We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to degenerate or singular parabolic equations of $ p $-Laplacian type with $ p > \frac{2n}{n+2} $ in weighted Lebesgue spaces $ L^q_w $. We introduce a new condition on the weight $ w $ which depends on the intrinsic geometry concerned with the parabolic $ p $-Laplace problems. Our condition is weaker than the one in [
Citation: Mikyoung Lee, Jihoon Ok. Local Calderón-Zygmund estimates for parabolic equations in weighted Lebesgue spaces[J]. Mathematics in Engineering, 2023, 5(3): 1-20. doi: 10.3934/mine.2023062
We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to degenerate or singular parabolic equations of $ p $-Laplacian type with $ p > \frac{2n}{n+2} $ in weighted Lebesgue spaces $ L^q_w $. We introduce a new condition on the weight $ w $ which depends on the intrinsic geometry concerned with the parabolic $ p $-Laplace problems. Our condition is weaker than the one in [
[1] | E. Acerbi, G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 2005 (2005), 117–148. http://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117 |
[2] | E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8 |
[3] | P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differ. Equations, 255 (2013), 2927–2951. http://doi.org/10.1016/j.jde.2013.07.024 doi: 10.1016/j.jde.2013.07.024 |
[4] | P. Baroni, V. Bögelein, Calderón-Zygmund estimates for parabolic $p(x, t)$-Laplacian systems, Rev. Mat. Iberoam., 30 (2014), 1355–1386. http://doi.org/10.4171/RMI/817 doi: 10.4171/RMI/817 |
[5] | V. Bögelein, Global gradient bounds for the parabolic p-Laplacian system, Proc. Lond. Math. Soc., 111 (2015), 633–680. http://doi.org/10.1112/plms/pdv027 doi: 10.1112/plms/pdv027 |
[6] | V. Bögelein, F. Duzaar, G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 2011 (2011), 107–160. http://doi.org/10.1515/crelle.2011.006 doi: 10.1515/crelle.2011.006 |
[7] | S.-S. Byun, W. Kim, Global Calderón-Zygmund estimate for $p$-Laplacian parabolic system, Math. Ann., 383 (2022), 77–118. http://doi.org/10.1007/s00208-020-02089-z doi: 10.1007/s00208-020-02089-z |
[8] | S.-S. Byun, J. Ok, On $W^{1, q(\cdot)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pure. Appl., 106 (2016), 512–545. http://doi.org/10.1016/j.matpur.2016.03.002 doi: 10.1016/j.matpur.2016.03.002 |
[9] | S.-S. Byun, J. Ok, Nonlinear parabolic equations with variable exponent growth in nonsmooth domains, SIAM J. Math. Anal., 48 (2016), 3148–3190. http://doi.org/10.1137/16M1056298 doi: 10.1137/16M1056298 |
[10] | S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equations, 254 (2013), 4290–4326. http://doi.org/10.1016/j.jde.2013.03.004 doi: 10.1016/j.jde.2013.03.004 |
[11] | S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for elliptic equations of $p(x)$-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 2016 (2016), 1–38. http://doi.org/10.1515/crelle-2014-0004 doi: 10.1515/crelle-2014-0004 |
[12] | S.-S. Byun, S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 30 (2013), 291–313. http://doi.org/10.1016/j.anihpc.2012.08.001 doi: 10.1016/j.anihpc.2012.08.001 |
[13] | S.-S. Byun, S. Ryu, Weighted Orlicz estimates for general nonlinear parabolic equations over nonsmooth domains, J. Funct. Anal., 272 (2017), 4103–4121. http://doi.org/10.1016/j.jfa.2017.01.024 doi: 10.1016/j.jfa.2017.01.024 |
[14] | S.-S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57 (2004), 1283–1310. http://doi.org/10.1002/cpa.20037 doi: 10.1002/cpa.20037 |
[15] | L. A. Caffarelli, I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51 (1998), 1–21. http://doi.org/10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G |
[16] | A. P. Calderon, A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. http://doi.org/10.1007/BF02392130 doi: 10.1007/BF02392130 |
[17] | M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. http://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022 |
[18] | E. DiBenedetto, Degenerate parabolic equations, New York: Springer, 1993. http://doi.org/10.1007/978-1-4612-0895-2 |
[19] | E. DiBenedetto, A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math., 1984 (1984), 83–128. http://doi.org/10.1515/crll.1984.349.83 doi: 10.1515/crll.1984.349.83 |
[20] | E. DiBenedetto, A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 1985 (1985), 1–22. http://doi.org/10.1515/crll.1985.357.1 doi: 10.1515/crll.1985.357.1 |
[21] | E. DiBenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107–1134. |
[22] | E. Giusti, Direct methods in the calculus of variations, River Edge, NJ: World Scientific Publishing Co., Inc., 2003. http://doi.org/10.1142/5002 |
[23] | L. Grafakos, Classical Fourier analysis, 3 Eds., New York: Springer, 2014. http://doi.org/10.1007/978-1-4939-1194-3 |
[24] | P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Cham: Springer, 2019. http://doi.org/10.1007/978-3-030-15100-3 |
[25] | P. Hästö, J. Ok, Higher integrability for parabolic systems with Orlicz growth, J. Differ. Equations, 300 (2021), 925–948. http://doi.org/10.1016/j.jde.2021.08.012 doi: 10.1016/j.jde.2021.08.012 |
[26] | T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Stud. Math., 75 (1983), 293–312. http://doi.org/10.4064/sm-75-3-293-312 doi: 10.4064/sm-75-3-293-312 |
[27] | J. Kinnunen, J. Lewis, Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J., 102 (2000), 253–271. http://doi.org/10.1215/S0012-7094-00-10223-2 doi: 10.1215/S0012-7094-00-10223-2 |
[28] | J. Kinnunen, S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Commun. Part. Diff. Eq., 24 (1999), 2043–2068. http://doi.org/10.1080/03605309908821494 doi: 10.1080/03605309908821494 |
[29] | T. Mengesha, N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Rational Mech. Anal., 203 (2012), 189–216. http://doi.org/10.1007/s00205-011-0446-7 doi: 10.1007/s00205-011-0446-7 |
[30] | N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91–109. http://doi.org/10.1090/S0002-9947-1982-0637030-4 doi: 10.1090/S0002-9947-1982-0637030-4 |
[31] | G. Mingione, The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 6 (2007), 195–261. http://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01 |
[32] | J. Oh, J. OK, Gradient estimates for parabolic problems with Orlicz growth and discontinuous coefficients, Math. Method. Appl. Sci., 45 (2022), 8718–8736. http://doi.org/10.1002/mma.7845 doi: 10.1002/mma.7845 |
[33] | C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7–63. http://doi.org/10.1007/s00229-014-0684-8 doi: 10.1007/s00229-014-0684-8 |
[34] | R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997. |
[35] | D. Signoriello, T. Singer, Local Calderón-Zygmund estimates for parabolic minimizers, Nonlinear Anal., 125 (2015), 561–581. http://doi.org/10.1016/j.na.2015.06.005 doi: 10.1016/j.na.2015.06.005 |
[36] | A. Verde, Calderón–Zygmund estimates for systems of $ \varphi$-growth, J. Convex Anal., 18 (2011), 67–84. |