Research article Special Issues

A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem

  • Received: 12 March 2022 Revised: 27 October 2022 Accepted: 20 November 2022 Published: 01 December 2022
  • We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.

    Citation: Pengfei Guan. A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem[J]. Mathematics in Engineering, 2023, 5(3): 1-14. doi: 10.3934/mine.2023067

    Related Papers:

  • We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.



    加载中


    [1] C. Berg, Corps convexes et potentiels spheriques, 1969.
    [2] S. Y. Cheng, S. T. Yau, On the Regularity for the Solution of the $n$-dimensional Minkowski Problem, Commun. Pure Appl. Math., 24 (1976), 495–516. https://doi.org/10.1002/cpa.3160290504 doi: 10.1002/cpa.3160290504
    [3] K. S. Chou, X. J. Wang, The $L^p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33–83. https://doi.org/10.1016/j.aim.2005.07.004 doi: 10.1016/j.aim.2005.07.004
    [4] W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematik, 14 (1967), 1–13. https://doi.org/10.1112/s0025579300007956 doi: 10.1112/s0025579300007956
    [5] W. J. Firey, p-Means of convex bodies, Math. Scand., 10 (1962), 17–24. https://doi.org/10.7146/math.scand.a-10510 doi: 10.7146/math.scand.a-10510
    [6] P. Guan, C. S. Lin, On equation $\det(u_ij + {\delta}_ij u) = u^pf$ on ${{\mathbb S}}^n$, NCTS in Tsing-Hua University, 2000, preprint No 2000-7.
    [7] P. Guan, X. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553–577. https://doi.org/10.1007/s00222-002-0259-2 doi: 10.1007/s00222-002-0259-2
    [8] P. Guan, C. Xia, $L^p$ Christoffel-Minkowski problem: the case $1\le p\le k+1$, Calc. Var., 57 (2018), 69. https://doi.org/10.1007/s00526-018-1341-y doi: 10.1007/s00526-018-1341-y
    [9] C. Hu, X. Ma, C. Shen, On the Christoffel-Minkowski problem of Firey's $p$-sum, Calc. Var., 21 (2004), 137–155. https://doi.org/10.1007/s00526-003-0250-9 doi: 10.1007/s00526-003-0250-9
    [10] Y. Huang, Q. Lu, On the regularity of the $L^p$ Minkowski problem, Adv. Appl. Math., 50 (2013), 268–280. https://doi.org/10.1016/j.aam.2012.08.005 doi: 10.1016/j.aam.2012.08.005
    [11] Q. Lu, The Minkowski problem for p-sums, Master thesis, McMaster University, 2004.
    [12] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131–150. https://doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097
    [13] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., 41 (1995), 227–246. https://doi.org/10.4310/jdg/1214456011 doi: 10.4310/jdg/1214456011
    [14] E. Lutwak, D. Yang, G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359–4370. https://doi.org/10.1090/S0002-9947-03-03403-2 doi: 10.1090/S0002-9947-03-03403-2
    [15] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Commun. Pure Appl. Math., 6 (1953), 337–394. https://doi.org/10.1002/cpa.3160060303 doi: 10.1002/cpa.3160060303
    [16] A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb., 31 (1952), 88–103.
    [17] A. V. Pogorelov, The Minkowski multidimensional problem, New York: Wiley, 1978.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(121) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog