows:
µ = ν ⇔ µi ≥ νi, i = 1, 2, 3, ..., n ⇔ µ − ν ∈ Rn

+;
µ > ν ⇔ µi > νi, i = 1, 2, 3, ..., n ⇔ µ − ν ∈ intRn

+;
µ ≥ ν ⇔ µi ≥ νi, i = 1, 2, 3, ..., n, but µ , ν ⇔ µ − ν ∈ Rn

+ \ {0}.
In the sequel, let E be a nonempty subset of Rn. First of all, we need the following definitions.

Definition 2.1. [29] A function θ : E → R is called Lipschitz near µ ∈ E if

‖θ(ν) − θ(ω)‖ ≤ k ‖ν − ω‖

for some k > 0 and for all ν, ω ∈ Bδ(µ).

Definition 2.2. Let θ : E → R be a function, µ ∈ E and θ(µ) be finite. The upper and lower Dini
derivatives of θ at µ ∈ E in the direction r ∈ Rn are denoted by θ+(µ, r) and θ−(µ, r), respectively and
are defined as follows:

θ+(µ, r) = lim sup
λ→0

θ(µ + λr) − θ(µ)
λ

,
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θ−(µ, r) = lim inf
λ→0

θ(µ + λr) − θ(µ)
λ

.

Definition 2.3. [18] Let θ : E → R be a function, µ ∈ E and θ(µ) be finite. Then θ is said to be

(i) an upper convexificator ∂∗θ(µ) ⊆ Rn at µ ∈ E iff ∂∗θ(µ) is closed and for every r ∈ Rn we have

θ−(µ, r) ≤ sup
ξ∈∂∗θ(µ)

〈ξ, r〉 ,

(ii) a lower convexificator ∂∗θ(µ) ⊆ Rn at µ ∈ E iff ∂∗θ(µ) is closed and for every r ∈ Rn we have

θ+(µ, r) ≥ inf
ξ∈∂∗θ(µ)

〈ξ, r〉 ,

(iii) a convexificator ∂∗∗θ(µ) ⊆ Rn at µ ∈ E iff ∂∗∗θ(µ) is both an upper and a lower convexificator of θ
at µ.
Consequently, for every r ∈ Rn, we have

θ−(µ, r) ≤ sup
ξ∈∂∗∗θ(µ)

〈ξ, r〉 , θ+(µ, r) ≥ inf
ξ∈∂∗∗θ(µ)

〈ξ, r〉 .

We can extend the above definitions and properties to a locally Lipschitz vector-valued function
θ : E → Rp. We denote the components of θ by θi, i ∈ N = {1, 2, 3, ..., p}. The set ∂∗∗θ(µ) =

∂∗∗θ1(µ) × ∂∗∗θ2(µ) × ∂∗∗θ3(µ) × ... × ∂∗∗θp(µ) is the convexificator of θ at µ ∈ E.
Now onwards, we assume that E is a nonempty convex set unless otherwise specified.

Definition 2.4. Suppose θ : E → Rp is a locally Lipschitz map which permits a bounded convexificator
∂∗∗θ(ν) at ν ∈ E. Then θ is called ∂∗∗-approximate convex at µ0 ∈ E if for every ε > 0, ∃ δ > 0 satisfying

θ(ν) − θ(µ) = 〈ξ, ν − µ〉 − e‖ν − µ‖, ∀ ξ ∈ ∂∗∗θ(µ), ∀ µ, ν ∈ Bδ(µ0),

where e = (ε, ε, . . . , ε)︸       ︷︷       ︸
p

∈ intRp
+.

3. Approximate Minty and Stampacchia vector variational inequalities

We study the NVOP as follows:

Minimize
{
θ(µ) = (θ1(µ), θ2(µ), ..., θp(µ))

}
such that µ ∈ E,

where θi : E → R, i = 1, 2, 3, ..., p are nondifferentiable locally Lipschitz functions on E and ∂∗∗-
approximately convex at ν ∈ E.

Definition 3.1. [28] Let θ : E → Rp be a function. Then a vector ν ∈ E is as follows:

(i) an efficient solution to the NVOP if ∃ no µ ∈ E such that θ(µ) ≤ θ(ν),
(ii) a local weak efficient solution to the NVOP if ∃ a δ > 0 such that the following inequality does

not hold
θ(µ) < θ(ν), ∀ µ ∈ E ∩ Bδ(ν).
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The following notions of AESs were presented by Mishra and Laha [26]. These concepts are helpful
when the existence of an efficient solution cannot be shown.

Definition 3.2. Let θ : E → Rp be a function. A vector ν ∈ E is called an

(i) AES of kind I of the NVOP, represented by (AES )1, if and only if for some ε > 0 however small,
∃ no δ > 0 satisfying

θ(µ) − θ(ν) ≤ e‖µ − ν‖, ∀ µ ∈ Bδ(ν) \ {ν},

where e = (ε, ε, . . . , ε)︸       ︷︷       ︸
p

∈ intRp
+.

(ii) AES of kind II of the NVOP, represented by (AES )2, if and only if for some ε > 0 however small,
∃ a δ > 0 satisfying

θ(µ) − θ(ν) � e‖µ − ν‖, ∀ µ ∈ Bδ(ν),

(iii) AES of kind III of the NVOP, represented by (AES )3, if and only if for some ε > 0, ∃ a δ > 0
satisfying

θ(µ) − θ(ν) � −e‖µ − ν‖, ∀ µ ∈ Bδ(ν).

It is evident that (AES )2 of the NVOP is equivalent to both (AES )1 and (AES )3 of the NVOP. A
concept of local efficiency is that (AES )3 is considered to be in a weaker state than one that is (AES )2,
which is considered to be in a stronger state. Additionally, (AES )1 has the potential to be considered a
quasi-efficient solution to the NVOP.

Example 3.3. Suppose the optimization problem in the sense of a multiobjective (MOP) is given as

minimize θ(µ) = (θ1(µ), θ2(µ)), such that µ ∈ R,

where θ1(µ) = |sinµ| and θ2(µ) = |µ| − µ2. Suppose ν = 0; for any ε > 0, we have

θ1(µ) − θ1(ν) + ε‖µ − ν‖ ≥ |sinµ| ≥ 0, ∀ µ ∈ [−π, π],

θ2(µ) − θ2(ν) + ε‖µ − ν‖ ≥ |µ| − µ2 ≥ 0, ∀ µ ∈ [−1, 1].

Choose 0 < δ < 1; we have

θ(µ) − θ(ν) + e‖µ − ν‖ < −R2
+ \ {0}, ∀ µ ∈ Bδ(0).

Thus ν = 0 is an (AES )3 of the MOP.

Example 3.4. Let θ1(µ) = |µ| − µ4 and θ2(µ) = |µ|3 − µ2. Suppose ν = 0; for any 0 < ε < 1, we have

θ1(µ) − θ1(ν) − ε‖µ − ν‖ = |µ| − µ4 − ε |µ| ≥ 0, ∀ µ ∈ [−(1 − ε), (1 − ε)],

θ2(µ) − θ2(ν) − ε‖µ − ν‖ = |µ|3 − µ2 − ε |µ| ≥ 0, ∀ µ ≥
1 +
√

1 + 4ε
2

.

Choose 0 < δ < (1 − ε); we have

θ(µ) − θ(ν) − e‖µ − ν‖ < −R2
+ \ {0}, ∀ µ ∈ Bδ(0).

Thus ν = 0 is an (AES )2 of the MOP. In the same way, we can find that µ = 1 is also an (AES )2.

AIMS Mathematics Volume 7, Issue 10, 18870–18882.



18874

Example 3.5. By taking ν = 0, in Example 3.3, and following the process of Example 3.4, it can be
proved that, for 0 < ε < 1 and for some δ > 0, ∃ µ ∈ Bδ(ν) \ {ν} satisfying

θ(µ) − θ(ν) − e‖µ − ν‖ < −R2
+ \ {0}.

Hence ν = 0 is an (AES )1 of the MOP.

Now, we present VVI problems of the Minty type in terms of the convexificator, which has been
utilized to describe an AES of the NVOP in the next section.

(AMVVI)1: Find ν ∈ E such that, for some ε > 0 however small, ∃ no δ > 0 satisfying

〈ξ, µ − ν〉 ≤ e‖µ − ν‖, ∀ µ ∈ Bδ(ν) \ {ν} and ξ ∈ ∂∗∗θ(µ).

(AMVVI)2: Find ν ∈ E such that, for some ε > 0 however small, ∃ a δ > 0 satisfying

〈ξ, µ − ν〉 � e‖µ − ν‖, ∀ µ ∈ Bδ(ν) and ξ ∈ ∂∗∗θ(µ).

(AMVVI)3: Find ν ∈ E such that, for some ε > 0, ∃ a δ > 0 satisfying

〈ξ, µ − ν〉 � −e‖µ − ν‖, ∀ µ ∈ Bδ(ν) and ξ ∈ ∂∗∗θ(µ).

The next theorem illustrates the relationship between solutions of VVIs of the Stampacchia kind
and an AES of the NVOP.

Theorem 3.6. Consider θ : E → Rp to be a locally Lipschitz function on E, which permits a bounded
convexificator ∂∗∗θ(ν) at ν ∈ E. Suppose θ is ∂∗∗-approximately convex function at ν ∈ E; then,

(i) if ν ∈ E is an (AES )1 of the NVOP, then ν is also a solution of the (AMVVI)1,
(ii) if ν ∈ E is a solution of the (AMVVI)2, then ν is also an (AES )2 of the NVOP,

(iii) if ν ∈ E is an (AES )3 of the NVOP, then ν is also a solution of the (AMVVI)3.

Proof. (i) Assume that ν is not a solution of the (AMVVI)1. It follows that, for any ε > 0 however
small, ∃ a δ̃ > 0 satisfying

〈ξ, µ − ν〉 ≤
e
2
‖µ − ν‖, ∀ µ ∈ Bδ̃(ν) and ξ ∈ ∂∗∗θ(µ),

where e = (ε, ε, . . . , ε)︸       ︷︷       ︸
p

∈ intRp
+.

Since θ is ∂∗∗-approximately convex at ν ∈ E and a locally Lipschitz function on E, then, for every
ε > 0, ∃ a δ̌ > 0 satisfying

θ(ν) − θ(µ) = 〈ξ, ν − µ〉 −
e
2
‖ν − µ‖, ∀ µ ∈ Bδ̌(ν), and ξ ∈ ∂∗∗θ(µ).

Taking δ̂ = inf{δ̃, δ̌}, we have, for any ε > 0 however small, ∃ a δ̂ > 0 satisfying

θ(µ) − θ(ν) ≤ e ‖µ − ν‖, ∀ µ ∈ Bδ̂(ν),

which is a contradiction that ν ∈ E is an (AES )1 of the NVOP.
�
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Proof. (ii) Assume that ν ∈ E is not an (AES )2 of the NVOP. Then, for some ε > 0 however small and
for every δ > 0, we have

θ(µ) − θ(ν) ≤
e
2
‖µ − ν‖, for some µ ∈ Bδ(ν) \ {ν}.

Take δ̂ > 0 such that the condition of (AMVVI)2 holds. Thus, for this δ̂, suppose µ0 ∈ Bδ̂(ν) is such
that

θ(µ0) − θ(ν) ≤
e
2
‖µ0 − ν‖. (3.1)

Applying the mean value theorem, there exists ξ0 ∈ co(∂∗∗θ([ν, µ0])) such that

θ(µ0) − θ(ν) = 〈ξ0, µ0 − ν〉 . (3.2)

Accordingly there exist µ1, µ2, ..., µk from the open segment (ν, µ0), ξ1 ∈ ∂
∗
∗θ(µ1), ξ2 ∈ ∂

∗
∗θ(µ2), ..., ξk ∈

∂∗∗θ(µk), 0 < β1 < β2 < ... < βk < 1, α1, α2, ..., αk > 0 such that

α1 + α2 + ... + αk = 1,

ξ0 = α1ξ1 + α2ξ2 + ... + αkξk = ξ1 +

k∑
i=2

αi(ξi − ξ1),

µi − ν = βi(µ0 − ν), i = 1, 2, ..., k. (3.3)

Using ∂∗∗-approximate convexity of θ at ν ∈ E, it follows that

〈ξi − ξ1, µi − µ1〉 = −
e
2
‖µi − µ1‖, ∀ i = 1, 2, ..., k. (3.4)

Owing to (3.1)–(3.3), we obtain

〈ξ0, µ0 − ν〉 = 〈ξ1, µ0 − ν〉 +

k∑
i=2

αi 〈ξi − ξ1, µ0 − ν〉

=
1
β1
〈ξ1, µ1 − ν〉 +

k∑
i=2

αi

βi − β1
〈ξi − ξ1, µi − µ1〉

≤
e
2
‖µ0 − ν‖.

From (3.4), it follows that

1
β1
〈ξ1, µ1 − ν〉 ≤

e
2
‖µ0 − ν‖ +

e
2

k∑
i=2

αi

βi − β1
‖µi − µ1‖,

which in lieu of (3.3) becomes

〈ξ1, µ1 − ν〉 ≤
e
2

1 +

k∑
i=2

αi

 ‖µ1 − ν‖ 5 e‖µ1 − ν‖,

with µ1 ∈ [ν, µ0] ⊂ Bδ̂(ν) and ξ1 ∈ ∂
∗
∗θ(µ1), which is a contradiction that ν ∈ E is a solution of the

(AMVVI)2. �
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Proof. (iii) Suppose ν is an (AES )3 of the NVOP. Then, for every ε > 0,∃ δ̃ > 0 satisfying

θ(µ) − θ(ν) � −
e
2
‖µ − ν‖, ∀ µ ∈ Bδ̃(ν).

Since θ is ∂∗∗-approximately convex at ν ∈ E and a locally Lipschitz function on E, we have, for a given
ε > 0, ∃ δ̌ > 0 satisfying

θ(ν) − θ(µ) = 〈ξ, ν − µ〉 −
e
2
‖ν − µ‖, ∀ µ ∈ Bδ̌(ν), and ξ ∈ ∂∗∗θ(µ).

Taking δ̂ = inf{δ̃, δ̌}, we have that, for every ε > 0, ∃ δ̂ > 0 satisfying

〈ξ, µ − ν〉 � −e ‖µ − ν‖, ∀ µ ∈ Bδ̂(ν) and ξ ∈ ∂∗∗θ(µ).

Hence ν ∈ E is a solution of the (AMVVI)3. �

Now, we define an approximation of the Stampacchia VVI problems by expressing them about the
convexificator.

(AS VVI)1: Find ν ∈ E so that, for any ε > 0 however small, there are some µ ∈ E \ {ν} and
ξ0 ∈ ∂

∗
∗θ(ν) satisfying

〈ξ0, µ − ν〉 � e‖µ − ν‖.

(AS VVI)2: Find ν ∈ E so that, for any ε > 0 however small, for every µ ∈ E and ξ0 ∈ ∂
∗
∗θ(ν), we

have
〈ξ0, µ − ν〉 � e‖µ − ν‖.

(AS VVI)3: Find ν ∈ E so that, for some ε > 0, ∃ δ > 0 satisfying

〈ξ0, µ − ν〉 � −e‖µ − ν‖, ∀ µ ∈ Bδ(ν) and ξ0 ∈ ∂
∗
∗θ(ν).

The following theorem gives the conditions under which a solution of the ASVVI is an AES of the
NVOP.

Theorem 3.7. Let f : E → Rp be a locally Lipschitz function on E which permits a bounded
convexificator ∂∗∗θ(ν) at ν ∈ E. Suppose θ is a ∂∗∗-approximately convex function at ν ∈ E. Then
the following hold:

(i) If ν ∈ E is a solution of the (AS VVI)1, then ν is also an (AES )1 of the NVOP,
(ii) If ν ∈ E is a solution of the (AS VVI)2, then ν is also an (AES )2 of the NVOP,

(iii) If ν ∈ E is a solution of the (AS VVI)3, then ν is also an (AES )3 of the NVOP.

Proof. (i) Let ν ∈ E is a solution of the (AS VVI)1 and suppose that ν is not an (AES )1 of the NVOP.
Then, there exist ε > 0 and δ > 0 satisfying

θ(µ) − θ(ν) ≤ e‖µ − ν‖, ∀ µ ∈ Bδ(ν), µ , ν.

Since θ is ∂∗∗-approximately convex, it follows that there is δ̌ < δ such that

〈ξ0, µ − ν〉 5 θ(µ) − θ(ν)
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for all µ ∈ Bδ̌(ν) and ξ0 ∈ ∂
∗
∗θ(ν). Then

〈ξ0, µ − ν〉 ≤ e‖ µ − ν‖, ∀ µ ∈ Bδ(ν), µ , ν and hence for all µ ∈ E \ {ν},

which contradicts the hypothesis that ν ∈ E is a solution of (AS VVI)1.
(ii) Suppose ν ∈ E is a solution of the (AS VVI)2; then, ν is a solution of the (AMVVI)2. By
Theorem 3.6, ν ∈ E is an (AES )2 of the NVOP. Indeed, for every ε > 0, for all µ ∈ E and ξ0 ∈ ∂

∗
∗θ(ν),

we have
〈ξ0, µ − ν〉 �

e
2
‖µ − ν‖.

Since θ is ∂∗∗-approximately convex, for µ however close to ν, we have

〈ξ − ξ0, µ − ν〉 ≥ −
e
2
‖µ − ν‖, ∀ ξ ∈ ∂∗∗θ(µ).

Consequently,
〈ξ, µ − ν〉 � e‖µ − ν‖

for all µ in a small neighborhood of ν and for all ξ ∈ ∂∗∗θ(µ). Hence ν ∈ E is an (AES )2 of the NVOP.
(iii) Suppose ν is a solution of the (AS VVI)3. Therefore, for every ε > 0, ∃ δ̃ > 0 satisfying

〈ξ0, µ − ν〉 � −
e
2
‖µ − ν‖, ∀ µ ∈ Bδ̃(ν) and ξ0 ∈ ∂

∗
∗θ(ν).

Since θ is ∂∗∗-approximately convex at ν ∈ E and a locally Lipschitz function on E, we have, for every
ε > 0, there exists δ̌ > 0 satisfying

θ(µ) − θ(ν) = 〈ξ0, µ − ν〉 −
e
2
‖µ − ν‖, ∀ µ ∈ Bδ̌(ν), and ξ0 ∈ ∂

∗
∗θ(ν).

Taking δ̂ = inf{δ̃, δ̌}, we have, for every ε > 0, there exists δ̂ > 0 satisfying

θ(µ) − θ(ν) � −e ‖µ − ν‖, ∀ µ ∈ Bδ̂(ν).

Hence ν ∈ E is an (AES )3 of NVOP. �

The authenticity of the main results is shown in the following example:

Example 3.8. Consider the NVOP as follows:

min θ(µ) = (θ1(µ), θ2(µ)), subject to µ ∈ R,

where

θ1(µ) =

{
2µ + 1, if µ ≥ 0,
2µ + eµ, if µ < 0,

and

θ2(µ) =

{
4µ − µ2, if µ ≥ 0,
2µ, if x < 0.

The convexificator of θ1 and θ2 at µ are defined as follows:
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∂∗∗θ1(µ) =


2, if µ > 0,
[2, 3] , if µ = 0,
2 + eµ, if µ < 0,

and

∂∗∗θ2(µ) =


4 − 2µ, if µ > 0,
[2, 4] , if µ = 0,
2, if µ < 0.

Suppose e = (ε, ε) for ε > 0 and take δ = min(1, ε2 ) such that for any µ, ν ∈ Bδ(0), ξ1 ∈ ∂
∗
∗θ1(µ) and

ξ2 ∈ ∂
∗
∗θ2(µ), we have

θ1(ν) − θ1(µ) =


2(ν − µ), if µ > 0, ν > 0, ν − µ > 0,
2ν + 1 − 2µ − eµ, if µ < 0, ν > 0,
2(ν − µ) + eν − eµ, if µ < 0, µ < 0, ν − µ > 0,
2ν, if µ = 0, ν > 0,

and

θ2(ν) − θ2(µ) =


(ν − µ)(4 − ν − µ), if µ > 0, ν > 0, ν − µ > 0,
4ν − ν2 − 2µ, if µ < 0, ν > 0,
2(ν − µ), if µ < 0, ν < 0, ν − µ > 0,
4ν − ν2, if µ = 0, ν > 0.

Also,

〈ξ1, ν − µ〉 − ε‖ ν − µ‖ =



(4 − 2µ)(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν > 0, ν − µ > 0,
(4 − 2µ)(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν > 0, ν − µ < 0,
(4 − 2µ)(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν ≤ 0,
2(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν > 0, ν − µ > 0,
2(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν > 0, ν − µ < 0,
2(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν ≤ 0,
r1(ν − µ) − ε‖ν − µ‖ > 0, if µ = 0, ν > 0, r1 ∈ [2, 3] ,
r2(ν − µ) − ε‖ν − µ‖ < 0, if µ = 0, ν < 0, r2 ∈ [2, 3] ,

and

〈ξ2, ν − µ〉 − ε‖ ν − µ‖ =



2(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν > 0, ν − µ > 0,
2(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν > 0, ν − µ < 0,
2(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν ≤ 0,
(2 + eµ)(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν > 0, ν − µ > 0,
(2 + eµ)(ν − µ) − ε‖ν − µ‖ < 0, if µ > 0, ν > 0, ν − µ < 0,
(2 + eµ)(ν − µ) − ε‖ν − µ‖ > 0, if µ > 0, ν ≤ 0,
r1(ν − µ) − ε‖ν − µ‖ > 0, if µ = 0, ν > 0, r1 ∈ [2, 4] ,
r2(ν − µ) − ε‖ν − µ‖ < 0, if µ = 0, ν < 0, r2 ∈ [2, 4] .
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We can easily verify that θ(ν)− θ(µ) = 〈ξ, ν − µ〉 − e‖ ν− µ‖. Hence θ is ∂∗∗-approximate convex at 0.
Since, for any µ > 0, µ ∈ Bδ(µ0), then〈

ξ01 , µ − µ0
〉

+ ε‖µ − µ0)‖ = r1µ + ε‖µ‖ > 0, r1 ∈ [2, 3] ,

and 〈
ξ02 , µ − µ0

〉
+ ε‖µ − µ0)‖ = r2µ + ε‖µ‖ > 0, r2 ∈ [2, 4] .

That is, 〈ξ0, µ − µ0〉 + e‖µ − µ0)‖ � 0.
Hence µ0 = 0 is a solution of (AS VVI)3.
Since, for every ε > 0, there exists δ > 0 such that for every µ ∈ Bδ(µ0) and µ > 0, we have

θ1(µ) − θ1(µ0) + ε‖µ − µ0‖ = 2µ + 1 + ε‖µ‖ > 0,

and
θ2(µ) − θ2(µ0) + ε‖µ − µ0‖ = 4µ − µ2 + ε‖µ‖ > 0.

That is, θ(µ) − θ(µ0) + ε‖µ − µ0‖ � 0.
Hence µ0 = 0 is an (AES )3 of the NVOP.
Thus, Theorem 3.7 is verified.
Since, for any µ > 0, µ ∈ Bδ(µ0), then

〈ξ1, µ − µ0〉 + ε‖µ − µ0)‖ = 2µ + ε‖µ‖ > 0,

and
〈ξ2, µ − µ0〉 + ε‖µ − µ0)‖ = 4µ − 2µ2 + ε‖µ‖ > 0.

That is, 〈ξ, µ − µ0〉 + e‖µ − µ0)‖ � 0.
Hence µ0 = 0 is a solution of (AMVVI)3. Thus, Theorem 3.6 is verified.

Remark 3.9. It is clear that in the above example, the convexificators ∂∗∗θ1 and ∂∗∗θ2 of θ1 and
θ2, respectively, are strictly contained in the corresponding Clarke or Michel-Penot subdifferentials.
Convexity in terms of convexificators, as opposed to other subdifferentials, is hence simpler to verify.
Because of this, the results of our paper are easier to use.

4. Conclusions

In this manuscript, we have constructed approximation Stampacchia-Minty type VVIs in terms of
the convexificator and used them to describe an AES to the NVOP. It will also be fascinating to think
about an MOP with an objective function between Hilbert spaces. This will be an interesting problem
for the future research point of view. In addition, the associated equilibrium problem and its various
iterations may be investigated by making slight adjustments to the methodologies described in this
study. Thus, the results of the current manuscript are very useful and interesting.
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