Research article Special Issues

A new product of weighted differentiation and superposition operators between Hardy and Zygmund Spaces

  • Received: 18 December 2020 Accepted: 26 April 2021 Published: 14 May 2021
  • MSC : 46B50, 47H30

  • Our goal of this article is to introduce a new product operator that will be called $ {D^n_u} S_{\phi} $ the product of weighted differentiation and superposition operators from $ {H}^{\infty} $ to Zygmund spaces. Moreover, we characterize a necessary and sufficient conditions for $ {D^n_u} S_{\phi} $ operators from $ {H}^{\infty} $ to Zygmund spaces to be bounded and compact.

    Citation: A. Kamal, M. Hamza. Eissa. A new product of weighted differentiation and superposition operators between Hardy and Zygmund Spaces[J]. AIMS Mathematics, 2021, 6(7): 7749-7765. doi: 10.3934/math.2021451

    Related Papers:

  • Our goal of this article is to introduce a new product operator that will be called $ {D^n_u} S_{\phi} $ the product of weighted differentiation and superposition operators from $ {H}^{\infty} $ to Zygmund spaces. Moreover, we characterize a necessary and sufficient conditions for $ {D^n_u} S_{\phi} $ operators from $ {H}^{\infty} $ to Zygmund spaces to be bounded and compact.



    加载中


    [1] V. Álvarez, M. A. Márquez, D. Vukotić, Superposition operators between the Bloch space and Bergman spaces, Ark. mat., 42 (2004), 205-216. doi: 10.1007/BF02385476
    [2] S. Buckley, J. Fernández, D. Vukotić, Superposition operators on Dirichlet type spaces, Report Uni. Jyvaskyla, 83 (2001), 41-61.
    [3] B. R. Choe, H. W. Koo, W. Smith, Composition operators on small spaces, Integr. Equ. Oper. Theory, 56 (2006), 357-380. doi: 10.1007/s00020-006-1420-x
    [4] C. C. Cowen Jr, Composition operators on spaces of analytic functions, Routledge, 2019.
    [5] P. L. Duren, Theory of $ {H}^p $ spaces, New York: Academic press, 38 (1970), 1-261.
    [6] A. E. S. Ahmed, A. Kamal, T. I. Yassen, Natural metrics and boundedness of the superposition operator acting between $\mathcal{B}^{*}_{\alpha}$ and $f^{*}{(p, q, s)}$, Electronic J. Math. Anal. Appl., 3 (2015), 195-203.
    [7] A. K. Mohamed, On generalized superposition operator acting of analytic function spaces, J. Egyp. Math. Soc., 23 (2015), 134-138. doi: 10.1016/j.joems.2014.02.014
    [8] A. Kamal, Properties of superposition operators acting between $b^{*}_{\mu}$ and $q^{*}_{K}$, J. Egyp. Math. Soc., 23 (2015), 507-512. doi: 10.1016/j.joems.2015.01.003
    [9] S. X. Li, S. Stević, Volterra-type operators on zygmund spaces, J. Inequal. Appl., 2007 (2007), 32124.
    [10] S. X. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338 (2008), 1282-1295. doi: 10.1016/j.jmaa.2007.06.013
    [11] S. X. Li, S. Stević, Products of Volterra type operator and composition operator from ${H}^\infty$ and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl., 345 (2008), 40-52. doi: 10.1016/j.jmaa.2008.03.063
    [12] S. X. Li, S. Stević, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 206 (2008), 825-831. doi: 10.1016/j.amc.2008.10.006
    [13] Y. M. Liu, Y. Y. Yu, Composition followed by differentiation between ${H}^{\infty}$ and zygmund spaces, Complex Anal. Oper. Theory, 6 (2012), 121-137. doi: 10.1007/s11785-010-0080-7
    [14] K. Madigan, A. Matheson, Compact composition operators on the bloch space, T. Am. Math. Soc., 347 (1995), 2679-2687. doi: 10.1090/S0002-9947-1995-1273508-X
    [15] C. J. Xiong, Superposition operators between ${Q_{p}}$ spaces and Bloch-type spaces, Complex Var. Elliptic, 50 (2005), 935-938.
    [16] W. Xu, Superposition operators on Bloch-type spaces, Comput. Methods Funct. Theory, 7 (2007), 501-507. doi: 10.1007/BF03321659
    [17] Y. Y. Yu, Y. M. Liu, On stević type operator from ${H}^\infty$ space to the logarithmic bloch spaces, Complex Anal. Oper. Theory, 9 (2015), 1759-1780. doi: 10.1007/s11785-015-0465-8
    [18] K. H. Zhu, Spaces of holomorphic functions in the unit ball, Springer Science & Business Media, 26 (2015).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2282) PDF downloads(115) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog