We introduce games associated with second-order partial differential equations given by arbitrary products of eigenvalues of the Hessian. We prove that, as a parameter that controls the step length goes to zero, the value functions of the games converge uniformly to a viscosity solution of the partial differential equation. The classical Monge-Ampère equation is an important example under consideration.
Citation: Pablo Blanc, Fernando Charro, Juan J. Manfredi, Julio D. Rossi. Games associated with products of eigenvalues of the Hessian[J]. Mathematics in Engineering, 2023, 5(3): 1-26. doi: 10.3934/mine.2023066
We introduce games associated with second-order partial differential equations given by arbitrary products of eigenvalues of the Hessian. We prove that, as a parameter that controls the step length goes to zero, the value functions of the games converge uniformly to a viscosity solution of the partial differential equation. The classical Monge-Ampère equation is an important example under consideration.
[1] | A. Arroyo, P. Blanc, M. Parviainen, Hölder regularity for stochastic processes with bounded and measurable increments, Ann. Inst. H. Poincare Anal. Non Lineaire, in press. https://doi.org/10.4171/aihpc/41 |
[2] | I. Birindelli, G. Galise, H. Ishi, Existence through convexity for the truncated Laplacians, Math. Ann., 379 (2021), 909–950. https://doi.org/10.1007/s00208-019-01953-x doi: 10.1007/s00208-019-01953-x |
[3] | P. Blanc, F. Charro, J. D. Rossi, J. J. Manfredi, A nonlinear mean value property for the Monge-Ampère operator, J. Convex Anal., 28 (2021), 353–386. |
[4] | P. Blanc, C. Esteve, J. D. Rossi, The evolution problem associated with eigenvalues of the Hessian, J. London Math. Soc., 102 (2020), 1293–1317. https://doi.org/10.1112/jlms.12363 doi: 10.1112/jlms.12363 |
[5] | P. Blanc, J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pure. Appl., 127 (2019), 192–215. https://doi.org/10.1016/j.matpur.2018.08.007 doi: 10.1016/j.matpur.2018.08.007 |
[6] | P. Blanc, J. D. Rossi, Game theory and partial differential equations, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110621792 |
[7] | L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, Ⅰ: Monge-Ampère equations, Commun. Pure Appl. Math., 37 (1984), 369–402. https://doi.org/10.1002/cpa.3160370306 doi: 10.1002/cpa.3160370306 |
[8] | M. Cirant, K. R. Payne, On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., 61 (2017), 529–575. https://doi.org/10.5565/PUBLMAT6121708 doi: 10.5565/PUBLMAT6121708 |
[9] | M. G. Crandall, H. Ishii, P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. https://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5 |
[10] | F. Del Teso, J. J. Manfredi, M. Parviainen, Convergence of dynamic programming principles for the $p$-Laplacian, Adv. Calc. Var., 15 (2022), 191–212. https://doi.org/10.1515/acv-2019-0043 doi: 10.1515/acv-2019-0043 |
[11] | A. Figalli, The Monge-Ampère equation and its applications, Zürich: European Mathematical Society, 2017. https://doi.org/10.4171/170 |
[12] | D. A. Gomes, J. Saude, Mean field games models – A brief survey, Dyn. Games Appl., 4 (2014), 110–154. https://doi.org/10.1007/s13235-013-0099-2 doi: 10.1007/s13235-013-0099-2 |
[13] | C. Gutiérrez, The Monge-Ampère equation, Boston, MA: Birkhäuser Boston, Inc., 2001. |
[14] | F. R. Harvey, H. B. Lawson, Dirichlet duality and the nonlinear Dirichlet problem, Commun. Pure Appl. Math., 62 (2009), 396–443. https://doi.org/10.1002/cpa.20265 doi: 10.1002/cpa.20265 |
[15] | M. Lewicka, A course on tug-of-war games with random noise, Cham: Springer 2020. https://doi.org/10.1007/978-3-030-46209-3 |
[16] | M. Lewicka, J. J. Manfredi, D. Ricciotti, Random walks and random tug of war in the Heisenberg group, Math. Ann., 377 (2020), 797–846. https://doi.org/10.1007/s00208-019-01853-0 doi: 10.1007/s00208-019-01853-0 |
[17] | Q. Liu, A. Schikorra, General existence of solutions to dynamic programming principle, Commun. Pure Appl. Anal., 14 (2015), 167–184. https://doi.org/10.3934/cpaa.2015.14.167 doi: 10.3934/cpaa.2015.14.167 |
[18] | H. Luiro, M. Parviainen, E. Saksman, Harnack's inequality for p-harmonic functions via stochastic games, Commun. Part. Diff. Eq., 38 (2013), 1985–2003. https://doi.org/10.1080/03605302.2013.814068 doi: 10.1080/03605302.2013.814068 |
[19] | J. J. Manfredi, M. Parviainen, J. D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881–889. https://doi.org/10.1090/S0002-9939-09-10183-1 doi: 10.1090/S0002-9939-09-10183-1 |
[20] | J. J. Manfredi, M. Parviainen, J. D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM: COCV, 18 (2012), 81–90. https://doi.org/10.1051/cocv/2010046 doi: 10.1051/cocv/2010046 |
[21] | J. J. Manfredi, M. Parviainen, J. D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 215–241. https://doi.org/10.2422/2036-2145.201005_003 doi: 10.2422/2036-2145.201005_003 |
[22] | A. M. Oberman, L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., 363 (2011), 5871–5886. https://doi.org/10.1090/S0002-9947-2011-05240-2 doi: 10.1090/S0002-9947-2011-05240-2 |
[23] | M. Parviainen, E. Ruosteenoja, Local regularity for time-dependent tug-of-war games with varying probabilities, J. Differ. Equations, 261 (2016), 1357–1398. https://doi.org/10.1016/j.jde.2016.04.001 doi: 10.1016/j.jde.2016.04.001 |
[24] | Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167–210. https://doi.org/10.1090/S0894-0347-08-00606-1 doi: 10.1090/S0894-0347-08-00606-1 |
[25] | Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91–120. https://doi.org/10.1215/00127094-2008-048 doi: 10.1215/00127094-2008-048 |
[26] | A. V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, 1964. |
[27] | E. Ruosteenoja, Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var., 9 (2016), 1–17. https://doi.org/10.1515/acv-2014-0021 doi: 10.1515/acv-2014-0021 |
[28] | H. V. Tran, Hamilton-Jacobi equations–theory and applications, American Mathematical Society, 2021. https://doi.org/10.1090/gsm/213 |