Research article

Solution of the Chen-Chvátal conjecture for specific classes of metric spaces

  • Received: 25 March 2021 Accepted: 13 May 2021 Published: 17 May 2021
  • MSC : Primary 30L99; secondary 05C76

  • In a metric space $ (X, d) $, a line induced by two distinct points $ x, x'\in X $, denoted by $ \mathcal{L}\{x, x'\} $, is the set of points given by

    $ \mathcal{L}\{x, x'\} = \{z\in X:\, d(x, x') = d(x, z)+d(z, x') \text{ or }d(x, x') = |d(x, z)-d(z, x')|\}. $

    A line $ \mathcal{L}\{x, x'\} $ is universal whenever $ \mathcal{L}\{x, x'\} = X $.

    Chen and Chvátal [Discrete Appl. Math. 156 (2008), 2101-2108.] conjectured that every finite metric space on $ n\ge 2 $ points either has at least $ n $ distinct lines or has a universal line.

    In this paper, we prove this conjecture for some classes of metric spaces. In particular, we discuss the classes of Cartesian metric spaces, lexicographic metric spaces and corona metric spaces.

    Citation: Juan Alberto Rodríguez-Velázquez. Solution of the Chen-Chvátal conjecture for specific classes of metric spaces[J]. AIMS Mathematics, 2021, 6(7): 7766-7781. doi: 10.3934/math.2021452

    Related Papers:

  • In a metric space $ (X, d) $, a line induced by two distinct points $ x, x'\in X $, denoted by $ \mathcal{L}\{x, x'\} $, is the set of points given by

    $ \mathcal{L}\{x, x'\} = \{z\in X:\, d(x, x') = d(x, z)+d(z, x') \text{ or }d(x, x') = |d(x, z)-d(z, x')|\}. $

    A line $ \mathcal{L}\{x, x'\} $ is universal whenever $ \mathcal{L}\{x, x'\} = X $.

    Chen and Chvátal [Discrete Appl. Math. 156 (2008), 2101-2108.] conjectured that every finite metric space on $ n\ge 2 $ points either has at least $ n $ distinct lines or has a universal line.

    In this paper, we prove this conjecture for some classes of metric spaces. In particular, we discuss the classes of Cartesian metric spaces, lexicographic metric spaces and corona metric spaces.



    加载中


    [1] P. Aboulker, R. Kapadia, The Chen-Chvátal conjecture for metric spaces induced by distance-hereditary graphs, Eur. J. Combin., 43 (2015), 1–7. doi: 10.1016/j.ejc.2014.06.009
    [2] P. Aboulker, M. Matamala, P. Rochet, J. Zamora, A new class of graphs that satisfies the Chen-Chvátal conjecture, J. Graph Theory, 87 (2018), 77–88. doi: 10.1002/jgt.22142
    [3] L. Beaudou, A. Bondy, X. Chen, E. Chiniforooshan, M. Chudnovsky, V. Chvátal, et al. A De Bruijn–Erdős theorem for chordal graphs, Electron. J. Comb., 22 (2015), 1–70.
    [4] L. Beaudou, G. Kahn, M. Rosenfeld, Bisplit graphs satisfy the Chen-Chvátal conjecture, Discrete Math. Theor. Comput. Sci., 21 (2019), 1–22.
    [5] N. G. de Bruijn, P. Erdős, On a combinatorial problem, Indagationes Math., 10 (1948), 421–423.
    [6] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4 (1970), 322–325.
    [7] X. Chen, V. Chvátal, Problems related to a de Bruijn-Erdős theorem, Discrete Appl. Math., 156 (2008), 2101–2108. doi: 10.1016/j.dam.2007.05.036
    [8] V. Chvátal, A de Bruijn-Erdős theorem for 1-2 metric spaces, Czechoslovak Math. J., 64 (2014), 45–51. doi: 10.1007/s10587-014-0081-1
    [9] V. Chvátal, A de Bruijn-Erdős theorem in graphs? In: Graph theory–-favorite conjectures and open problems. 2, Probl. Books in Math., Springer, Cham, 2018, pp. 149–176.
    [10] R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, 2nd ed., CRC Press, 2011.
    [11] W. Imrich, S. Klavžar, Product graphs, structure and recognition, Wiley-Interscience series in discrete mathematics and optimization, Wiley, 2000.
    [12] J. A. Rodríguez-Velázquez, Lexicographic metric spaces: basic properties and the metric dimension, Appl. Anal. Discrete Math., 14 (2020), 20–32. doi: 10.2298/AADM180627004R
    [13] J. A. Rodríguez-Velázquez, Universal lines in graphs. Submitted.
    [14] J. A. Rodríguez-Velázquez, Corona metric spaces: basic properties, universal lines, and the metric dimension. Submitted.
    [15] M. Ó Searcóid, Metric spaces, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2007.
    [16] R. Schrader, L. Stenmans, A de Bruijn-Erdős theorem for $(q, q-4)$-graphs, Discrete Appl. Math., 279 (2020), 198–201. doi: 10.1016/j.dam.2019.11.008
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2013) PDF downloads(64) Cited by(4)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog