Processing math: 10%
Research article

Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making

  • Received: 16 February 2021 Accepted: 11 May 2021 Published: 17 May 2021
  • MSC : 03E72, 62C86

  • Spherical fuzzy soft sets (SFSftSs) have its importance in a situation where human opinion is not only restricted to yes or no but some kind of abstinence or refusal aspects are also involved. Moreover, the notion of SFSftS is free from all that complexities which suffers the contemporary theories because parameterization toll is a more important character of SFSftS. Also, note that aggregation operators are very effective apparatus to convert the overall information into a single value which further helps in decision-making problems. Due to these reasons, based on a spherical fuzzy soft set (SFSftS), we have first introduced basic operational laws and then based on these introduced operational laws, some new notions like spherical fuzzy soft weighted average (SFSftWA) aggregation operator, spherical fuzzy soft ordered weighted average (SFSftOWA) aggregation operator and spherical fuzzy soft hybrid average (SFSftHA) aggregation operators are introduced. Furthermore, the properties of these aggregation operators are discussed in detail. An algorithm is established in the environment of SFSftS and a numerical example are given to show the authenticity of the introduced work. Moreover, a comparative study is established with other existing methods to show the validity and superiority of the established work.

    Citation: Jabbar Ahmmad, Tahir Mahmood, Ronnason Chinram, Aiyared Iampan. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making[J]. AIMS Mathematics, 2021, 6(7): 7798-7832. doi: 10.3934/math.2021454

    Related Papers:

    [1] Muhammad Naeem, Muhammad Qiyas, Lazim Abdullah, Neelam Khan, Salman Khan . Spherical fuzzy rough Hamacher aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(7): 17112-17141. doi: 10.3934/math.2023874
    [2] Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884
    [3] Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097
    [4] Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539
    [5] Shahzaib Ashraf, Huzaira Razzaque, Muhammad Naeem, Thongchai Botmart . Spherical q-linear Diophantine fuzzy aggregation information: Application in decision support systems. AIMS Mathematics, 2023, 8(3): 6651-6681. doi: 10.3934/math.2023337
    [6] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [7] Muhammad Qiyas, Muhammad Naeem, Neelam Khan . Fractional orthotriple fuzzy Choquet-Frank aggregation operators and their application in optimal selection for EEG of depression patients. AIMS Mathematics, 2023, 8(3): 6323-6355. doi: 10.3934/math.2023320
    [8] Hafiz Muhammad Athar Farid, Muhammad Riaz, Gustavo Santos Garcia . T-spherical fuzzy information aggregation with multi-criteria decision-making. AIMS Mathematics, 2023, 8(5): 10113-10145. doi: 10.3934/math.2023512
    [9] Tareq M. Al-shami, José Carlos R. Alcantud, Abdelwaheb Mhemdi . New generalization of fuzzy soft sets: (a,b)-Fuzzy soft sets. AIMS Mathematics, 2023, 8(2): 2995-3025. doi: 10.3934/math.2023155
    [10] Ashraf Al-Quran . T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Mathematics, 2023, 8(5): 12257-12286. doi: 10.3934/math.2023618
  • Spherical fuzzy soft sets (SFSftSs) have its importance in a situation where human opinion is not only restricted to yes or no but some kind of abstinence or refusal aspects are also involved. Moreover, the notion of SFSftS is free from all that complexities which suffers the contemporary theories because parameterization toll is a more important character of SFSftS. Also, note that aggregation operators are very effective apparatus to convert the overall information into a single value which further helps in decision-making problems. Due to these reasons, based on a spherical fuzzy soft set (SFSftS), we have first introduced basic operational laws and then based on these introduced operational laws, some new notions like spherical fuzzy soft weighted average (SFSftWA) aggregation operator, spherical fuzzy soft ordered weighted average (SFSftOWA) aggregation operator and spherical fuzzy soft hybrid average (SFSftHA) aggregation operators are introduced. Furthermore, the properties of these aggregation operators are discussed in detail. An algorithm is established in the environment of SFSftS and a numerical example are given to show the authenticity of the introduced work. Moreover, a comparative study is established with other existing methods to show the validity and superiority of the established work.



    Fuzzy set (FS) proposed by Zadeh [1] established the foundation in the field of fuzzy set theory and provided a track to address the difficulties of acquiring accurate data for multi-attribute decision-making problems. Fuzzy set only considers membership grade (MG) a which is bounded to [0,1] while in many real-life problems we have to deal with not only MG but also non-membership grade (NMG) b, and due to this reason, the concept of FS has been extended to intuitionistic fuzzy set (IFS) established by Atanassov [2] that also compensate the drawback of FS. IFS has gained the attention of many researchers and they have used it for their desired results in practical examples for decision-making problems. IFS also enlarges the information space for decision-makers (DMs) because NMG is also involved with the condition that 0a+b1. Zhao et al. [3] established the generalized intuitionistic fuzzy aggregation operators. Moreover, some intuitionistic fuzzy weighted average, intuitionistic fuzzy ordered weighted average, and intuitionistic fuzzy hybrid average aggregation operators are introduced in [4]. Moreover, IF interaction aggregation operators and IF hybrid arithmetic and geometric aggregation operators are established in [5]. Later on, the MG and NMG are denoted by interval values and a new notion has been introduced called interval-valued IFS (IVIFS) [6] being a generalization of FS and IFS. The notions of IFS and IVIFS have been applied to many areas like group decision-making [7], similarity measure [8], and multicriteria decision-making problems [9]. Zhang et al. [10] introduce some information measures for interval-valued intuitionistic fuzzy sets. In many decision-making problems when decision-makers prove 0.6 as an MG and 0.5 as NMG then IFS fail to handle this kind of information, so to overcome this issue, the idea of IFS is further extended to the Pythagorean fuzzy set (PyFS) established by Yager [11] with condition that 0a2+b21. Therefore, PyFS can express more information and IFS can be viewed as a particular case of PyFS. Since aggregation operators are very helpful to change the overall data into single value which help us in decision-making problems for the selection of the best alternative among the given ones, so Khan et al. [12] introduced Pythagorean fuzzy Dombi aggregation operators and their application in decision support system. Moreover, PyF interaction aggregation operators and their application to multiple-attribute decision-making have been proposed in [13]. In many circumstances, we have information that cannot be tackled by PyFS like sum(0.82,0.92)[0,1], to compensate for this hurdle the idea of.q-rung orthopair fuzzy set (q-ROFS) is established by Yager [14] with condition that 0aq+bq1 for q1. It is clear that IFS and PyFS are special cases of q-ROFS and it is more strong apparatus to deal with the fuzzy information more accurately. Wei et al. [15] introduced some q‐rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Moreover, Liu and Wang [16] established the multiple-attribute decision-making based on Archimedean Bonferroni operators. Since all ideas given above can only consider only MG and NMG, while in many decision-making problems we need to consider the abstinence grade (AG) c, hence to overcome this drawback, the idea of picture fuzzy set (PFS) has been introduced by Cuong [17]. Cuong et al. [18] introduce the primary fuzzy logic operators, conjunction, disjunction, negation, and implication based on PFS. Furthermore, some concepts and operational laws are proposed by Wang et al. [19], and also some picture fuzzy geometric aggregation operators and their properties have been discussed by them. Some PF aggregation operators are also discussed in [20,21]. Zeng et al. [22] introduced the extended version of the linguistic picture fuzzy Topsis method and its application in enterprise resource planning systems. In the picture fuzzy set, we have a condition that 0a+b+c1, but in many decision-making problems, the information given by experts cannot be handled by PFS and PFS fail to hold. For example, when experts provide 0.6 as MG, 0.5 as NMG, and 0.3 as AG then we can see that sum(0.6,0.5,0.3)[0,1]. To overcome this difficulty, the idea of a spherical fuzzy set has been proposed by Mahmood et al. [23] with condition that 0a2+b2+c21. So, SFS is a more general form and provides more space to decision-makers for making their decision in many multi-attribute group decision-making problems. Jin et al. [24] discover the spherical fuzzy logarithmic aggregation operators based on entropy and their application in decision support systems. Furthermore, some weighted average, weighted geometric, and Harmonic mean aggregation operators based on the SF environment with their application in group decision-making problems have been discussed in [25,26]. Also, some spherical fuzzy Dombi aggregation operators are defined in [27]. Ashraf et al. [28] introduced the GRA method based on a spherical linguistic fuzzy Choquet integral environment. Ali et al. [29] introduced the TOPSIS method based on a complex spherical fuzzy set with Bonferroni mean operator.

    Note that all the above existing literature has the characteristic that they can only deal with fuzzy information and cannot consider the parameterization structure. Due to this reason, Molodtsov [30] introduced the idea of a soft set (SS) which is more general than that of FS due to parameterization structure. Moreover, Maji et al. [31,32] use the SS in multi-criteria decision-making problems. The notions of a fuzzy soft set (FSftS) has been introduced by Maji et al. [33] which is the combination of fuzzy set and soft set. Also, the applications of FSftS theory to BCK/BC-algebra, in medical diagnosis, and decision-making problems have been established in [34,35,36]. Similarly as FS set is generalized into IFS, FSftS is generalized into an intuitionistic fuzzy soft set (IFSftS) [37] that is more strong apparatus to deal with fuzzy soft theory. Furthermore, Garg and Arora [38] introduced Bonferroni mean aggregation operators under an intuitionistic fuzzy soft set environment and proposed their applications to decision-making problems. Moreover, the concept of intuitionistic fuzzy parameterized soft set theory and its application in decision-making have been established in [39]. Since IFSftS is a limited notion, so the idea of Pythagorean fuzzy soft set PyFSftS has been established by Peng et al. [40]. Furthermore q-rung orthopair fuzzy soft set generalizes the intuitionistic fuzzy soft set, as well as the Pythagorean fuzzy soft set and some q-rung orthopair fuzzy soft aggregation operators, are defined by Husain et al. [41]. Since FSftS,IFSftS,PyFSftS and qROFSftS can only explore the MG and NMG but they cannot consider the AG, so to overcome this drawback, PFS and SS are combined to introduce a more general notion called picture fuzzy soft set PFSftS given in [42]. Also, Jan et al. [43] introduced the multi-valued picture fuzzy soft sets and discussed their applications in group decision-making problems. Furthermore, SFS and soft set are combined to introduce a new notion called spherical fuzzy soft set (SFSftS) discussed in [44] being the generalization of picture fuzzy soft set. Furthermore, the concepts of interval-valued neutrosophic fuzzy soft set and bipolar fuzzy neutrosophic fuzzy soft set along with their application in decision-making problems have been introduced in [45,46].

    The motivation of the study is to use SFSftS because (1) Most of the existing structure like FSftS,IFSftS,PyFSftS,qROFSftS and PFSftS are the special cases of SFSftS. (2) Also, note that SFSftS can cope with the information involving the human opinion based on MG, AG, NMG, and RG. Consider the example of voting where one can vote in favor of someone or vote against someone or abstain to vote or refuse to vote. SFSftS can easily handle this situation, while the existing structures like FSftS,IFSftS,PyFSftS and qROFSftS can note cope this situation due to lack of AG or RG. (3) The aim of using SFSftS is to enhance the space of PFSftS because PFSftS has its limitation in assigning MG, AG, and NMG to the element of a set. (4) Also note that FS, IFS, PyFS and q-ROFS are non-parameterized structure, while SFSftS is a parameterized structure, so SFSftS has more advantages over all these concepts. So in this article, based on SFSftS, we have introduced the idea of SFSftWA,SFSftOWA and SFSftHA aggregation operators. Moreover, their properties are discussed in detail.

    Further, we organize our article as follows: Section 2 deal with basic notions of FS, SftS, PFS, PFSftS, SFS and SFSftS and their operational laws. In section 3, we have introduced the basic operational laws for SFSftNs. Section 4 deal with some new average aggregation operators called SFSftWA,IVTSFSftOWA and SFSftHA operators. In section 5, we have established an algorithm and an illustrative example is given to show the validity of the established work. Finally, we have provided the comparative analysis of the proposed work to support the proposed work and show the superiority of established work by comparing it with existing literature.

    Definition 1. [1] Fuzzy set (FS) on a nonempty set U is given by

    F={ϰ,a(ϰ):ϰU}

    where a:U[0,1] denote the MG.

    Definition 2. [30] For a fix universal set U,E a set of parameters and TE, the pair (Q,T) is said to be soft set (SftS) over U, where Q is the map given by Q:TP(U), where P(U) is the power set of U.

    Definition 3. [33] Let U be a universal set, E be the set of parameters and HE. A pair (P,H) is said to be fuzzy soft set (FSftS) over U, where P is the map given by P:HFSU, which is defined by

    Pρj(ϰi)={ϰi,aj(ϰi):ϰiU}

    where FSU is the family of all FSs on U. Here aj(ϰi) represents the MG satisfying the condition that 0aj(ϰi)1.

    Definition 4. [17] Let U be a universal set then a picture fuzzy set (PFS) over U is given by

    P={ϰ,a(ϰ),b(ϰ),c(ϰ):ϰU}

    where a:U[0,1] is the MG, b:U[0,1] is the AG and c:U[0,1] is NMG with the condition that 0a(ϰ)+b(ϰ)+c(x)1.

    Definition 5. [19,20,21] Let P1=(a1,b1,c1), P2=(a2,b2,c2) be two PFNs and >0. Then basic operations on PFNs are defined by

    1. P1P2={(max(a1(ϰ),a2(ϰ))),(min(b1(ϰ),b2(ϰ))),min(c1(ϰ),c2(ϰ))}.

    2. P1P2={(min(a1(ϰ),a2(ϰ))),(min(b1(ϰ),b2(ϰ)),(max(c1(ϰ),c2(ϰ))))}.

    3. P1c=(c1(ϰ),b1(ϰ),a1(ϰ)).

    4. P1P2=((a1(ϰ)+a2(ϰ)(a1(ϰ))(a2(ϰ))),(b1(ϰ)b2(ϰ)),(c1(ϰ)c2(ϰ))).

    5. P1P2=((a1(ϰ)a2(ϰ)),(b1(ϰ)+b2(ϰ)(b1(ϰ))(b2(ϰ))),(c1(ϰ)+c2(ϰ)(c1(ϰ))(c2(ϰ)))).

    6. P1=((a1(ϰ)),(1(1b1(ϰ))),(1(1c1(ϰ)))).

    7. P1=((1(1a1(ϰ))),(b1(ϰ)),((c1(ϰ)))).

    Definition 6. [42] Let U be a universal set, E be the set of parameters and HE. A pair (P,H) is said to be picture fuzzy soft set (PFSftS) over U, where P is the map given by P:HPFSU, which is defined by

    Pρj(ϰi)={ϰi,aj(ϰi),bj(ϰi),cj(ϰi):ϰiU}

    where PFSU is the family of all PFSs over U. Here aj(ϰi),bj(ϰi), and cj(ϰi) represent the MG, AG, and NMG respectively satisfying the condition that 0aj(ϰi)+bj(ϰi)+cj(ϰi)1.

    Definition 7. [23] Let U be a universal set then a spherical fuzzy set (SFS) over U is given by

    S={ϰ,a(ϰ),b(ϰ),c(ϰ):ϰU}

    where a:U[0,1] is the MG, b:U[0,1] is the AG and c:U[0,1] is NMG with the condition that 0(a(ϰ))2+(b(ϰ))2+(c(x))21.

    Definition 8. [25] Let S1=(a1,b1,c1), S2=(a2,b2,c2) be two SFNs and >0. Then basic operations on SFNs are defined by

    1. S1S2={(max(a1(ϰ),a2(ϰ))),(min(b1(ϰ),b2(ϰ))),min(c1(ϰ),c2(ϰ))}.

    2. S1S2={(min(a1(ϰ),a2(ϰ))),(min(b1(ϰ),b2(ϰ)),(max(c1(ϰ),c2(ϰ))))}.

    3. S1c=(c1(ϰ),b1(ϰ),a1(ϰ)).

    4. S1S2=(((a1(ϰ))2+(a2(ϰ))2(a1(ϰ))2(a2(ϰ))2),(b1(ϰ)b2(ϰ)),(c1(ϰ)c2(ϰ))).

    5. S1S2=((a1(ϰ)a2(ϰ)),(b1(ϰ)b2(ϰ)),((c1(ϰ))2+(c2(ϰ))2(c1(ϰ))2(c2(ϰ))2)).

    6. S1=(((a1(ϰ))),(b1(ϰ)),(1(1c1(ϰ)2))).

    7. S1=((1(1a1(ϰ)2)),(b1(ϰ)),((c1(ϰ)))).

    In this section, we will define some basic operational laws for SFSftNs, score function, accuracy function, and certainty function, which further helps in MCDM problems for the selection of the best alternative.

    Definition 9. Let Sρij=(aij,bij,cij), S,ρij=(a,ij,b,ij,c,ij) be two SFSftNs and >0. Then basic operational laws for SFSftNs are defined by

    1. SρijS,ρij iff aija,ij, bijb,ij and cijc,ij.

    2. Sρij=S,ρij iff SρijS,ρij and S,ρijSρij.

    3. SρijS,ρij=max(aij,a,ij),min(bij,b,ij),min(cij,c,ij).

    4. SρijS,ρij=min(aij,a,ij),min(bij,b,ij),max(cij,c,ij).

    5. Sρijc=(cij,bij,aij).

    6. SρijS,ρij=((aij)2+(a,ij)2(aij)2(a,12)2,bijb,ij,cijc,ij).

    7. SρijS,ρij=(aija,ij,bijb,ij,(cij)2+(c,ij)2(cij)2(c,ij)2).

    8. Sρij=(1(1aij2)k,bij,cij).

    9. Sρij=(aij,bij,1(1cij2)).

    Example 1. Let Sρ11=(0.3,0.5,0.6), Sρ12=(0.4,0.7,0.3) and S=(0.2,0.6,0.5) be three SFSftNs and =3. Then

    1. Sρ11Sρ12=max(0.3,0.4),min(0.5,0.7),min(0.6,0.3)=(0.4,0.5,0.3).

    2. Sρ11Sρ12=min(0.3,0.4),min(0.5,0.7),max(0.6,0.3)=(0.3,0.5,0.6).

    3. Sc=(0.5,0.6,0.2).

    4. Sρ11Sρ12=((0.3)2+(0.4)2(0.3)2(0.4)2,(0.5)(0.7),(0.6)(0.3))=(0.49,0.35,0.18).

    5. Sρ11Sρ12=((0.3)(0.4),(0.5)(0.7),(0.6)2+(0.3)2(0.6)2(0.3)2) =(0.12,0.35,0.65).

    6. S=(1(10.22)3,(0.6)3,(0.5)3)=(0.3395,0.216,0.125).

    7. S=((0.2)3,(0.6)3,1(10.52)3)=(0.008,0.216,0.7603).

    Definition 10. For a SFSftN,Sρij=(aij,bij,cij), the score function (SF), accuracy function (AF), and certainty function (CF) are respectively defined by

    Sc(Sρij)=(2+aijbijcij)3
    Ac(Sρ11)=aijcij

    and

    CF(Sρ11)=aij.

    Note that SF(Sρ11)[1,1].

    Example 2. For a SFSftNSρ11=(0.5,0.6,0.3), score values, accuracy values, and certainty values are respectively calculated by

    Sc(Sρ11)=(2+0.50.60.3)3=0.5333
    Ac(Sρ11)=0.50.3=0.2

    and

    CF(Sρ11)=0.5.

    Definition 11. Let Sρ11=(a11,b11,c11) and Sρ12=(a12,b12,c12) be two SFSftNs. Then

    1.If Sc(Sρ11)>Sc(Sρ12), then Sρ11Sρ12.

    2.If Sc(Sρ11)<Sc(Sρ12), then Sρ11Sρ12.

    3. If Sc(Sρ11)=Sc(Sρ12), then

    1) If rSρ11>rSρ12, then Sρ11>Sρ12.

    2) If rSρ11=rSρ12, then Sρ11=Sρ12.

    Theorem 1. Let Sρ11=(a11,b11,c11) and Sρ12=(a12,b12,c12) be two SFSftNs and >0. Then the following properties hold.

    1. Sρ11Sρ12=Sρ21Sρ11.

    2. Sρ11Sρ12=Sρ21Sρ11.

    3. (Sρ11Sρ12)=(Sρ11Sρ12).

    4. (1+2)(Sρ11)=1(Sρ11)+2(Sρ11).

    5. (Sρ11)1+2=(Sρ11)1(Sρ11)2.

    6. (Sρ11)(Sρ11)=(Sρ11Sρ11).

    Proof. Proofs are straightforward and follow immediately from Definition 9.

    In this section, basic notions of SFSftWA, SFSftOWA and SFSftHA operators are elaborated and further their properties are discussed in detail.

    Here, we present the detailed structure of SFSftWA aggregation operator and discuss their properties in detail.

    Definition 12. For the collection of SFSftNsSρij=(aij,bij,cij), where i=1,2,,n and j=1,2,,m, if w={w1,w2,,wn} denote the weight vector (WV) of ei experts and p={p1,p2,,pm} denote the WV of parameters ρj with condition wi,pj[0,1] with ni=1wi=1 and mj=1pj=1, then SFSftWA operator is the mapping defined as SFSftWA:RnR, where (R is the family of all SFSftNs)

    SFSftWA(Sρ11,Sρ12,,Sρnm)=mj=1pj(ni=1wiSρij).

    Theorem 2. For a collection of SFSftNs, where Sρij=(aij,bij,cij), then the aggregated result for SFSftWA operator is again a SFSftN and given by

    SFSftWA(Sρ11,Sρ12,,Sρnm)=mj=1pj(ni=1wiSρij)
    =(1mj=1(ni=1(1(aij)2)wi)pj,mj=1(ni=1(bij)wi)pj,mj=1(ni=1(cij)wi)pj) (1)

    where w={w1,w2,,wn} denote the WV of ei experts and p={p1,p2,,pm} represent the WV of parameters ρj with condition wi,pj[0,1] with ni=1wi=1 and ni=1pi=1.

    Proof. Mathematical induction method is to be used to prove this result.

    By operational laws, it is clear that

    Sρ11Sρ12=((a11)2+(a12)2(a11)2(a12)2,b11b12,c11c12)

    and

    S=(1(1a2)k,b,c) for 1.

    We will show that Eq (1) is true for n=2 and m=2.

    SFSftWA(Sρ11,Sρ12,,Sρnm)=2j=1pj(2i=1wiSρij)
    =p1(2i=1wiSρij)p2(2i=1wiSρij)
    =p1(w1Sρ11w2Sρ21)p2(w1Sρ12w2Sρ22)
    =p1{(1(1a112)w1,b11w1,c11w1)(1(1a212)w2,b21w2,c21w2)}
    p2{(1(1a122)w1,b12w1,c12w1)(1(1a222)w2,b22w2,c22w2)}
    =p1(12i=1(1ai12)wi,2i=1bi1wi,2i=1ci1wi)ρ2(12i=1(1ai22)wi,2i=1bi2wi,2i=1ci2wi)
    =(1(2i=1(1ai12)wi)p1,(2i=1bi1wi)p1,(2i=1ci1wi)p1)(1(2i=1(1ai22)wi)p2,(2i=1bi2wi)p2,(2i=1ci2wi)p2)
    =(12j=1(2i=1(1aij2)wi)pj,2j=1(2i=1bijwi)pj,2j=1(2i=1cijwi)pj).

    Hence the result is true for n=2 and m=2.

    Next, consider Eq (1) is true for n=k1 and m=k2

    SFSftWA(Sρ11,Sρ12,,Sρk1k2)=k2j=1pj(k1i=1wiSρij)
    =(1k2j=1(k1i=1(1(aij)2)wi)pj,k2j=1(k1i=1(bij)wi)pj,mj=1(ni=1(cij)wi)pj).

    Further, suppose that Eq (1) is true for n=k1+1 and m=k2+1.

    SFSftWA(Sρ11,Sρ12,,Sρ(k1+1)(k2+1))={k2j=1pj(k1i=1wiSρij)}p(k1+1)(w(k2+1)Sρ(k1+1)(k2+1))
    =(1k2j=1(k1i=1(1(aij)2)wi)pj,k2j=1(k1i=1(bij)wi)pj,mj=1(ni=1(cij)wi)pj)pk1+1(wk2+1Sρ(k1+1)(k2+1))
    = \left(\begin{array}{c}\sqrt{1-\prod _{\mathcal{j} = 1}^{{\mathbb{k}}_{2}+1}{\left(\prod _{\mathcal{i} = 1}^{{\mathbb{k}}_{1}+1}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod _{\mathcal{j} = 1}^{{\mathbb{k}}_{2}+1}{\left(\prod _{\mathcal{i} = 1}^{{\mathbb{k}}_{1}+1}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod _{\mathcal{j} = 1}^{{\mathbb{k}}_{2}+1}{\left(\prod _{\mathcal{i} = 1}^{{\mathbb{k}}_{1}+1}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)\text{.}

    From the above expression, it is clear that aggregated value is also SF{S}_{ft}N . Hence given Eq (1) is true for \mathcal{n} = {\mathbb{k}}_{1}+1 and {\mathcal{m} = \mathbb{k}}_{2}+1 . Hence it is true for all \mathcal{m}, \mathcal{ }\mathcal{n}\ge 1 .

    Definition 13. [44] Let \mathbb{U} be a universal set, E be a set of parameters and {\rm H}\subseteq E . A pair \left(S, {\rm H}\right) is said to be spherical fuzzy soft set \left(SF{S}_{ft}S\right) over \mathbb{U} , where ''S'' is the map given by S:{\rm H}\to {SFS}^{\mathbb{U}} , which is defined to be

    {S}_{{\rho }_{\mathcal{j}}}\left({\varkappa }_{\mathcal{i}}\right) = \left\{〈{\varkappa }_{\mathcal{i}}, {\mathfrak{a}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right), {\mathfrak{b}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right), {\mathfrak{c}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)〉:{\varkappa }_{\mathcal{i}}\in \mathbb{U}\right\}

    where {SFS}^{\mathbb{U}} is the family of SFSs over \mathbb{U} . Here {\mathfrak{a}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right), {\mathfrak{b}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right) , and {\mathfrak{c}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right) represents the MG, AG, and NMG respectively satisfying the condition that 0\le {\left({\mathfrak{a}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}+{\left({\mathfrak{b}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}+{\left({\mathfrak{c}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}\le 1. For simplicity, the triplet \left\{〈{\mathfrak{a}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right), {\mathfrak{b}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right), {\mathfrak{c}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)〉\right\} is called spherical fuzzy soft number \left(SF{S}_{ft}N\right) . Also, refusal grade is defined by

    {\mathcal{r}}_{{S}_{{\rho }_{\mathcal{i}\mathcal{j}}}} = \sqrt{1-\left({\left({\mathfrak{a}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}+{\left({\mathfrak{b}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}+{\left({\mathfrak{c}}_{\mathcal{j}}\left({\varkappa }_{\mathcal{i}}\right)\right)}^{2}\right)}\text{.}

    Example 3. From a set of five laptop brands as alternatives A = \left\{{\varkappa }_{1} = Dell, {\varkappa }_{2} = Apple, {\varkappa }_{3} = Lenovo, {\varkappa }_{4} = Samsung, {\varkappa }_{5} = Acer\right\}, a person's desire to buy the best brand. Let \rho = \left\{{\rho }_{1} = USB \ type-C, {\rho }_{2} = Higher \ resolution \ screen, {\rho }_{3} = Reaonable \ pr\mathcal{i}c\mathcal{e}, {\rho }_{4} = 8 \ GB \ of \ RAM \ or \ more\right\} be the set of parameters. Let \mathcal{w} = \left\{0.25, 0.15, 0.14, 0.3, \mathrm{0, 16}\right\} denote the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.27, 0.19, 0.29, 0.25\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters. The experts provide their information in the form of SF{S}_{ft}Ns as given in Table 1.

    Table 1.  Tabular representation of SF{S}_{ft}Ns .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4}
    {\boldsymbol{\varkappa }}_{1} \left(0.2, 0.1, 0.6\right) \left(0.5, 0.3, 0.1\right) \left(0.4, 0.3, 0.2\right) \left(0.6, 0.1, 0.2\right)
    {\boldsymbol{\varkappa }}_{2} \left(0.1, 0.4, 0.4\right) \left(0.6, 0.3, 0.1\right) \left(0.2, 0.1, 0.7\right) \left(0.5, 0.6, 0.1\right)
    {\boldsymbol{\varkappa }}_{3} \left(0.3, 0.2, 0.2\right) \left(0.6, 0.2, 0.1\right) \left(0.3, 0.3, 0.4\right) \left(0.5, 0.1, 0.3\right)
    {\boldsymbol{\varkappa }}_{4} \left(0.3, 0.1, 0.6\right) \left(0.1, 0.2, 0.6\right) \left(0.2, 0.1, 0.2\right) \left(0.2, 0.3, 0.4\right)
    {\boldsymbol{\varkappa }}_{5} \left(0.7, 0.4, 0.2\right) \left(0.5, 0.3, 0.7\right) \left(0.2, 0.8, 0.3\right) \left(0.7, 0.1, 0.2\right)

     | Show Table
    DownLoad: CSV

    By using Eq (1), we have

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left[\begin{array}{c}\left(\sqrt{\begin{array}{c}1-{\left\{{\left(1-{0.2}^{2}\right)}^{0.25}{\left(1-{0.1}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.3}^{2}\right)}^{0.3}{\left(1-{0.7}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.5}^{2}\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.6}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.5}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.4}^{2}\right)}^{0.25}{\left(1-{0.2}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-0.6\right)}^{0.25}{\left(1-{0.5}^{2}\right)}^{0.15}{\left(1-{0.5}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.7}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}}\right), \\ \left(\begin{array}{c}{\left\{{\left(1-{0.1}^{2}\right)}^{0.25}{\left(1-{0.4}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.4}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.3}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.3}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.3}^{2}\right)}^{0.25}{\left(1-{0.1}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.8}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-{0.1}^{2}\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.1}^{2}\right)}^{0.14}{\left(1-{0.3}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}\right), \\ \left(\begin{array}{c}{\left\{{\left(1-{0.6}^{2}\right)}^{0.25}{\left(1-{0.4}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.6}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.1}^{2}\right)}^{0.25}{\left(1-{0.1}^{2}\right)}^{0.15}{\left(1-{0.1}^{2}\right)}^{0.14}{\left(1-{0.6}^{2}\right)}^{0.3}{\left(1-{0.7}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.2}^{2}\right)}^{0.25}{\left(1-{0.7}^{2}\right)}^{0.15}{\left(1-{0.4}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.3}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-{0.2}^{2}\right)}^{0.25}{\left(1-{0.1}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.4}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}\right)\end{array}\right]
    = \left(\mathrm{0.461322, 0.174673}, 0.250344\right)\text{.}

    Next, we propose the properties for SF{S}_{ft}WA aggregation operator, which can be easily proved.

    Theorem 3. Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , be the family of SF{S}_{ft}Ns , \mathcal{w} = {\left({\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right)}^{T} denote the WV of {\mathcal{e}}_{\mathcal{i}} experts and p = {\left({p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right)}^{T} denote the WV of parameters {\rho }_{\mathcal{j}} with condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] with \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 and \sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1 . Then SF{S}_{ft}WA operator holds the following properties:

    1.(Idempotency): Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) = {{S}^{, }}_{\rho } for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , where {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) , then SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {{S}^{, }}_{\rho } .

    Proof. If {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) = {{S}^{, }}_{\rho } for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , where {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) , then from Theorem 1, we have

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}^{, }\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}^{, }\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}^{, }\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(\sqrt{1-\left(1-{\left({\mathfrak{a}}^{, }\right)}^{2}\right)}, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }\right) = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) = {{S}^{, }}_{\rho }\text{.}

    Hence SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {{S}^{, }}_{\rho }.

    2.(Boundedness): If {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-} = \left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right\}\right) and {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+} = \left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right\}\right) , then {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\le SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+} .

    Proof. As {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-} = \left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right\}\right) and

    {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+} = \left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right\}\right) , then we have to prove that {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\le SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+} .

    Now for each \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} ,

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}\le \left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right\}\iff 1-{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\right\}\le 1-{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\le {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\right\}
    \iff \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{max}_{\mathcal{j}}{max}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{min}_{\mathcal{j}}{min}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\iff {\left({\left(1-{max}_{\mathcal{j}}{max}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {\left({\left(1-{min}_{\mathcal{j}}{min}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \iff 1-{max}_{\mathcal{j}}{max}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le 1-{min}_{\mathcal{j}}{min}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}
    \iff 1-\left(1-{min}_{\mathcal{j}}{min}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)\le 1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le 1-\left(1-{max}_{\mathcal{j}}{max}_{\mathcal{i}}{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)\text{.}

    Hence

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)\le \sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)\text{.} (2)

    Now for each \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , we have

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\iff \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\iff {\left({\left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {\left({\left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \Rightarrow {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\le \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\text{.} (3)

    Also for each \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , we get

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\iff \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\iff {\left({\left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {\left({\left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}^{\sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}}\right)}^{\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}}
    \Rightarrow {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\le \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\text{.} (4)

    Therefore from Eqs (2), (3), and (4), it is clear that

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)\le \sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)\text{, }
    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)

    and

    {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\le \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\text{.}

    Let \mathfrak{T} = SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = ({\mathfrak{a}}_{\mathfrak{T}}, {\mathfrak{b}}_{\mathfrak{T}}, {\mathfrak{c}}_{\mathfrak{T}}) , by Definition 10, we obtain

    Sc\left(\mathfrak{T}\right) = Sc\left({S}_{{\rho }_{11}}\right) = \frac{\left(2+{\mathfrak{a}}_{\mathfrak{T}}-{\mathfrak{b}}_{\mathfrak{T}}-{\mathfrak{c}}_{\mathfrak{T}}\right)}{3}
    \le \frac{\left(2+{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)-{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)-{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}{3}
    = Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right)
    \Rightarrow Sc\left(\mathfrak{T}\right)\le Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right)

    and

    Sc\left(\mathfrak{T}\right) = \frac{\left(2+{\mathfrak{a}}_{\mathfrak{T}}-{\mathfrak{b}}_{\mathfrak{T}}-{\mathfrak{c}}_{\mathfrak{T}}\right)}{3}
    \ge \frac{\left(2+{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)-{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)-{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}{3}
    = Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right)
    \Rightarrow Sc\left(\mathfrak{T}\right)\ge Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right)\text{.}

    We have the following cases

    Case (1): If Sc\left(\mathfrak{T}\right) < Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right) and Sc\left(\mathfrak{T}\right)>Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right) , then by the Definition 10, we have

    \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right)\le SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right)

    Case (2): If Sc\left(\mathfrak{T}\right) = Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right) , that is

    \frac{\left(2+{\mathfrak{a}}_{\mathfrak{T}}-{\mathfrak{b}}_{\mathfrak{T}}-{\mathfrak{c}}_{\mathfrak{T}}\right)}{3} = \frac{\left(2+{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)-{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)-{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}{3}, then by using the above inequalities, we get

    {\mathfrak{a}}_{\mathfrak{T}} = {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right) and {\mathfrak{b}}_{\mathfrak{T}} = {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right) and {\mathfrak{c}}_{\mathfrak{T}} = {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) .

    Thus {\mathcal{r}}_{\mathfrak{T}} = {\mathcal{r}}_{{S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}} , this implies that SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right) .

    Case (3): If Sc\left(\mathfrak{T}\right) = Sc\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right) , that is

    \frac{\left(2+{\mathfrak{a}}_{\mathfrak{T}}-{\mathfrak{b}}_{\mathfrak{T}}-{\mathfrak{c}}_{\mathfrak{T}}\right)}{3} = \frac{\left(2+{min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)-{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)-{max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\right)}{3}, then by using the above inequalities, we get

    {\mathfrak{a}}_{\mathfrak{T}} = {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right) and {\mathfrak{b}}_{\mathfrak{T}} = {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right) and {\mathfrak{c}}_{\mathfrak{T}} = {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) .

    Thus {\mathcal{r}}_{\mathfrak{T}} = {\mathcal{r}}_{{S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}} , this implies that SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right) .

    Hence it is proved that

    \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\right)\le SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le \left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\right)\text{.}

    3. (Monotonicity): Let {{S}^{, }}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\right) be any other collection of SF{S}_{ft}Ns for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} such that {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\le {{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}} , {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}} and {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}} , then

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le SF{S}_{ft}WA\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots , {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Proof. As {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\le {{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}} , {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}} and {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}} for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , so

    {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\le {{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}\Rightarrow 1-{{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}\le 1-{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\Rightarrow 1-{{{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}}^{2}\le 1-{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}
    \Rightarrow \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}
    \Rightarrow 1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\le 1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}
    \Rightarrow \sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}\le \sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}} (5)

    and

    {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}\Rightarrow \prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\ge \prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\Rightarrow \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\ge \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\text{.} (6)

    Also

    {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\Rightarrow \prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\ge \prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\Rightarrow \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\ge \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\text{.} (7)

    Let {\mathfrak{T}}_{S} = SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = \left({\mathfrak{a}}_{{\mathfrak{T}}_{S}}, {\mathfrak{b}}_{{\mathfrak{T}}_{S}}, {\mathfrak{c}}_{{\mathfrak{T}}_{S}}\right) and {\mathfrak{T}}_{{S}^{, }} = SF{S}_{ft}WA\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots, {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = \left({{\mathfrak{a}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}, {{\mathfrak{b}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}, {{\mathfrak{c}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}\right) , then from Eqs (5), (6), and (7), we obtain {\mathfrak{a}}_{{\mathfrak{T}}_{S}}\le {{\mathfrak{a}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}} , {\mathfrak{b}}_{{\mathfrak{T}}_{S}}\ge {{\mathfrak{b}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}} and {\mathfrak{c}}_{{\mathfrak{T}}_{S}}\ge {{\mathfrak{c}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}} .

    Now by using Definition 10, we obtain Sc\left({\mathfrak{T}}_{S}\right)\le Sc\left({\mathfrak{T}}_{{S}^{, }}\right) .

    Now we have the following cases

    Case (1): If Sc\left({\mathfrak{T}}_{S}\right) < Sc\left({\mathfrak{T}}_{{S}^{, }}\right) , then by using Definition 11, we have

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) < SF{S}_{ft}WA\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots , {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Case (2): If Sc\left({\mathfrak{T}}_{S}\right) = Sc\left({\mathfrak{T}}_{{S}^{, }}\right) , then

    Sc\left({\mathfrak{T}}_{S}\right) = \frac{\left(2+{\mathfrak{a}}_{{\mathfrak{T}}_{S}}-{\mathfrak{b}}_{{\mathfrak{T}}_{S}}-{\mathfrak{c}}_{{\mathfrak{T}}_{S}}\right)}{3} = \frac{\left(2+{\mathfrak{a}}_{{\mathfrak{T}}_{{S}^{, }}}-{\mathfrak{b}}_{{\mathfrak{T}}_{{S}^{, }}}-{\mathfrak{c}}_{{\mathfrak{T}}_{{S}^{, }}}\right)}{3} = Sc\left({\mathfrak{T}}_{{S}^{, }}\right)\text{.}

    Hence by using the above inequality, we obtain {\mathfrak{a}}_{{\mathfrak{T}}_{S}} = {{\mathfrak{a}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}, {\mathfrak{b}}_{{\mathfrak{T}}_{S}} = {{\mathfrak{b}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}} and {\mathfrak{c}}_{{\mathfrak{T}}_{S}} = {{\mathfrak{c}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}} .

    So we get {\mathcal{r}}_{{\mathfrak{T}}_{S}} = {\mathcal{r}}_{{\mathfrak{T}}_{{S}^{, }}}\Rightarrow \left({\mathfrak{a}}_{{\mathfrak{T}}_{S}}, {\mathfrak{b}}_{{\mathfrak{T}}_{S}}, {\mathfrak{c}}_{{\mathfrak{T}}_{S}}\right) = \left({{\mathfrak{a}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}, {{\mathfrak{b}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}, {{\mathfrak{c}}^{, }}_{{\mathfrak{T}}_{{S}^{, }}}\right) .

    Hence it is proved that

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) < SF{S}_{ft}WA\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots , {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    4. (Shift Invariance): If {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) is another family of SF{S}_{ft}Ns , then

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}⨁{S}_{\rho }, {S}_{{\rho }_{12}}⨁{S}_{\rho }, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}⨁{{S}^{, }}_{\rho }\right) = SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)⨁{{S}^{, }}_{\rho }\text{.}

    Proof. Let {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) and {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) be family of SF{S}_{ft}Ns , then

    {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}⨁{{S}^{, }}_{\rho } = \left(\sqrt{1-\left(1-{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\right)\left(1-{{\mathfrak{a}}^{, }}^{2}\right)}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}{\mathfrak{b}}^{, }, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}{\mathfrak{c}}^{, }\right)\text{.}

    Therefore,

    SF{S}_{ft}WA\left({S}_{{\rho }_{11}}⨁{S}_{\rho }, {S}_{{\rho }_{12}}⨁{S}_{\rho }, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}⨁{{S}^{, }}_{\rho }\right) = {\oplus }_{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}\left({\oplus }_{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}\left({S}_{{\rho }_{\mathcal{i}\mathcal{j}}}⨁{{S}^{, }}_{\rho }\right)\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}{\left(1-{\left({\mathfrak{a}}^{, }\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\left({{\mathfrak{b}}^{, }}^{{\mathcal{w}}_{\mathcal{i}}}\right)\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\left({{\mathfrak{c}}^{, }}^{{\mathcal{w}}_{\mathcal{i}}}\right)\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(\begin{array}{c}\sqrt{1-\left(1-{\left({\mathfrak{a}}^{, }\right)}^{2}\right)\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, {\mathfrak{b}}^{, }\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ {\mathfrak{c}}^{, }\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)⨁\left({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)⨁{{S}^{, }}_{\rho }
    = SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)⨁{{S}^{, }}_{\rho }\text{.}

    Hence the required result is proved.

    5.(Homogeneity): For any real number \gimel \ge 0 ,

    SF{S}_{ft}WA\left({\gimel S}_{{\rho }_{11}}, {\gimel S}_{{\rho }_{12}}, \dots , {\gimel S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le \gimel SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Proof. Let \gimel \ge 0 be any real number and {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) be a collection of SF{S}_{ft}Ns , then

    \gimel {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left(\sqrt{\left(1-{\left(1-{{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\right)}^{\gimel }\right)}, {{\mathfrak{b}}_{\mathcal{i}\mathcal{j}}}^{\gimel }, {{\mathfrak{c}}_{\mathcal{i}\mathcal{j}}}^{\gimel }\right)\text{.}

    Now

    SF{S}_{ft}WA\left(\gimel {S}_{{\rho }_{11}}, {\gimel S}_{{\rho }_{12}}, \dots , {\gimel S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{\gimel }\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{\gimel {\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{\gimel {\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(\begin{array}{c}\sqrt{1-{\left(\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\right)}^{\gimel }}, {\left(\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\right)}^{\gimel }, \\ {\left(\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\right)}^{\gimel }\end{array}\right)
    = \gimel SF{S}_{ft}WA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Hence the result is proved.

    From the above analysis, it is clear that SF{S}_{ft}WA cannot weigh the order position through scoring the SF{S}_{ft} values, so to overcome this drawback, in this section, we will discuss the notion of SF{S}_{ft}OWA operator which can weigh the ordered position thorough scoring the SF{S}_{ft}Ns. Also, the properties of established operators are discussed.

    Definition 14. Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , be the collection of SF{S}_{ft}Ns , \mathcal{w} = \left\{{\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right\} and p = \left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\} are the WVs of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and parameters {\rho }_{\mathcal{j}} respectively with condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 , \sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1 . Then SF{S}_{ft}OWA operator is the mapping defined by SF{S}_{ft}OWA:{\mathcal{R}}^{\mathcal{n}}\to \mathcal{R} , where ( \mathcal{R} is the family of all SF{S}_{ft}Ns )

    SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {\oplus }_{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}\left({\oplus }_{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}{S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}\right)\text{.}

    Theorem 4. Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , be the family of SFFNs . Then the aggregated result for SF{S}_{ft}OWA operator is again a SF{S}_{ft}N given by

    SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {\oplus }_{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}\left({\oplus }_{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}{S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right) (8)

    where {S}_{\mathfrak{d}{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right) denote the permutation of \mathcal{i}th and \mathcal{j}th largest object of the collection of \mathcal{i}\times \mathcal{j}SF{S}_{ft}Ns{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) .

    Proof. The proof is similar to Theorem 2.

    Example 4. Consider the collection of SF{S}_{ft}Ns{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) as given in Table 1, of Example 3, then tabular depiction of {S}_{\mathfrak{d}{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right) is given in Table 2.

    Table 2.  Tabular depiction of {S}_{\mathfrak{d}{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right) .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4}
    {\boldsymbol{\varkappa }}_{1} \left(0.7, 0.4, 0.6\right) \left(0.6, 0.3, 0.7\right) \left(0.4, 0.8, 0.7\right) \left(0.7, 0.6, 0.4\right)
    {\boldsymbol{\varkappa }}_{2} \left(0.3, 0.4, 0.6\right) \left(0.6, 0.3, 0.6\right) \left(0.3, 0.3, 0.4\right) \left(0.6, 0.3, 0.3\right)
    {\boldsymbol{\varkappa }}_{3} \left(0.3, 0.2, 0.4\right) \left(0.5, 0.3, 0.1\right) \left(0.2, 0.3, 0.3\right) \left(0.5, 0.1, 0.2\right)
    {\boldsymbol{\varkappa }}_{4} \left(0.2, 0.1, 0.2\right) \left(0.5, 0.2, 0.1\right) \left(0.2, 0.1, 0.2\right) \left(0.5, 0.1, 0.1\right)
    {\boldsymbol{\varkappa }}_{5} \left(0.1, 0.1, 0.2\right) \left(0.1, 0.2, 0.1\right) \left(0.2, 0.1, 0.2\right) \left(0.2, 0.1, 0.1\right)

     | Show Table
    DownLoad: CSV

    Now by using Eq (8) of Theorem 4, we have

    SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left[\begin{array}{c}\left(\sqrt{\begin{array}{c}1-{\left\{{\left(1-{0.7}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.6}^{2}\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.5}^{2}\right)}^{0.14}{\left(1-{0.5}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.4}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-0.7\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.5}^{2}\right)}^{0.14}{\left(1-{0.5}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}}\right), \\ \left(\begin{array}{c}{\left\{{\left(1-{0.4}^{2}\right)}^{0.25}{\left(1-{0.4}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.3}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.8}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-{0.6}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.1}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}\right), \\ \left(\begin{array}{c}{\left\{{\left(1-{0.6}^{2}\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.4}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.27}\\ {\left\{{\left(1-{0.7}^{2}\right)}^{0.25}{\left(1-{0.6}^{2}\right)}^{0.15}{\left(1-{0.1}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.19}\\ {\left\{{\left(1-{0.7}^{2}\right)}^{0.25}{\left(1-{0.4}^{2}\right)}^{0.15}{\left(1-{0.3}^{2}\right)}^{0.14}{\left(1-{0.2}^{2}\right)}^{0.3}{\left(1-{0.2}^{2}\right)}^{0.16}\right\}}^{0.29}\\ {\left\{{\left(1-{0.4}^{2}\right)}^{0.25}{\left(1-{0.3}^{2}\right)}^{0.15}{\left(1-{0.2}^{2}\right)}^{0.14}{\left(1-{0.1}^{2}\right)}^{0.3}{\left(1-{0.1}^{2}\right)}^{0.16}\right\}}^{0.25}\end{array}\right)\end{array}\right]
    = \left(\mathrm{0.456533, 0.16599}, 0.21286\right).

    Theorem 5. For the collection of SF{S}_{ft}Ns , {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , \mathcal{w} = \left\{{\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right\} being WV of {\mathcal{e}}_{\mathcal{i}} experts and p = \left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\} being WV of parameters {\rho }_{\mathcal{j}} with condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 , \sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1 , then SF{S}_{ft}OWA operator preserves the following properties.

    1.(Idempotency): Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) = {{S}^{, }}_{\mathfrak{d}\rho } for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m}, where {{S}^{, }}_{\mathfrak{d}\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }), then SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots, {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {{S}^{, }}_{\mathfrak{d}\rho } .

    2. (Boundedness): If {S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}^{-} = \left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}\right) and {S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}^{+} = \left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\mathfrak{a}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{b}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\mathfrak{c}}_{\mathfrak{d}\mathcal{i}\mathcal{j}}\right\}\right), then

    {S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}^{-}\le SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le {S}_{{\mathfrak{d}\rho }_{\mathcal{i}\mathcal{j}}}^{+}\text{.}

    3. (Monotonicity): Let {{S}^{, }}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\right) be any other collection of SF{S}_{ft}Ns for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} such that {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\le {{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}} , {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}} and {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}} , then

    SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le SF{S}_{ft}OWA\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots , {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    4. (Shift Invariance): If {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) is another family of SF{S}_{ft}Ns , then

    SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}⨁{S}_{\rho }, {S}_{{\rho }_{12}}⨁{S}_{\rho }, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}⨁{{S}^{, }}_{\rho }\right) = SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)⨁{{S}^{, }}_{\rho }\text{.}

    5.(Homogeneity): For any real number \gimel \ge 0 ,

    SF{S}_{ft}OWA\left({\gimel S}_{{\rho }_{11}}, {\gimel S}_{{\rho }_{12}}, \dots , {\gimel S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le \gimel SF{S}_{ft}OWA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Proof. The proof is simple and follows from Theorem 3.

    As spherical fuzzy soft hybrid average \left(SF{S}_{ft}HA\right) aggregation operator can deal with both situations like measuring the values of SF{S}_{ft}Ns and also considering the ordered position of SF{S}_{ft} values, so due to this reason here we elaborate the SF{S}_{ft}HA and discuss properties related to these operators.

    Definition 15. For a collection of SF{S}_{ft}Ns{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right); \mathcal{ }\mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , and \mathcal{w} = \left\{{\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right\} being WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\} being WV of parameters {\rho }_{\mathcal{j}} with condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 , \sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1, the SF{S}_{ft}{\rm H}A operator is the mapping defined by SF{S}_{ft}{\rm H}A:{\mathcal{R}}^{\mathcal{n}}\to \mathcal{R} , where ( \mathcal{R} denote the family of all SF{S}_{ft}Ns )

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {\oplus }_{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}\left({\oplus }_{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}{\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}\right).

    Theorem 6. Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , be the family of SF{S}_{ft}Ns having WVs \mathfrak{v} = {\left\{{\mathfrak{v}}_{1}, {\mathfrak{v}}_{2}, \dots, {\mathfrak{v}}_{\mathcal{n}}\right\}}^{T} and \mathfrak{u} = {\left\{{\mathfrak{u}}_{1}, {\mathfrak{u}}_{2}, \dots, {\mathfrak{u}}_{\mathcal{n}}\right\}}^{T} with condition {\mathfrak{v}}_{\mathcal{i}}, {\mathfrak{u}}_{\mathcal{j}}\in \left[0, 1\right], \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathfrak{v}}_{\mathcal{i}} = 1, \sum _{\mathcal{j} = 1}^{\mathcal{m}}{\mathfrak{u}}_{\mathcal{j}} = 1 . Also ''\mathcal{n}'' represents the corresponding coefficient for the number of elements in \mathcal{i}th row and \mathcal{j}th column with WVs \mathcal{w} = {\left({\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right)}^{T} denote the WVs of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = {\left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\}}^{T} being WVs of parameters ''{{\rho }_{\mathcal{j}}}'' with condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right], \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 and\sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1 , then

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {\oplus }_{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}}\left({\oplus }_{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}}{\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod _{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod _{\mathcal{i} = 1}^{\mathcal{n}}{\left({\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right) (9)

    where {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} denote the permutation of \mathcal{i}th and \mathcal{j}th largest object of the family of \mathcal{i}\times \mathcal{j}SFSNs{\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right) .

    Proof. The proof is similar to Theorem 1.

    Example 5. Consider the family of SF{S}_{ft}Ns{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) as given in Table 1 with WV \mathfrak{v} = {\left\{0.17, 0.19, .12, 0.16, 0.36\right\}}^{T} and \mathfrak{u} = {\left\{0.23, 0.2, \mathrm{0.29, 0.28}\right\}}^{T} and having the associated vector as \mathcal{w} = {\left(0.23, 0.18, 0.1, 0.27, 00.22\right)}^{T} and p = {\left\{0.23, 0.24, 0.18, 0.35\right\}}^{T} . Then by using Eq (10) the corresponding SF{S}_{ft}Ns{\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right) of the permutation of \mathcal{i}th and \mathcal{j}th largest object of the family of \mathcal{i}\times \mathcal{j}SF{S}_{ft}Ns{\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}, {\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right) are given in Table 3. Since

    {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left(\sqrt{1-{\left({{\mathfrak{a}}_{\mathcal{i}\mathcal{j}}}^{2}\right)}^{\mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}}}, {\left({\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\right)}^{\mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}}, {\left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)}^{\mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}}\right)\text{.} (10)
    Table 3.  Tabular presentation of {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4}
    {\boldsymbol{\varkappa }}_{1} \left(\begin{array}{c}0.03128, 0.01564, \\ 0.09348\end{array}\right) \left(\begin{array}{c}0.068, 0.0408, \\ 0.0136\end{array}\right) \left(\begin{array}{c}0.07888, 0.05916, \\ 0.03944, \end{array}\right) \left(\begin{array}{c}0.11424, 0.01904, \\ 0.03808\end{array}\right)
    {\boldsymbol{\varkappa }}_{2} \left(\begin{array}{c}0.017480, 0.06992, \\ 0.06992\end{array}\right) \left(\begin{array}{c}0.0912, 0.0456, \\ 0.0152\end{array}\right) \left(\begin{array}{c}0.04408, 0.02204, \\ 0.15428, \end{array}\right) \left(\begin{array}{c}0.1064, 0.1064, \\ 0.02128\end{array}\right)
    {\boldsymbol{\varkappa }}_{3} \left(\begin{array}{c}0.03312, 0.02208, \\ 0.02208\end{array}\right) \left(\begin{array}{c}0.0576, 0.01920, \\ 0.096\end{array}\right) \left(\begin{array}{c}0.04176, 0.04176, \\ 0.05568, \end{array}\right) \left(\begin{array}{c}0.0672, 0.01344, \\ 0.04032\end{array}\right)
    {\boldsymbol{\varkappa }}_{4} \left(\begin{array}{c}0.04416, 0.01472, \\ 0.08832\end{array}\right) \left(\begin{array}{c}0.0128, 0.0256, \\ 0.0768\end{array}\right) \left(\begin{array}{c}0.01856, 0.01856, \\ 0.03712, \end{array}\right) \left(\begin{array}{c}0.03548, 0.5376, \\ 0.07168\end{array}\right)
    {\boldsymbol{\varkappa }}_{5} \left(\begin{array}{c}0.23184, 0.13248, \\ 0.06624\end{array}\right) \left(\begin{array}{c}0.144, 0.0864, \\ 0.2016\end{array}\right) \left(\begin{array}{c}0.334008, 0.33408, \\ 0.125280\end{array}\right) \left(\begin{array}{c}0.28224, 0.04032, \\ 0.08064\end{array}\right)

     | Show Table
    DownLoad: CSV

    Now by using Eq (9), we get

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)
    = \left(\begin{array}{c}\sqrt{1-\prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left(1-{\left({\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}\right)}^{2}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}}, \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}, \\ \prod \limits_{\mathcal{j} = 1}^{\mathcal{m}}{\left(\prod \limits_{\mathcal{i} = 1}^{\mathcal{n}}{\left({\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right)}^{{\mathcal{w}}_{\mathcal{i}}}\right)}^{{p}_{\mathcal{j}}}\end{array}\right)
    = \left(0.114201, 0.025752, 0.034869\right)\text{.}

    Theorem 7. Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) for \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , be the family of SF{S}_{ft}Ns with WVs \mathfrak{v} = {\left\{{\mathfrak{v}}_{1}, {\mathfrak{v}}_{2}, \dots, {\mathfrak{v}}_{\mathcal{n}}\right\}}^{T} and \mathfrak{u} = {\left\{{\mathfrak{u}}_{1}, {\mathfrak{u}}_{2}, \dots, {\mathfrak{u}}_{\mathcal{n}}\right\}}^{T} having condition {\mathfrak{v}}_{\mathcal{i}}, {\mathfrak{u}}_{\mathcal{j}}\in [0, 1] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathfrak{v}}_{\mathcal{i}} = 1 , \sum _{\mathcal{j} = 1}^{\mathcal{m}}{\mathfrak{u}}_{\mathcal{j}} = 1 . Also ''\mathcal{n}'' represents the corresponding coefficient for the number of elements in \mathcal{i}th row and \mathcal{j}th column linked with vectors \mathcal{w} = {\left({\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right)}^{T} denote the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = {\left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\}}^{T} denote the WV of parameters ''{{\rho }_{\mathcal{j}}}'' having condition {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 , \sum _{\mathcal{j} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1 . Then SF{S}_{ft}{\rm H}A operator contains the subsequent properties:

    1. (Idempotency): Let {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = {\stackrel{~}{{S}^{, }}}_{\rho } for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} , {\stackrel{~}{{S}^{, }}}_{\rho } = \mathcal{n}{{\mathfrak{v}}_{\mathcal{i}}\mathfrak{u}}_{\mathcal{j}}{{S}^{, }}_{\rho } then

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right) = {\stackrel{~}{{S}^{, }}}_{\rho }\text{.}

    2. (Boundedness): If {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-} = \left({min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{\mathcal{m}a\varkappa }_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}\right\}, {max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right\}\right) and {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+} = \left({max}_{\mathcal{j}}{max}_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{a}}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{b}}}_{\mathcal{i}\mathcal{j}}\right\}, {min}_{\mathcal{j}}{min}_{\mathcal{i}}\left\{{\stackrel{~}{\mathfrak{c}}}_{\mathcal{i}\mathcal{j}}\right\}\right), then

    {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{-}\le SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le {\stackrel{~}{S}}_{{\rho }_{\mathcal{i}\mathcal{j}}}^{+}\text{.}

    3. (Monotonicity): Let {{S}^{, }}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}}, {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}}\right) be any other family of SF{S}_{ft}Ns for all \mathcal{i} = 1, 2, \dots, \mathcal{n} and \mathcal{j} = 1, 2, \dots, \mathcal{m} such that {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\le {{\mathfrak{a}}^{, }}_{\mathcal{i}\mathcal{j}} , {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{b}}^{, }}_{\mathcal{i}\mathcal{j}} and {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\ge {{\mathfrak{c}}^{, }}_{\mathcal{i}\mathcal{j}} , then

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le SF{S}_{ft}{\rm H}A\left({{S}^{, }}_{{\rho }_{11}}, {{S}^{, }}_{{\rho }_{12}}, \dots , {{S}^{, }}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    4. (Shift Invariance): If {{S}^{, }}_{\rho } = ({\mathfrak{a}}^{, }, {\mathfrak{b}}^{, }, {\mathfrak{c}}^{, }) is another family of SF{S}_{ft}Ns , then

    SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}⨁{S}_{\rho }, {S}_{{\rho }_{12}}⨁{S}_{\rho }, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}⨁{{S}^{, }}_{\rho }\right) = SF{S}_{ft}{\rm H}A\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)⨁{{S}^{, }}_{\rho }\text{.}

    5.(Homogeneity): For any real number \gimel \ge 0 ,

    SF{S}_{ft}HA\left({\gimel S}_{{\rho }_{11}}, {\gimel S}_{{\rho }_{12}}, \dots , {\gimel S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\le \gimel SF{S}_{ft}HA\left({S}_{{\rho }_{11}}, {S}_{{\rho }_{12}}, \dots , {S}_{{\rho }_{\mathcal{n}\mathcal{m}}}\right)\text{.}

    Proof. The proof is simple and follows from Theorem 3.

    In this section, we will discuss a new MCDM method based on SF{S}_{ft}WA, SF{S}_{ft}OWA and SF{S}_{ft}HA aggregation operators to solve MCDM problems under the environment of SF{S}_{ft}Ns .

    Consider a common MCDM problem. Let A = \left\{{\varkappa }_{1}, {\varkappa }_{2}, {\varkappa }_{3}, \dots, {\varkappa }_{r}\right\} be the set of ''r'' alternative, E = \left\{{E}_{1}, {E}_{2}, {E}_{3}, \dots, {E}_{\mathcal{n}}\right\} be the family of ''\mathcal{n}'' senior experts with \rho = \left\{{\rho }_{1}, {\rho }_{2}, {\rho }_{3}, \dots, {\rho }_{\mathcal{m}}\right\} as a family of ''\mathcal{m}'' parameters. The experts evaluate each alternative {\varkappa }_{l}\left(l = 1, 2, 3, \dots, r\right) according to their respective parameters {\rho }_{\mathcal{j}}(\mathcal{j} = 1, 2, 3, \dots, \mathcal{m}) . Suppose evaluation information given by experts is in the form of SF{S}_{ft}Ns{S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right)\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathcal{i} = 1, 2, \dots, \mathcal{n}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathcal{j} = 1, 2, \dots, \mathcal{m}. Let \mathcal{w} = \left\{{\mathcal{w}}_{1}, {\mathcal{w}}_{2}, \dots, {\mathcal{w}}_{\mathcal{n}}\right\} denote the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{{p}_{1}, {p}_{2}, \dots, {p}_{\mathcal{m}}\right\} represent the WV of parameters ''{{\rho }_{\mathcal{j}}}'' with a condition that {\mathcal{w}}_{\mathcal{i}}, {p}_{\mathcal{j}}\in \left[0, 1\right] and \sum _{\mathcal{i} = 1}^{\mathcal{n}}{\mathcal{w}}_{\mathcal{i}} = 1 , \sum _{\mathcal{i} = 1}^{\mathcal{m}}{p}_{\mathcal{j}} = 1. The overall information is given in matrix M = {\left[{S}_{{\rho }_{\mathcal{i}\mathcal{j}}}\right]}_{\mathcal{n}\times \mathcal{m}}. By using the aggregation operator for assessment values, the aggregated SF{S}_{ft}N''{{\mathfrak{B}}_{l}}'' for alternative {\varkappa }_{l}\left(l = 1, 2, 3, \dots, r\right) are given by {\mathfrak{B}}_{l} = \left({\mathfrak{a}}_{l}, {\mathfrak{b}}_{l}, {\mathfrak{c}}_{l}\right)(l = 1, 2, \dots, r) . Use the Definition 10 to find the score values for SF{S}_{ft}Ns and rank them.

    Step vise algorithm is given by

    Step 1: Arrange all assessment information given by experts for each alternative to their corresponding parameters to construct an overall decision matrix M = {\left[{S}_{{\rho }_{\mathcal{i}\mathcal{j}}}\right]}_{\mathcal{n}\times \mathcal{m}} given by:

    M = \left[\begin{array}{ccc}\left({\mathfrak{a}}_{11}, {\mathfrak{b}}_{11}, {\mathfrak{c}}_{11}\right)& \begin{array}{cc}\left({\mathfrak{a}}_{12}, {\mathfrak{b}}_{12}, {\mathfrak{c}}_{12}\right)& \cdots \end{array}& \left({\mathfrak{a}}_{1\mathcal{m}}, {\mathfrak{b}}_{1\mathcal{m}}, {\mathfrak{c}}_{1\mathcal{m}}\right)\\ \begin{array}{c}\left({\mathfrak{a}}_{21}, {\mathfrak{b}}_{21}, {\mathfrak{c}}_{21}\right)\\ ⋮\end{array}& \begin{array}{cc}\left({\mathfrak{a}}_{22}, {\mathfrak{b}}_{22}, {\mathfrak{c}}_{22}\right)& \dots \end{array}& \left({\mathfrak{a}}_{2\mathcal{m}}, {\mathfrak{b}}_{2\mathcal{m}}, {\mathfrak{c}}_{2\mathcal{m}}\right)\\ \left({\mathfrak{a}}_{\mathcal{n}1}, {\mathfrak{b}}_{\mathcal{n}1}, {\mathfrak{c}}_{\mathcal{n}1}\right)& \begin{array}{c}⋮\\ \begin{array}{cc}\left({\mathfrak{a}}_{\mathcal{n}2}, {\mathfrak{b}}_{\mathcal{n}2}, {\mathfrak{c}}_{\mathcal{n}2}\right)& \dots \end{array}\end{array}& \left({\mathfrak{a}}_{\mathcal{n}\mathcal{m}}, {\mathfrak{b}}_{\mathcal{n}\mathcal{m}}, {\mathfrak{c}}_{\mathcal{n}\mathcal{m}}\right)\end{array}\right]\text{.}

    Step 2: Normalize the SF{S}_{ft} decision matrix that is given in step 1, because there are two type of parameters, cost type parameters and benefit type parameters if it is needed according to the following formula

    {\rho }_{\mathcal{i}\mathcal{j}} = \left\{\begin{array}{c}{{S}^{c}}_{{\rho }_{\mathcal{i}\mathcal{j}}}, \text{ for cost ty}{\rm{ \mathsf{ ρ} }}\text{e parameter}\\ {S}_{{\rho }_{\mathcal{i}\mathcal{j}}}, \text{ for a benefit type parameter}\end{array}\right.

    where {{S}^{c}}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{c}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{a}}_{\mathcal{i}\mathcal{j}}\right) denote the complement of {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right) .

    Step 3: Aggregate SF{S}_{ft}Ns by using the proposed aggregation operators for each parameter {\rho }_{l}\left(l = 1, 2, \dots, r\right) to get {\mathfrak{B}}_{l} = \left({\mathfrak{a}}_{l}, {\mathfrak{b}}_{l}, {\mathfrak{c}}_{l}\right) .

    Step 4: Using Definition 10 to calculate the score values for each ''{{\mathfrak{B}}_{l}}'' .

    Step 5: Rank the results for each alternative {\varkappa }_{l}\left(l = 1, 2, 3, \dots, r\right) and choose the best result.

    In this section, we describe the detailed explanation of the above-given algorithm through an illustrative example to show the effectiveness of the established work.

    Example 6. Suppose a person wants to select the best tyre brand from a set of four alternatives A = \left\{{\varkappa }_{1} = Bridgestone, {\varkappa }_{2} = Hankook, {\varkappa }_{3} = Dunlop, {\varkappa }_{4} = MRF tyres\right\} . Let a team of experts consisting of five members E = \left\{{E}_{1}, {E}_{2}, {E}_{3}, {E}_{4}, {E}_{5}\right\} with WVs \mathcal{w} = \left\{0.15, 0.13, 0.25, 0.23, 0.24\right\} provide their information about alternatives having parameters \rho = \left\{{\rho }_{1} = Cornering \ grip, {\rho }_{2} = Durability, {\rho }_{3} = Fuel \ comsumption, {\rho }_{4} = Internal \ noise, {\rho }_{5} = Aquaplaning\right\} with WVs p = \left\{0.19, 0.29, 0.18, 0.23, 0.11\right\} in the form of SF{S}_{ft}Ns . Now we use the proposed algorithm for the selection of the best alternative.

    By using SFSWA operators.

    Step 1: The overall expert information based on SF{S}_{ft}Ns is given in Table 47.

    Table 4.  SF{S}_{ft} matrix for alternative {\varkappa }_{1} .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4} {\boldsymbol{\rho }}_{5}
    {\boldsymbol{E}}_{1} \left(0.2, 0.1, 0.2\right) \left(0.5, 0.1, 0.1\right) \left(0.2, 0.1, 0.2\right) \left(0.5, 0.3, 0.1\right) \left(0.3, 0.2, 0.1\right)
    {\boldsymbol{E}}_{2} \left(0.2, 0.3, 0.3\right) \left(0.7, 0.5, 0.4\right) \left(0.3, 0.2, 0.4\right) \left(0.5, 0.2, 0.1\right) \left(0.2, 0.1, 0.3\right)
    {\boldsymbol{E}}_{3} \left(0.4, 0.8, 0.3\right) \left(0.2, 0.1, 0.1\right) \left(0.1, 0.1, 0.2\right) \left(0.6, 0.3, 0.6\right) \left(0.4, 0.3, 0.6\right)
    {\boldsymbol{E}}_{4} \left(0.2, 0.1, 0.2\right) \left(0.5, 0.1, 0.2\right) \left(0.3, 0.4, 0.6\right) \left(0.1, 0.2, 0.1\right) \left(0.6, 0.4, 0.1\right)
    {\boldsymbol{E}}_{5} \left(0.3, 0.3, 0.4\right) \left(0.6, 0.3, 0.3\right) \left(0.5, 0.4, 0.6\right) \left(0.6, 0.3, 0.7\right) \left(0.6, 0.2, 0.4\right)

     | Show Table
    DownLoad: CSV
    Table 5.  SF{S}_{ft} matrix for alternative {\varkappa }_{2} .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4} {\boldsymbol{\rho }}_{5}
    {\boldsymbol{E}}_{1} \left(0.6, 0.1, 0.2\right) \left(0.5, 0.3, 0.1\right) \left(0.5, 0.1, 0.3\right) \left(0.2, 0.3, 0.4\right) \left(0.7, 0.3, 0.2\right)
    {\boldsymbol{E}}_{2} \left(0.4, 0.4, 0.1\right) \left(0.6, 0.3, 0.1\right) \left(0.5, 0.2, 0.2\right) \left(0.7, 0.1, 0.2\right) \left(0.2, 0.7, 0.3\right)
    {\boldsymbol{E}}_{3} \left(0.2, 0.2, 0.3\right) \left(0.6, 0.2, 0.1\right) \left(0.4, 0.1, 0.3\right) \left(0.4, 0.3, 0.3\right) \left(0.3, 0.8, 0.1\right)
    {\boldsymbol{E}}_{4} \left(0.6, 0.1, 0.3\right) \left(0.5, 0.1, 0.2\right) \left(0.1, 0.3, 0.5\right) \left(0.2, 0.3, 0.2\right) \left(0.1, 0.2, 0.7\right)
    {\boldsymbol{E}}_{5} \left(0.4, 0.3, 0.3\right) \left(0.1, 0.2, 0.6\right) \left(0.1, 0.2, 0.6\right) \left(0.2, 0.2, 0.5\right) \left(0.3, 0.2, 0.5\right)

     | Show Table
    DownLoad: CSV
    Table 6.  SF{S}_{ft} matrix for alternative {\varkappa }_{3} .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4} {\boldsymbol{\rho }}_{5}
    {\boldsymbol{E}}_{1} \left(0.7, 0.1, 0.4\right) \left(0.5, 0.1, 0.8\right) \left(0.4, 0.6, 0.5\right) \left(0.8, 0.3, 0.4\right) \left(0.6, 0.4, 0.2\right)
    {\boldsymbol{E}}_{2} \left(0.4, 0.4, 0.4\right) \left(0.5, 0.3, 0.2\right) \left(0.5, 0.2, 0.2\right) \left(0.3, 0.3, 0.3\right) \left(0.2, 0.3, 0.6\right)
    {\boldsymbol{E}}_{3} \left(0.2, 0.1, 0.6\right) \left(0.2, 0.1, 0.2\right) \left(0.2, 0.1, 0.3\right) \left(0.4, 0.3, 0.5\right) \left(0.6, 0.3, 0.5\right)
    {\boldsymbol{E}}_{4} \left(0.8, 0.2, 0.5\right) \left(0.5, 0.5, 0.5\right) \left(0.5, 0.3, 0.4\right) \left(0.2, 0.8, 0.4\right) \left(0.1, 0.4, 0.5\right)
    {\boldsymbol{E}}_{5} \left(0.8, 0.3, 0.5\right) \left(0.5, 0.4, 0.3\right) \left(0.1, 0.2, 0.6\right) \left(0.2, 0.5, 0.7\right) \left(0.6, 0.3, 0.6\right)

     | Show Table
    DownLoad: CSV
    Table 7.  SF{S}_{ft} matrix for alternative {\varkappa }_{4} .
    {\boldsymbol{\rho }}_{1} {\boldsymbol{\rho }}_{2} {\boldsymbol{\rho }}_{3} {\boldsymbol{\rho }}_{4} {\boldsymbol{\rho }}_{5}
    {\boldsymbol{E}}_{1} \left(0.1, 0.2, 0.6\right) \left(0.4, 0.3, 0.5\right) \left(0.8, 0.3, 0.5\right) \left(0.5, 0.5, 0.5\right) \left(0.7, 0.5, 0.1\right)
    {\boldsymbol{E}}_{2} \left(0.5, 0.2, 0.2\right) \left(0.2, 0.8, 0.4\right) \left(0.8, 0.2, 0.5\right) \left(0.2, 0.1, 0.2\right) \left(0.5, 0.2, 0.2\right)
    {\boldsymbol{E}}_{3} \left(0.2, 0.1, 0.3\right) \left(0.3, 0.3, 0.3\right) \left(0.7, 0.1, 0.4\right) \left(0.5, 0.4, 0.3\right) \left(0.4, 0.3, 0.2\right)
    {\boldsymbol{E}}_{4} \left(0.5, 0.3, 0.4\right) \left(0.2, 0.5, 0.7\right) \left(0.2, 0.1, 0.6\right) \left(0.5, 0.3, 0.2\right) \left(0.1, 0.1, 0.8\right)
    {\boldsymbol{E}}_{5} \left(0.4, 0.6, 0.5\right) \left(0.8, 0.3, 0.4\right) \left(0.4, 0.4, 0.4\right) \left(0.5, 0.1, 0.8\right) \left(0.4, 0.5, 0.5\right)

     | Show Table
    DownLoad: CSV

    Step 2: There is no need for normalization of SF{S}_{ft} matrix because of similar kinds of parameters.

    Step 3: Using the Eq (1) for each alternative {\varkappa }_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4\right) , we have

    {\mathfrak{B}}_{1} = \left(0.5878, 0.2090, 0.2439\right) , {\mathfrak{B}}_{2} = \left(0.5695, 0.2081, 0.2602\right).

    {\mathfrak{B}}_{3} = \left(0.6330, 0.2626, 0.4138\right) , {\mathfrak{B}}_{4} = \left(0.6341, 0.2623, 0.3955\right) .

    Step 4: To find out the score values, use Definition 10 for each {\mathfrak{B}}_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4, 5\right) given in step 3, i.e.

    Sc\left({\mathfrak{B}}_{1}\right) = 0.7116 , Sc\left({\mathfrak{B}}_{2}\right) = 0.7004 ,

    Sc\left({\mathfrak{B}}_{3}\right) = 0.6522 , Sc\left({\mathfrak{B}}_{4}\right) = 0.6587 .

    Step 5: Select the best solution by ranking the score values.

    Sc\left({\mathfrak{B}}_{1}\right) > Sc\left({\mathfrak{B}}_{2}\right) > Sc\left({\mathfrak{B}}_{4}\right) > Sc\left({\mathfrak{B}}_{3}\right).

    Hence it is clear that ''{{\varkappa }_{1}}'' is the best result.

    By using SF{S}_{ft}OWA operators.

    Step 1: Same as above.

    Step 2: Same as above.

    Step 3: Using the Eq (8) for each alternative {\varkappa }_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4\right) , we have

    {\mathfrak{B}}_{1} = \left(\left(0.5670, 0.1843, 0.2113\right)\right) , {\mathfrak{B}}_{2} = \left(\left(0.5601, 0.1936, 0.2211\right)\right) ,

    {\mathfrak{B}}_{3} = \left(\left(0.6145, 0.2379, 0.3771\right)\right) , {\mathfrak{B}}_{4} = \left(\left(0.6098, 0.2433, 0.3591\right)\right) .

    Step 4: To find out the score values, use Definition 10 for each {\mathfrak{B}}_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4, 5\right) given in step 3, i.e.

    Sc\left({\mathfrak{B}}_{1}\right) = 0.7238 , Sc\left({\mathfrak{B}}_{2}\right) = 0.7151 ,

    Sc\left({\mathfrak{B}}_{3}\right) = 0.6665 , Sc\left({\mathfrak{B}}_{4}\right) = 0.6691 .

    Step 5: Select the best solution by ranking the score values.

    Sc\left({\mathfrak{B}}_{1}\right) > Sc\left({\mathfrak{B}}_{2}\right) > Sc\left({\mathfrak{B}}_{4}\right) > Sc\left({\mathfrak{B}}_{3}\right).

    Note that the aggregated result for SF{S}_{ft}OWA operator is same as result obtained for SF{S}_{ft}WA operator. Hence ''{{\varkappa }_{1}}'' is the best result.

    By using SF{S}_{ft}{\rm H}A operators.

    Step 1: Same as above.

    Step 2: Same as above.

    Step 3: Using the Eq (9) for each alternative {\varkappa }_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4\right) , with \mathfrak{v} = \left\{0.12, 0.13, \mathrm{0.2, 0.4}, 0.15\right\} and \mathfrak{u} = \left\{0.11, 0.14, 0.2, 0.3, 0.25\right\} being the WVs of {S}_{{\rho }_{\mathcal{i}\mathcal{j}}} = \left({\mathfrak{a}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{b}}_{\mathcal{i}\mathcal{j}}, {\mathfrak{c}}_{\mathcal{i}\mathcal{j}}\right). Also ''\mathcal{n}'' represents the corresponding balancing coefficient for the number of elements in \mathcal{i}th row and \mathcal{j}th column. Let \mathcal{w} = \left\{0.15, 0.13, 0.25, 0.23, 0.24\right\} be the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.19, 0.29, 0.18, 0.23, 0.11\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters, so we get

    {\mathfrak{B}}_{1} = \left(\left(0.3823, 0.6357, 0.6422\right)\right) , {\mathfrak{B}}_{2} = \left(\left(0.3801, 0.6379, 0.6411\right)\right) ,

    {\mathfrak{B}}_{3} = \left(\left(0.3579, 0.6347, 0.6645\right)\right) , {\mathfrak{B}}_{4} = \left(\left(0.3616, 0.6454, 0.6567\right)\right).

    Step 4: To find out the score values, use Definition 10 for each {\mathfrak{B}}_{\mathcal{i}}\left(\mathcal{i} = 1, 2, 3, 4, 5\right) given in step 3, i.e.

    Sc\left({\mathfrak{B}}_{1}\right) = 0.3681 , Sc\left({\mathfrak{B}}_{2}\right) = 0.3670 ,

    Sc\left({\mathfrak{B}}_{3}\right) = 0.3529 , Sc\left({\mathfrak{B}}_{4}\right) = 0.3531 .

    Step 5: Select the best solution by ranking the score values.

    Sc\left({\mathfrak{B}}_{1}\right) > Sc\left({\mathfrak{B}}_{2}\right) > Sc\left({\mathfrak{B}}_{4}\right) > Sc\left({\mathfrak{B}}_{3}\right)\text{.}

    Hence it is noted that the aggregated result for SF{S}_{ft}{\rm H}A operator is same as result obtained for SF{S}_{ft}WA and SF{S}_{ft}OWA operator. Hence ''{{\varkappa }_{1}}'' is the best alternative.

    In this section, we are desire to establish the comparative analysis of proposed work with some existing operators to discuss the superiority and validity of established work. The overall analysis is captured in the following examples.

    Example 7. Let an American movie production company want to select the best movie of the year from a set of five alternatives A = \left\{{\varkappa }_{1} = Bad \ education, {\varkappa }_{2} = The \ invisible \ man, {\varkappa }_{3} = Birds \ of \ prey, {\varkappa }_{4} = Onward, {\varkappa }_{5} = Underwater\right\} under the set of parameters given as \rho = \left\{{\rho }_{1} = Casting, {\rho }_{2} = Originality, {\rho }_{3} = Dialogues, {\rho }_{4} = Overall \ story, {\rho }_{5} = Discipline\right\}. Let \mathcal{w} = \left\{0.12, 0.26, 0.16, 0.22, 0.24\right\} be the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.15, 0.21, 0.28, 0.13, 0.23\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters. Suppose experts provide their evaluation data in the form of picture fuzzy soft numbers as shown in Table 8. We use the Garg method [20], Wei method [21], Jin et al. [24] method, Ashraf et al. [25] method to compare with established work. The overall score values and their ranking results for all these methods are given in Table 9.

    Table 8.  Picture fuzzy soft information.
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    {\mathfrak{B}}_{1} \left(\left(0.6, 0.1, 0.3\right)\right) \left(\left(0.2, 0.3, 0.3\right)\right) \left(\left(0.3, 0.4, 0.3\right)\right) \left(\left(0.2, 0.2, 0.5\right)\right) \left(\left(0.3, 0.2, 0.4\right)\right)
    {\mathfrak{B}}_{2} \left(\left(0.2, 0.3, 0.4\right)\right) \left(\left(0.1, 0.2, 0.6\right)\right) \left(\left(0.2, 0.1, 0.7\right)\right) \left(\left(0.3, 0.5, {0.1}_{l}\right)\right) \left(\left(0.2, 0.6, 0.1\right)\right)
    {\mathfrak{B}}_{3} \left(\left(0.5, 0.1, 0.3\right)\right) \left(\left(0.4, 0.1, 0.3\right)\right) \left(\left(0.4, 0.4, 0.1\right)\right) \left(\left(0.1, 0.3, 0.5\right)\right) \left(\left(0.2, 0.3, 0.4\right)\right)
    {\mathfrak{B}}_{4} \left(\left(0.5, 0.3, 0.1\right)\right) \left(\left(0.2, 0.2, 0.5\right)\right) \left(\left(0.3, 1, 0.4\right)\right) \left(\left(0.4, 0.3, 0.1\right)\right) \left(\left(0.3, 0.1, 0.5\right)\right)
    {\mathfrak{B}}_{5} \left(\left(0.2, 0.3, 0.2\right)\right) \left(\left(0.6, 0.1, 0.2\right)\right) \left(\left(0.4, 0.4, 0.1\right)\right) \left(\left(0.1, 0.3, 0.5\right)\right) \left(\left(0.3, 0.3, 0.4\right)\right)

     | Show Table
    DownLoad: CSV
    Table 9.  Overall results for all methods.
    Methods Score values Ranking results
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    Garg method [20] 0.3624 0.3543 0.4320 0.4321 0.3781 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    Wei method [21] 0.4478 0.3640 0.4467 0.4478 0.3898 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} 0.4620 0.4527 0.4733 0.4834 0.4627 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} 0.4587 0.4301 0.4995 0.5083 0.4888 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} 0.3071 0.2942 0.3242 0.3305 0.3171 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    Jin et al. method [24] 0.4083 0.3543 0.4320 0.4434 0.4312 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    Ashraf et al. method [25] 0.3209 0.3364 0.3498 0.3501 0.3142 {\varkappa }_{3}>{\varkappa }_{2}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{4}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.4739 0.4737 0.4911 0.4975 0.4855 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.4145 0.4015 0.4648 0.5207 0.4579 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} operator (Proposed work) 0.2145 0.2075 0.2367 0.2489 0.2338 {\varkappa }_{4}>{\varkappa }_{3}>{\varkappa }_{5}>{\varkappa }_{1}>{\varkappa }_{2}

     | Show Table
    DownLoad: CSV

    It is clear from the above analysis that ''{{\varkappa }_{4}}'' is the best alternative for all methods given in Table 9 which shows the validity of the proposed work. Also, note that

    (1) If we use only one parameter i.e., {\rho }_{1} mean \left(m = 1\right) , then SF{S}_{ft}WA, SF{S}_{ft}OWA and SF{S}_{ft}HA aggregation operators will reduce to simply spherical fuzzy weighted average (SFWA), spherical fuzzy ordered weighted average (SFOWA), and spherical fuzzy hybrid average (SFHA) aggregation operators that are discussed in Jin et al. method [24] and Ashraf et al. method [25]. It means given work is more general. Also the aggregated results for the Jin et al. method [24] and Ashraf et al. method [25] given in Table 9.

    (2) If we replace 2 by 1 in the power of established operators, then SF{S}_{ft}WA, SF{S}_{ft}OWA and SF{S}_{ft}HA aggregation operators will reduce to PF{S}_{ft}WA, PF{S}_{ft}OWA and PF{S}_{ft}HA aggregation operators that show that established operators are more general. Also aggregated results of these reduced operators are given in Table 9.

    (3) If we use only one parameter i.e., {\rho }_{1} mean \left(m = 1\right) and replace 2 by 1 in the power of established operators, then SF{S}_{ft}WA, SF{S}_{ft}OWA and SF{S}_{ft}HA aggregation operators will reduce to simply picture fuzzy weighted average (PFWA), picture fuzzy ordered weighted average (PFOWA), and picture fuzzy hybrid average (PFHA) aggregation operators given in Garg method [20] and Wei method [21]. So in this case, again the established operators are also more general. Also, the aggregated results for the Garg method [20] and Wei method [21] are given in Table 9.

    (4) Also note that the Garg method [20]. Wei method [21], Jin et al. method [24], and Ashraf et al. method [25] are non–parameterize structure while the established work is parameterized structure, so establish work is more general.

    Moreover, Figure 1 shows the graphical representation of the above analysis given in Table 9.

    Figure 1.  Graphical representations of data given in Table 9.

    Example 8. Let an American movie production company want to select the best movie of the year from a set of five alternatives \left({\varkappa }_{1} = Bad \ education, {\varkappa }_{2} = The \ invisible \ man, {\varkappa }_{3} = Birds \ of \ prey, {\varkappa }_{4 } = Onward, {\varkappa }_{5 } = Underwater\right) under the set of parameters given as \left({\rho }_{1} = Casting, {\rho }_{2} = Originality, {\rho }_{3} = Dialogues, {\rho }_{4} = Overall \ story, {\rho }_{5} = Discipline\right) . Let \mathcal{w} = \left\{0.12, 0.26, 0.16, 0.22, 0.24\right\} be the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.15, 0.21, 0.28, 0.13, 0.23\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters. Suppose experts provide their evaluation data in the form of spherical fuzzy soft numbers as shown in Table 10. We use the Garg method [20], Wei method [21], Jin et al. method [24], Ashraf et al. [25] method to compare with established work. The overall score values and their ranking results for all these methods are given in Table 11.

    Table 10.  Information based on SF{S}_{ft}Ns .
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    {\mathfrak{B}}_{1} \left(\left(0.7, 0.1, 0.2\right)\right) \left(\left(0.7, 0.1, 0.4\right)\right) \left(\left(0.4, 0.4, 0.4\right)\right) \left(\left(0.5, 0.6, 0.1\right)\right) \left(\left(0.4, 0.4, 0.4\right)\right)
    {\mathfrak{B}}_{2} \left(\left(0.4, 0.3, 0.4\right)\right) \left(\left(0.5, 0.6, 0.4\right)\right) \left(\left(0.5, 0.4, 0.6\right)\right) \left(\left(0.4, 0.5, 0.3\right)\right) \left(\left(0.2, 0.6, 0.5\right)\right)
    {\mathfrak{B}}_{3} \left(\left(0.5, 0.5, 0.3\right)\right) \left(\left(0.5, 0.5, 0.7\right)\right) \left(\left(0.2, 0.7, 0.3\right)\right) \left(\left(0.1, 0.7, 0.5\right)\right) \left(\left(0.3, 0.4, 0.5\right)\right)
    {\mathfrak{B}}_{4} \left(\left(0.3, 0.3, 0.6\right)\right) \left(\left(0.5, 0.5, 0.5\right)\right) \left(\left(0.2, 0.8, 0.1\right)\right) \left(\left(0.3, 0.6, 0.2\right)\right) \left(\left(0.5, 0.6, 0.3\right)\right)
    {\mathfrak{B}}_{5} \left(\left(0.6, 0.1, 0.4\right)\right) \left(\left(0.4, 0.3, 0.6\right)\right) \left(\left(0.9, 0.2, 0.2\right)\right) \left(\left(0.5, 0.5, 0.4\right)\right) \left(\left(0.4, 0.7, 0.4\right)\right)

     | Show Table
    DownLoad: CSV
    Table 11.  Overall results for all methods.
    Methods Score values Ranking results
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    Garg method [20] Failed Failed Failed Failed Failed Cannot be calculated
    Wei method [21] Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    Jin et al. method [24] 0.4583 0.3781 0.3798 0.3831 0.4286 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    Ashraf et al. method [25] 0.4321 0.4150 0.3925 0.4221 0.4230 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.4709 0.4150 0.4125 0.4327 0.4379 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.5198 0.4062 0.3930 0.4604 0.5026 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} operator (Proposed work) 0.3302 0.2737 0.2685 0.2977 0.3135 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}

     | Show Table
    DownLoad: CSV

    (1) It is clear that when decision-makers provide their assessment value in the form of SF{S}_{ft}Ns then the Garg method [20], Wei method [21], PF{S}_{ft}WA operator, PF{S}_{ft}OWA operator and PF{S}_{ft}HA operator fails to tackle such kind of information because when decision-maker provides the data as \left(0.5, 0.4, 0.6\right), where 0.5 is MG, 0.4 is an AG and 0.6 is a NMG, then necessary condition i.e., sum (0.5, 0.4, 0.6) must belong to [0, 1] fail to hold that is the necessary condition for the Garg method [20], Wei method [21], PF{S}_{ft}WA operator, PF{S}_{ft}OWA operator and PF{S}_{ft}HA operator, while establishing work along with Jin et al. [24] method and Ashraf et al, [25] method can cope with this situation. So introduced work is more efficient.

    (2) Also, the Garg method [20], Wei method [21], Jin et al. [24] method, and Ashraf et al. [25] method cannot consider the parameterization structure while the established work can do so. Also proposed work provides more space to decision-makers to deal with MCDM problems. Hence, established work is more superior to existing literature.

    Furthermore, Figure 2 shows the graphical representation of the data given in Table 11.

    Figure 2.  Graphical representations of data given in Table 11.

    Example 9. Let an American movie production company want to select the best movie of the year from a set of five alternatives \left({\varkappa }_{1} = Bad \ education, {\varkappa }_{2} = The \ invisible \ man, {\varkappa }_{3} = Birds \ of \ prey, {\varkappa }_{4 } = Onward\right) under the set of parameters given as \left({\rho }_{1} = Casting, {\rho }_{2} = Originality, {\rho }_{3} = Dialogues, {\rho }_{4} = Overall story, {\rho }_{5} = Discipline\right) . Let \mathcal{w} = \left\{0.12, 0.26, 0.16, 0.22, 0.24\right\} be the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.15, 0.21, 0.28, 0.13, 0.23\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters. These different parameters of SF{S}_{ft}Ns have been aggregated by using Eq (1) with \mathcal{w} = \left\{0.12, 0.26, 0.16, 0.22, 0.24\right\} and get overall decision matrix for different alternatives {\varkappa }_{\mathcal{i}}(\mathcal{i} = 1, 2, 3, 4) given in Table 12. We still use the Garg method [20], Wei method [21], Jin et al. method [24], Ashraf et al. [25] method to compare with established work. The overall score values and their ranking results for all these methods are given in Table 13.

    Table 12.  Overall decision matrix based on SF{S}_{ft}Ns .
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 }
    {\mathfrak{B}}_{1} \left(\left(\begin{array}{c}0.1762, 0.79611, \\ 0.6786\end{array}\right)\right) \left(\left(\begin{array}{c}0.2342, 0.7133, \\ 0.6471\end{array}\right)\right) \left(\left(\begin{array}{c}0.3138, 0.6985, \\ 0.6249\end{array}\right)\right) \left(\left(\begin{array}{c}0.2867, 0.7224, \\ 0.6047\end{array}\right)\right)
    {\mathfrak{B}}_{2} \left(\left(\begin{array}{c}0.1144, 0.7166, \\ 0.6843\end{array}\right)\right) \left(\left(\begin{array}{c}0.2573, 0.7094, \\ 0.6105\end{array}\right)\right) \left(\left(\begin{array}{c}0.1850, 0.7018, \\ 0.6849\end{array}\right)\right) \left(\left(\begin{array}{c}0.2517, 0.7435, \\ 0.6121\end{array}\right)\right)
    {\mathfrak{B}}_{3} \left(\left(\begin{array}{c}0.1159, 0.7123, \\ 0.6553\end{array}\right)\right) \left(\left(\begin{array}{c}0.1919, 0.7366, \\ 0.6409\end{array}\right)\right) \left(\left(\begin{array}{c}0.1588, 0.7036, \\ 0.6578\end{array}\right)\right) \left(\left(\begin{array}{c}0.2310, 0.7446, \\ 0.6247\end{array}\right)\right)
    {\mathfrak{B}}_{4} \left(\left(\begin{array}{c}0.16783, 0.7020, \\ 0.6618\end{array}\right)\right) \left(\left(\begin{array}{c}0.1615, 0.7314, \\ 0.6619\end{array}\right)\right) \left(\left(\begin{array}{c}0.1638, 0.7493, \\ 0.6376\end{array}\right)\right) \left(\left(\begin{array}{c}0.1633, 0.74936, \\ 0.6398\end{array}\right)\right)
    {\mathfrak{B}}_{5} \left(\left(\begin{array}{c}0.2461, 0.6879, \\ 0.6714\end{array}\right)\right) \left(\left(\begin{array}{c}0.1018, 0.7445, \\ 0.6367\end{array}\right)\right) \left(\left(\begin{array}{c}0.2620, 0.7113, \\ 0.6153\end{array}\right)\right) \left(\left(\begin{array}{c}0.2620, 0.7055, \\ 0.6458\end{array}\right)\right)

     | Show Table
    DownLoad: CSV
    Table 13.  Overall results for all methods.
    Methods Score values Ranking results
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 }
    Garg method [20] Failed Failed Failed Failed Cannot be calculated
    Wei method [21] Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} Failed Failed Failed Failed Cannot be calculated
    Jin et al. method [24] 0.3158 0.3312 0.3498 0.3323 {\varkappa }_{3}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{1}
    Ashraf et al. method [25] 0.2999 0.3102 0.3223 0.3192 {\varkappa }_{3}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{1}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.3706 0.3733 0.3752 0.3742 {\varkappa }_{3}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{1}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.3731 0.3740 0.3762 0.3748 {\varkappa }_{3}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{1}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} operator (Proposed work) 0.2479 0.2491 0.2504 0.2496 {\varkappa }_{3}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{1}

     | Show Table
    DownLoad: CSV

    It is clear that the overall information given in Table 12 again consist of SF{S}_{ft}Ns and this type of information cannot be tackles by the Garg method [20], Wei method [21], PF{S}_{ft}WA operator, PF{S}_{ft}OWA operator and PF{S}_{ft}HA operator, because necessary condition i.e., sum\left(0.1919, 0.7366, 0.6409\right) fail to hold for all above-given methods for the data \left(\begin{array}{c}0.1919, 0.7366, \\ 0.6409\end{array}\right) given in Table 12, while established work can handle this kind of information. So, the proposed work is more general. Also, we can see from Table 13 that the Garg method [20], Wei method [21], Jin et al. method [24], and Ashraf et al method [25] cannot consider parameterization structure, while established work can do so. Hence, the proposed operators are more superior to that of the existing operators. Also, graphical representation of data given in Table 13 is given in Figure 3.

    Table 14.  Information based on SF{S}_{ft}Ns .
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    {\mathfrak{B}}_{1} \left(\left(\begin{array}{c}0.71, 0.10, \\ 0.21\end{array}\right)\right) \left(\left(\begin{array}{c}0.7, 0.19, \\ 0.34\end{array}\right)\right) \left(\left(\begin{array}{c}0.70, 0.34, \\ 0.43\end{array}\right)\right) \left(\left(\begin{array}{c}0.71, 0.46, \\ 0.45\end{array}\right)\right) \left(\left(\begin{array}{c}0.70, 0.34, \\ 0.54\end{array}\right)\right)
    {\mathfrak{B}}_{2} \left(\left(\begin{array}{c}0.61, 0.24, \\ 0.16\end{array}\right)\right) \left(\left(\begin{array}{c}0.61, 0.36, \\ 0.44\end{array}\right)\right) \left(\left(\begin{array}{c}0.62, 0.33, \\ 0.42\end{array}\right)\right) \left(\left(\begin{array}{c}0.63, 0.35, \\ 0.33\end{array}\right)\right) \left(\left(\begin{array}{c}0.64, 0.40, \\ 0.50\end{array}\right)\right)
    {\mathfrak{B}}_{3} \left(\left(\begin{array}{c}0.55, 0.45, \\ 0.47\end{array}\right)\right) \left(\left(\begin{array}{c}0.53, 0.52, \\ 0.33\end{array}\right)\right) \left(\left(\begin{array}{c}0.52, 0.37, \\ 0.43\end{array}\right)\right) \left(\left(\begin{array}{c}0.51, 0.37, \\ 0.54\end{array}\right)\right) \left(\left(\begin{array}{c}0.56, 0.41, \\ 0.51\end{array}\right)\right)
    {\mathfrak{B}}_{4} \left(\left(\begin{array}{c}0.43, 0.43, \\ 0.36\end{array}\right)\right) \left(\left(\begin{array}{c}0.44, 0.35, \\ 0.65\end{array}\right)\right) \left(\left(\begin{array}{c}0.46, 0.48, \\ 0.12\end{array}\right)\right) \left(\left(\begin{array}{c}0.47, 0.46, \\ 0.24\end{array}\right)\right) \left(\left(\begin{array}{c}0.45, 0.62, \\ 0.3\end{array}\right)\right)
    {\mathfrak{B}}_{5} \left(\left(\begin{array}{c}0.65, 0.11, \\ 0.41\end{array}\right)\right) \left(\left(\begin{array}{c}0.63, 0.32, \\ 0.61\end{array}\right)\right) \left(\left(\begin{array}{c}0.71, 0.12, \\ 0.22\end{array}\right)\right) \left(\left(\begin{array}{c}0.70, 0.35, \\ 0.44\end{array}\right)\right) \left(\left(\begin{array}{c}0.64, 0.60, \\ 0.41\end{array}\right)\right)

     | Show Table
    DownLoad: CSV
    Figure 3.  Graphical representations of data given in Table 13.

    Example 10. During the pandemic situation of Covid-19, the selection of Covid-19 vaccine is difficult challenge for the countries. Let the a country X want to import the best vaccine for their Covide-19 patients. Let the set P = \left\{{\varkappa }_{1} = Pfizer-BioNTech, {\varkappa }_{2} = Sinopharm, {\varkappa }_{3} = Oxford-Astrazeneca, {\varkappa }_{4} = Novavax, {\varkappa }_{5} = Moderna\right\} denote the set of different vaccines as an alternative under the parameter set given as \rho = \left\{{\rho }_{1} = Protection \ against \ disease, {\rho }_{2} = Side \ effects, {\rho }_{3} = Delivery \ time, {\rho }_{4} = Effectiveness, {\rho }_{5} = Experimental \ results\right\}. Let \mathcal{w} = \left\{0.22, 0.26, 0.11, 0.28, 0.13\right\} be the WV of ''{{\mathcal{e}}_{\mathcal{i}}}'' experts and p = \left\{0.25, 0.19, 0.24, 0.10, 0.22\right\} denote the WV of ''{{\rho }_{\mathcal{j}}}'' parameters. We use the Garg method [20], Wei method [21], Jin et al. method [24], Ashraf et al. [25] method and Deli and Broumi methods [51,52] to compare with established work. Now we use the data given in Table 14 provided by the experts in the form of SF{S}_{ft}Ns and overall score values and their ranking results for all above given methods are given in Table 15.

    Table 15.  Overall results for all methods.
    Methods Score values Ranking results
    {\boldsymbol{\varkappa }}_{1 } {\boldsymbol{\varkappa }}_{2 } {\boldsymbol{\varkappa }}_{3 } {\boldsymbol{\varkappa }}_{4 } {\boldsymbol{\varkappa }}_{5 }
    Garg method [20] Failed Failed Failed Failed Failed Cannot be calculated
    Wei method [21] Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    \boldsymbol{P}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} Failed Failed Failed Failed Failed Cannot be calculated
    Jin et al. method [24] 0.4634 0.3833 0.3437 0.3926 0.4359 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    Ashraf et al. method [25] 0.4521 0.4323 0.4125 0.4401 0.4424 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    Deli and Broumi Method [51] 0.69 0.72 0.53 0.90 0.83 {\varkappa }_{4}>{\varkappa }_{5}>{\varkappa }_{3}>{\varkappa }_{2}>{\varkappa }_{1}
    Deli and Broumi Method [52] 0.4516 0.4100 0.2292 0.0270 0.2640 {\varkappa }_{1}>{\varkappa }_{2}>{\varkappa }_{5}>{\varkappa }_{3}>{\varkappa }_{4}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.5123 0.4424 0.4413 0.4621 0.4724 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{O}\boldsymbol{W}\boldsymbol{A} operator (Proposed work) 0.5524 0.44314 0.4312 0.4923 0.55414 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}
    \boldsymbol{S}\boldsymbol{F}{\boldsymbol{S}}_{\boldsymbol{f}\boldsymbol{t}}\boldsymbol{H}\boldsymbol{A} operator (Proposed work) 0.3549 0.2912 0.2908 0.3181 0.3379 {\varkappa }_{1}>{\varkappa }_{5}>{\varkappa }_{4}>{\varkappa }_{2}>{\varkappa }_{3}

     | Show Table
    DownLoad: CSV

    (1) It is clear that the best alternative i.e., {\varkappa }_{1} = Pfizer-BioNTech for Jin et al. method [24], Ashraf et al. method [25], SF{S}_{ft}WA, SF{S}_{ft}OWA and SF{S}_{ft}HA aggregation operators are the same that show the validity of introduced work.

    (2) Also note that the results for Deli and Broumi [51] and Deli and Broumi [52] are slightly different from the results for the introduced operators. It is because the methods that are given in [51] and [52] are based on neutrosophic soft set \left(N{S}_{ft}S\right) and N{S}_{ft}S do not consider the refusal grade (RG) while computing the scores. Infect there is no concept of RG in the neutrosophic soft set, while the established work can do so. That is the reason that the introduced work and methods that are given in [51] and [52] produce different results.

    In the basic notions of F{S}_{ft}S, IF{S}_{ft}, {P}_{y}F{S}_{ft}S and q-ROF{S}_{ft}S, the yes or no type of aspects have been denoted by MG or NMG. But note that, in real-life problems, human opinion is not restricted to MG and NMD but it has AG or RG as well. So the all above given methods cannot cope with this situation, while SF{S}_{ft}S has the characteristics to handle this situation. Since the MCDM method is a renowned method for the selection of the best alternative among a given one and aggregation operators are very efficient apparatus to convert the overall information into a single value so based on spherical fuzzy soft set SF{S}_{ft}S , the notions of SF{S}_{ft} average aggregation operators are introduced like spherical fuzzy soft weighted average aggregation \left(SF{S}_{ft}WA\right) operator, spherical fuzzy soft ordered weighted average aggregation \left(SF{S}_{ft}OWA\right) operator and spherical fuzzy soft hybrid average aggregation \left(SF{S}_{ft}HA\right) operator. Moreover, the properties of these aggregation operators are discussed in detail. An algorithm is established and a numerical example is given to show the authenticity of established work. Furthermore, a comparative study is proposed with other existing methods to show the strength and advantages of established work.

    In the future direction, based on the operational laws for SF{S}_{ft}S, some other aggregation operators and similarities measure for medical diagnosis and pattern recognition can be defined as given in [47,48]. Furthermore, this work can be extended to a T-spherical fuzzy set and real-life problems can be resolved as given in [49,50].

    This paper was supported by Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University.

    The authors declare no conflict of interest.



    [1] G. J. Klir, B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, Vol. 6, World Scientific, 1996.
    [2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy set. Syst., 61 (1994), 137–142. doi: 10.1016/0165-0114(94)90229-1
    [3] H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1-30. doi: 10.1002/int.20386
    [4] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. doi: 10.1109/TFUZZ.2006.890678
    [5] Y. He, H. Chen, L. Zhou, J. Liu, Z. Tao, Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making, Inform. Sciences, 259 (2014), 142-159. doi: 10.1016/j.ins.2013.08.018
    [6] K. T. Atanassov, Interval valued intuitionistic fuzzy sets. In Intuitionistic Fuzzy Sets (pp. 139-177), Physica, Heidelberg, 1999.
    [7] E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in group decision making, Notes on IFS, 2 (1996).
    [8] Z. Liang, P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recogn. Lett., 24 (2003), 2687-2693. doi: 10.1016/S0167-8655(03)00111-9
    [9] V. L. G. Nayagam, S. Muralikrishnan, G. Sivaraman, Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 1464-1467. doi: 10.1016/j.eswa.2010.07.055
    [10] Q. S. Zhang, S. Jiang, B. Jia, S. Luo, Some information measures for interval-valued intuitionistic fuzzy sets, Inform. sciences, 180 (2010), 5130-5145. doi: 10.1016/j.ins.2010.08.038
    [11] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), (2013), 57-61.
    [12] A. A. Khan, S. Ashraf, S. Abdullah, M. Qiyas, J. Luo, S. U. Khan, Pythagorean fuzzy Dombi aggregation operators and their application in decision support system, Symmetry, 11 (2019), 383. doi: 10.3390/sym11030383
    [13] G. Wei, Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 2119-2132. doi: 10.3233/JIFS-162030
    [14] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222-1230.
    [15] G. Wei, H. Gao, Y. Wei, Some q‐rung orthopair fuzzy Heronian mean operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 1426-1458. doi: 10.1002/int.21985
    [16] P. Liu, P. Wang, Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2018), 834-848.
    [17] B. C. Cuong, Picture fuzzy sets-first results. Part 2, seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [18] B. C. Cuong, P. Van Hai, Some fuzzy logic operators for picture fuzzy sets. In 2015 seventh international conference on knowledge and systems engineering (KSE) (pp. 132-137). IEEE, 2015.
    [19] C. Wang, X. Zhou, H. Tu, S. Tao, Some geometric aggregation operators based on picture fuzzy sets and their application in multiple attribute decision making, Ital. J. Pure Appl. Math., 37 (2017), 477-492.
    [20] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275-5290. doi: 10.1007/s13369-017-2625-9
    [21] G. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 713-724. doi: 10.3233/JIFS-161798
    [22] S. Zeng, M. Qiyas, M. Arif, T. Mahmood, Extended version of linguistic picture fuzzy TOPSIS method and its applications in enterprise resource planning systems, Math. Probl. Eng., 2019.
    [23] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Computing and Applications, 31 (2019), 7041-7053. doi: 10.1007/s00521-018-3521-2
    [24] Y. Jin, S. Ashraf, S. Abdullah, Spherical fuzzy logarithmic aggregation operators based on entropy and their application in decision support systems, Entropy, 21 (2019), 628. doi: 10.3390/e21070628
    [25] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems. J. Intell. Fuzzy Syst., 36 (2019), 2829-2844.
    [26] Y. Donyatalab, E. Farrokhizadeh, S. D. S. Garmroodi, S. A. S. Shishavan, Harmonic Mean Aggregation Operators in Spherical Fuzzy Environment and Their Group Decision Making Applications, J. Multi-Valued Log. S., 33 (2019).
    [27] S. Ashraf, S. Abdullah, T. Mahmood, Spherical fuzzy Dombi aggregation operators and their application in group decision making problems, J. Amb. Intel. Hum. Comp., (2019), 1-19.
    [28] S. Ashraf, S. Abdullah, T. Mahmood, GRA method based on spherical linguistic fuzzy Choquet integral environment and its application in multi-attribute decision-making problems, Math. Sci., 12 (2018), 263-275. doi: 10.1007/s40096-018-0266-0
    [29] Z. Ali, T. Mahmood, M. S. Yang, TOPSIS Method Based on Complex Spherical Fuzzy Sets with Bonferroni Mean Operators, Mathematics, 8 (2020), 1739.
    [30] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19-31.
    [31] P. K. Maji, R. Biswas, A. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562.
    [32] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. doi: 10.1016/S0898-1221(02)00216-X
    [33] P. K. Maji, R. K. Biswas, A. Roy, Fuzzy soft sets, 2001
    [34] Y. B. Jun, K. J. Lee, C. H. Park, Fuzzy soft set theory applied to BCK/BCI-algebras, Comput. Math. Appl., 59 (2010), 3180-3192. doi: 10.1016/j.camwa.2010.03.004
    [35] Z. Kong, L. Wang, Z. Wu, Application of fuzzy soft set in decision making problems based on grey theory, J. Comput. Appl. Math., 236 (2011), 1521-1530. doi: 10.1016/j.cam.2011.09.016
    [36] T. J. Neog, D. K. Sut, An application of fuzzy soft sets in medical diagnosis using fuzzy soft complement, Int. J. Comput. Appl., 33 (2011), 30-33.
    [37] P. K. Maji, A. R. Roy, R. Biswas, On intuitionistic fuzzy soft sets, Journal of fuzzy mathematics, 12 (2004), 669-684.
    [38] H. Garg, R. Arora, Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making, J. Oper. Res. Soc., 69 (2018), 1711-1724. doi: 10.1080/01605682.2017.1409159
    [39] I. Deli, N. Çağman, Intuitionistic fuzzy parameterized soft set theory and its decision making, Appl. Soft Comput., 28 (2015), 109-113.
    [40] X. D. Peng, Y. Yang, J. P. Song, Y. Jiang, Pythagorean fuzzy soft set and its application, Computer Engineering, 41 (2015), 224-229.
    [41] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, q‐Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision‐making, Int. J. Intell. Syst., 35 (2020), 571-599. doi: 10.1002/int.22217
    [42] Y. Yang, C. Liang, S. Ji, T. Liu, Adjustable soft discernibility matrix based on picture fuzzy soft sets and its applications in decision making, J. Intell. Fuzzy Syst., 29 (2015), 1711-1722. doi: 10.3233/IFS-151648
    [43] N. Jan, T. Mahmood, L. Zedam, Z. Ali, Multi-valued picture fuzzy soft sets and their applications in group decision-making problems, Soft Comput., 24 (2020), 18857-18879. doi: 10.1007/s00500-020-05116-y
    [44] F. Perveen PA, J. J. Sunil, K. V. Babitha, H. Garg, Spherical fuzzy soft sets and its applications in decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 8237-8250. doi: 10.3233/JIFS-190728
    [45] I. Deli, Interval-valued neutrosophic soft sets and its decision making, Int. J. Mach. Learn. Cyb., 8 (2017), 665-676. doi: 10.1007/s13042-015-0461-3
    [46] M. Ali, L. H. Son, I. Deli, N. D. Tien, Bipolar neutrosophic soft sets and applications in decision making, J. Intell. Fuzzy Syst., 33 (2017), 4077-4087. doi: 10.3233/JIFS-17999
    [47] Y. Donyatalab, E. Farrokhizadeh, S. D. S. Garmroodi, S. A. S. Shishavan, Harmonic Mean Aggregation Operators in Spherical Fuzzy Environment and Their Group Decision Making Applications, J. Multi-Valued Log. S., 33 (2019).
    [48] T. Mahmood, M. Ilyas, Z. Ali, A. Gumaei, Spherical Fuzzy Sets-Based Cosine Similarity and Information Measures for Pattern Recognition and Medical Diagnosis, IEEE Access, 9 (2021), 25835-25842. doi: 10.1109/ACCESS.2021.3056427
    [49] K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570-582. doi: 10.1007/s40815-020-00803-2
    [50] S. Zeng, M. Munir, T. Mahmood, M. Naeem, Some T-Spherical Fuzzy Einstein Interactive Aggregation Operators and Their Application to Selection of Photovoltaic Cells, Math. Probl. Eng., 2020.
    [51] I. Deli, S. Broumi, Neutrosophic soft relations and some properties, Annals of fuzzy mathematics and informatics, 9 (2015), 169-182.
    [52] I. Deli, S. Broumi, Neutrosophic soft matrices and NSM-decision making, J. Intell. Fuzzy Syst., 28 (2015), 2233-2241. doi: 10.3233/IFS-141505
  • This article has been cited by:

    1. Nimra Jamil, Muhammad Riaz, Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I, 2022, 15, 1793-5245, 10.1142/S1793524522500309
    2. Muhammad Riaz, Maryam Saba, Muhammad Abdullah Khokhar, Muhammad Aslam, Novel concepts of m -polar spherical fuzzy sets and new correlation measures with application to pattern recognition and medical diagnosis, 2021, 6, 2473-6988, 11346, 10.3934/math.2021659
    3. Ansa Ashraf, Kifayat Ullah, Darko Božanić, Amir Hussain, Haolun Wang, Adis Puška, An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators, 2022, 12, 2075-1680, 4, 10.3390/axioms12010004
    4. Muhammad Akram, Alessio Martino, Multi-attribute group decision making based on T-spherical fuzzy soft rough average aggregation operators, 2023, 8, 2364-4966, 171, 10.1007/s41066-022-00319-0
    5. Jiachao Wu, A Boolean model for conflict-freeness in argumentation frameworks, 2023, 8, 2473-6988, 3913, 10.3934/math.2023195
    6. Leina Zheng, Tahir Mahmood, Jabbar Ahmmad, Ubaid Ur Rehman, Shouzhen Zeng, Spherical Fuzzy Soft Rough Average Aggregation Operators and Their Applications to Multi-Criteria Decision Making, 2022, 10, 2169-3536, 27832, 10.1109/ACCESS.2022.3150858
    7. Fu Zhang, Weimin Ma, Hongwei Ma, Dynamic Chaotic Multi-Attribute Group Decision Making under Weighted T-Spherical Fuzzy Soft Rough Sets, 2023, 15, 2073-8994, 307, 10.3390/sym15020307
    8. Pankaj Kakati, An MCDM approach based on some new Pythagorean cubic fuzzy Frank Muirhead mean operators, 2022, 8, 24058440, e12249, 10.1016/j.heliyon.2022.e12249
    9. Shuangyan Zhao, Jiachao Wu, An efficient algorithm of fuzzy reinstatement labelling, 2022, 7, 2473-6988, 11165, 10.3934/math.2022625
    10. Mohammed M. Ali Al-Shamiri, Adeel Farooq, Muhammad Nabeel, Ghous Ali, Dragan Pamučar, Integrating TOPSIS and ELECTRE-Ⅰ methods with cubic m -polar fuzzy sets and its application to the diagnosis of psychiatric disorders, 2023, 8, 2473-6988, 11875, 10.3934/math.2023601
    11. Amir Hussain, Kifayat Ullah, Muhammad Naveed Khan, Tapan Senapati, Sarbast Moselm, Complex T-Spherical Fuzzy Frank Aggregation Operators With Application in the Assessment of Soil Fertility, 2023, 11, 2169-3536, 103132, 10.1109/ACCESS.2023.3313181
    12. Harish Garg, Amir Hussain, Kifayat Ullah, Ansa Ashraf, Assessment of learning management systems based on Schweizer–Sklar picture fuzzy Maclaurin symmetric mean aggregation operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02864-7
    13. P. A. Fathima Perveen, Sunil Jacob John, 2023, 2875, 0094-243X, 040006, 10.1063/5.0153953
    14. Mubashar Javed, Shumaila Javeed, Kifayat Ullah, Izatmand Haleemzai, An Approach to Multi-Attribute Decision-Making for Olive Trees Plantation Site Selection Using Spherical Fuzzy Neutrality Aggregation Operators, 2023, 11, 2169-3536, 117403, 10.1109/ACCESS.2023.3325359
    15. Tahir Mahmood, Ubaid ur Rehman, Jabbar Ahmmad, Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set, 2023, 8, 2473-6988, 25220, 10.3934/math.20231286
    16. Walid Emam, Jabbar Ahmmad, Tahir Mahmood, Tapan Senapati, Impact of AI Techniques in Electrical Engineering With Spherical Fuzzy Soft Geometric Aggregation Operators, 2024, 12, 2169-3536, 119803, 10.1109/ACCESS.2024.3447061
    17. Arun Sarkar, Tapan Senapati, LeSheng Jin, Radko Mesiar, Animesh Biswas, Ronald R. Yager, Sugeno–Weber triangular norm-based aggregation operators under T-spherical fuzzy hypersoft context, 2023, 645, 00200255, 119305, 10.1016/j.ins.2023.119305
    18. Ghous Ali, Nimra Lateef, Muhammad Usman Zia, Tehseen Abbas, A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets, 2024, 16, 1866-9956, 3260, 10.1007/s12559-024-10349-2
    19. Chao Zhang, Jingjing Zhang, Wentao Li, Witold Pedrycz, Deyu Li, A regret theory-based multi-granularity three-way decision model with incomplete T-spherical fuzzy information and its application in forest fire management, 2023, 145, 15684946, 110539, 10.1016/j.asoc.2023.110539
    20. Xiaopeng Yang, Tahir Mahmood, Jabbar Ahmmad, Khizar Hayat, A novel study of spherical fuzzy soft Dombi aggregation operators and their applications to multicriteria decision making, 2023, 9, 24058440, e16816, 10.1016/j.heliyon.2023.e16816
    21. Tahir Mahmood, Abdul Jaleel, Ubaid Ur Rehman, Pattern recognition and medical diagnosis based on trigonometric similarity measures for bipolar complex fuzzy soft sets, 2023, 27, 1432-7643, 11125, 10.1007/s00500-023-08176-y
    22. Kifayat Ullah, Muhammad Naeem, Abrar Hussain, Muhammad Waqas, Izatmand Haleemzai, Evaluation of Electric Motor Cars Based Frank Power Aggregation Operators Under Picture Fuzzy Information and a Multi-Attribute Group Decision-Making Process, 2023, 11, 2169-3536, 67201, 10.1109/ACCESS.2023.3285307
    23. Muhammad Riaz, Harish Garg, Masooma Raza Hashmi, Hafiz Muhammad Athar Farid, Generalized linear diophantine fuzzy Choquet integral with application to the project management and risk analysis, 2023, 42, 2238-3603, 10.1007/s40314-023-02421-8
    24. Zijie Yu, An Intelligent Approach for the Challenges in the Evaluation of Public Accountant Firms Under Uncertainties, 2025, 13, 2169-3536, 25387, 10.1109/ACCESS.2025.3536498
    25. Huzaira Razzaque, Shahzaib Ashraf, Muhammad Naeem, Yu-Ming Chu, The Spherical q-Linear Diophantine Fuzzy Multiple-Criteria Group Decision-Making Based on Differential Measure, 2024, 138, 1526-1506, 1925, 10.32604/cmes.2023.030030
    26. Pairote Yiarayong, Complex T-spherical fuzzy hypersoft sets: a novel approach for evaluating uncertain information and MCDM applications in the COVID-19 pandemic, 2025, 2511-2104, 10.1007/s41870-025-02477-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3158) PDF downloads(202) Cited by(26)

Figures and Tables

Figures(3)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog