In this paper, advertising competition among $ m $ firms is studied in a discrete-time dynamic game framework. Firms maximize the present value of their profits which depends on their advertising strategy and their market share. The evolution of market shares is determined by the firms' advertising activities. By employing the concept of the discrete-time potential games of González-Sánchez and Hernández-Lerma (2013), we derived an explicit formula for the Nash equilibrium (NE) of the game and obtained conditions for which the NE is an overtaking optimal. Moreover, we analyze the asymptotic behavior of the overtaking NE where the convergence towards a unique steady state (turnpike) is established.
Citation: Jewaidu Rilwan, Poom Kumam, Idris Ahmed. Overtaking optimality in a discrete-time advertising game[J]. AIMS Mathematics, 2022, 7(1): 552-568. doi: 10.3934/math.2022035
In this paper, advertising competition among $ m $ firms is studied in a discrete-time dynamic game framework. Firms maximize the present value of their profits which depends on their advertising strategy and their market share. The evolution of market shares is determined by the firms' advertising activities. By employing the concept of the discrete-time potential games of González-Sánchez and Hernández-Lerma (2013), we derived an explicit formula for the Nash equilibrium (NE) of the game and obtained conditions for which the NE is an overtaking optimal. Moreover, we analyze the asymptotic behavior of the overtaking NE where the convergence towards a unique steady state (turnpike) is established.
[1] | V. M. Adukov, N. V. Adukova, K. N. Kudryavtsev, On a discrete model of optimal advertising, J. Comput. Eng. Math., 2 (2015), 13–24. |
[2] | S. M. Aseev, M. I. Krastanov, V. M. Veliov, Optimality conditions for discrete-time optimal control on infinite horizon, Pure Applied Funct. Anal., 2 (2017), 395–409. |
[3] | A. O. Belyakov, On a sufficient condition for infinite horizon optimal control problems, 2019. Available from: https://arXiv.org/abs/1909.07379. |
[4] | W. A. Brock, On existence of weakly maximal programmes in a multi-sector economy, Rev. Econ. Stud., 37 (1970), 275–280. |
[5] | W. A. Brock, Differential games with active and passive variables, In: Mathematical economics and game theory, Springer, 1977. doi: 10.1007/978-3-642-45494-3_4. |
[6] | D. Carlson, A. Haurie, A turnpike theory for infinite horizon open-loop differential games with decoupled controls, In: New trends in dynamic games and applications, Springer, 1995. doi: 10.1007/978-1-4612-4274-1_18. |
[7] | J. S. Chahal, Solution of the cubic, Resonance, 11 (2006), 53–61. |
[8] | P. K. Chintagunta, N. J. Vilcassim, An empirical investigation of advertising strategies in a dynamic duopoly, Manag. Sci., 38 (1992), 1230–1244. doi: 10.1287/mnsc.38.9.1230. doi: 10.1287/mnsc.38.9.1230 |
[9] | R. Dana, C. Le Van, On the Bellman equation of the overtaking criterion, J. Optim. Theory Appl., 67 (1990), 587–600. doi: 10.1007/BF00939651. doi: 10.1007/BF00939651 |
[10] | E. J. Dockner, S. Jorgensen, N. V. Long, G. Sorger, Differential games in economics and management science, Cambridge University Press, 2000. |
[11] | A. Domínguez-Corella, O. Hernández-Lerma, The maximum principle for discrete-time control systems and applications to dynamic games, J. Math. Anal. Appl., 475 (2019), 253–277. doi: 10.1016/j.jmaa.2019.02.038. doi: 10.1016/j.jmaa.2019.02.038 |
[12] | G. Erickson, Dynamic models of advertising competition, Vol. 13, Springer Science & Business Media, 2002. |
[13] | A. Fonseca-Morales, O. Hernández-Lerma, Potential differential games, Dyn. Games Appl., 8 (2018), 254–279. doi: 10.1007/s13235-017-0218-6. doi: 10.1007/s13235-017-0218-6 |
[14] | G. E. Fruchter, S. Kalish, Closed-loop advertising strategies in a duopoly, Manag. Sci., 43 (1997), 54–63. doi: 10.1287/mnsc.43.1.54. doi: 10.1287/mnsc.43.1.54 |
[15] | D. Gale, On optimal development in a multi-sector economy, Rev. Econ. Stud., 34 (1967), 1–18. doi: 10.2307/2296567. doi: 10.2307/2296567 |
[16] | D. González-Sánchez, O. Hernández-Lerma, Discrete-time stochastic control and dynamic potential games: The Euler-equation approach, Springer Science & Business Media, 2013. doi: 10.1007/978-3-319-01059-5. |
[17] | D. González-Sánchez, O. Hernández-Lerma, A survey of static and dynamic potential games, Sci. China Math., 59 (2016), 2075–2102. doi: 10.1007/s11425-016-0264-6. doi: 10.1007/s11425-016-0264-6 |
[18] | J. Huang, M. Leng, L. Liang, Recent developments in dynamic advertising research, Eur. J. Oper. Res., 220 (2012), 591–609. doi: 10.1016/j.ejor.2012.02.031. doi: 10.1016/j.ejor.2012.02.031 |
[19] | S. Jørgensen, G. Zaccour, Differential games in marketing, Vol. 15, Springer Science and Business Media, 2003. |
[20] | L. W. McKenzie, Turnpike theory, Econometrica, 44 (1976), 841–865. doi: 10.2307/1911532. doi: 10.2307/1911532 |
[21] | L. W. McKenzie, Optimal economic growth, turnpike theorems and comparative dynamics, Handbook Math. Econ., 3 (1986), 1281–1355. doi: 10.1016/S1573-4382(86)03008-4. doi: 10.1016/S1573-4382(86)03008-4 |
[22] | A. S. Nowak, A note on an equilibrium in the great fish war game, Econ. Bull., 17 (2006), 1–10. |
[23] | A. S. Nowak, Equilibrium in a dynamic game of capital accumulation with the overtaking criterion, Econ. Lett., 99 (2008), 233–237. doi: 10.1016/j.econlet.2007.05.033. doi: 10.1016/j.econlet.2007.05.033 |
[24] | A. S. Nowak, O. Vega-Amaya, A counterexample on overtaking optimality, Math. Methods Oper. Res., 49 (1999), 435–439. doi: 10.1007/s001860050059. doi: 10.1007/s001860050059 |
[25] | S. Park, M. Hahn, Pulsing in a discrete model of advertising competition, J. Marketing Res., 28 (1991), 397–405. doi: 10.1177/002224379102800402. doi: 10.1177/002224379102800402 |
[26] | F. P. Ramsey, A mathematical theory of saving, Econ. J., 38 (1928), 543–559. doi: 10.2307/2224098. doi: 10.2307/2224098 |
[27] | A. M. Rubinov, Economic dynamics, J. Soviet Math., 26 (1984), 1975–2012. doi: 10.1007/BF01084444. doi: 10.1007/BF01084444 |
[28] | A. M. Rubinstein, Equilibrium in supergames with the overtaking criterion, J. Econ. Theory, 21 (1979), 1–9. |
[29] | S. P. Sethi, A. Prasad, X. He, Optimal advertising and pricing in a new-product adoption model, J. Optim. Theory Appl., 139 (2008), 351. doi: 10.1007/s10957-008-9472-5. doi: 10.1007/s10957-008-9472-5 |
[30] | G. Sorger, Discrete time dynamic game models for advertising competition in a duopoly, Optim. Contr. Appl. Met., 16 (1995), 175–188. doi: 10.1002/j.1099-1514.1995.tb00013.x. doi: 10.1002/j.1099-1514.1995.tb00013.x |
[31] | C. C. Von Weizsäcker, Existence of optimal programs of accumulation for an infinite time horizon, Rev. Econ. Stud., 32 (1965), 85–104. doi: 10.2307/2296054. doi: 10.2307/2296054 |
[32] | A. J. Zaslavski, Turnpike results for discrete-time optimal control systems arising in economic dynamics, Nonlinear Anal.: Theory, Methods Appl., 67 (2007), 2024–2049. doi: 10.1016/j.na.2006.08.029. doi: 10.1016/j.na.2006.08.029 |
[33] | A. J. Zaslavski, Stability of the turnpike phenomenon in discrete-time optimal control problems, Springer, 2014. doi: 10.1007/978-3-319-08034-5. |