Citation: Marco Bramanti, Sergio Polidoro. Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients[J]. Mathematics in Engineering, 2020, 2(4): 734-771. doi: 10.3934/mine.2020035
[1] | Anceschi F, Polidoro S (2020) A survey on the classical theory for Kolmogorov equation. Le Matematiche 75: 221-258. |
[2] | Bramanti M (2014) An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Cham: Springer. |
[3] | Da Prato G (1998) Introduction to Stochastic Differential Equations, 2Eds., Scuola Normale Superiore, Pisa. |
[4] | Delarue F, Menozzi S (2010) Density estimates for a random noise propagating through a chain of differential equations. J Funct Anal 259: 1577-1630. doi: 10.1016/j.jfa.2010.05.002 |
[5] | Di Francesco M, Pascucci S (2005) On a class of degenerate parabolic equations of Kolmogorov type. Appl Math Res Express 2005: 77-116. doi: 10.1155/AMRX.2005.77 |
[6] | Di Francesco M, Polidoro S (2006) Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv Differential Equ 11: 1261-1320. |
[7] | Farkas B, Lorenzi L (2009) On a class of hypoelliptic operators with unbounded coefficients in $\mathbb{R}^N$. Commun Pure Appl Anal 8: 1159-1201. doi: 10.3934/cpaa.2009.8.1159 |
[8] | Hörmander L (1967) Hypoelliptic second order differential equations. Acta Math 119: 147-171. doi: 10.1007/BF02392081 |
[9] | Il'in AM (1964) On a class of ultraparabolic equations. Dokl Akad Nauk SSSR 159: 1214-1217. |
[10] | Kolmogorov AN (1934) Zur Theorie der Brownschen Bewegung. Ann Math 35: 116-117. doi: 10.2307/1968123 |
[11] | Kupcov LP (1972) The fundamental solutions of a certain class of elliptic-parabolic second order equations. Differencial'nye Uravnenija 8: 1649-1660. |
[12] | Kuptsov LP (1982) Fundamental solutions of some second-order degenerate parabolic equations. Mat Zametki 31: 559-570. |
[13] | Lanconelli E, Polidoro S (1994) On a class of hypoelliptic evolution operators. Rend Sem Mat 52: 29-63. |
[14] | Lunardi A (1997) Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb{R}^n$. Ann Scuola Norm Sup Pisa 24: 133-164. |
[15] | Manfredini M (1997) The Dirichlet problem for a class of ultraparabolic equations. Adv Differential Equ 2: 831-866. |
[16] | Pascucci A, Pesce A (2019) On stochastic Langevin and Fokker-Planck equations: the two-dimensional case. arXiv:1910.05301. |
[17] | Pascucci A, Pesce A (2020) The parametrix method for parabolic SPDEs. Stochastic Process Appl, To appear. |
[18] | Polidoro S (1994) On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type. Matematiche 49: 53-105. |
[19] | Sonin IM (1967) A class of degenerate diffusion processes. Trans Theory Probab Appl 12: 490-496. doi: 10.1137/1112059 |
[20] | Weber M (1951) The fundamental solution of a degenerate partial differential equation of parabolic type. T Am Math Soc 71: 24-37. doi: 10.1090/S0002-9947-1951-0042035-0 |