Research article Special Issues

Spectral enclosures for the damped elastic wave equation

  • Received: 10 August 2021 Accepted: 04 November 2021 Published: 23 November 2021
  • In this paper we investigate spectral properties of the damped elastic wave equation. Deducing a correspondence between the eigenvalue problem of this model and the one of Lamé operators with non self-adjoint perturbations, we provide quantitative bounds on the location of the point spectrum in terms of suitable norms of the damping coefficient.

    Citation: Biagio Cassano, Lucrezia Cossetti, Luca Fanelli. Spectral enclosures for the damped elastic wave equation[J]. Mathematics in Engineering, 2022, 4(6): 1-10. doi: 10.3934/mine.2022052

    Related Papers:

  • In this paper we investigate spectral properties of the damped elastic wave equation. Deducing a correspondence between the eigenvalue problem of this model and the one of Lamé operators with non self-adjoint perturbations, we provide quantitative bounds on the location of the point spectrum in terms of suitable norms of the damping coefficient.



    加载中


    [1] A. A. Abramov, A. Aslanyan, E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys A: Math. Gen., 34 (2001), 57. doi: 10.1088/0305-4470/34/1/304
    [2] J. A. Barceló, L. Fanelli, A. Ruiz, M. C. Vilela, N. Visciglia, Resolvent and strichartz estimates for elastic wave equations, Appl. Math. Lett., 49 (2015), 33–41. doi: 10.1016/j.aml.2015.04.013
    [3] J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela, Limiting absorption principles for the Navier equation in elasticity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 817–842.
    [4] J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela, A born approximation for live loads in Navier elasticity, SIAM J. Math. Anal., 44 (2012), 2824–2846. doi: 10.1137/110856265
    [5] J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela, Uniqueness for inverse elastic medium problems, SIAM J. Math. Anal., 50 (2018), 3939–3962. doi: 10.1137/17M1138315
    [6] A. Bchatnia, M. Daoulatli, Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force, Electron. J. Differ. Eq., 2013 (2013), 1–17. doi: 10.1186/1687-1847-2013-1
    [7] E. Beretta, E. Francini, S. Vessella, Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements, Inverse Probl. Imag., 8 (2014), 611–644. doi: 10.3934/ipi.2014.8.611
    [8] A. Bchatnia, A. Guesmia, Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain, Math. Control Relat. Fields, 4 (2014), 451–463. doi: 10.3934/mcrf.2014.4.451
    [9] A. Benaissa, S. Gaouar, Asymptotic stability for the Lamé system with fractional boundary damping, Comput. Math. Appl., 77 (2019), 1331–1346. doi: 10.1016/j.camwa.2018.11.011
    [10] L. E. Bocanegra-Rodríguez, M. A. Jorge Silva, T. F. Ma, P. N. Seminario-Huertas, Longtime dynamics of a semilinear Lamé system, J. Dyn. Diff. Equat., 2021, in press.
    [11] N. Burq, F. Planchon, J. G. Stalker, A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519–549. doi: 10.1016/S0022-1236(03)00238-6
    [12] N. Burq, F. Planchon, J. G. Stalker, A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665–1680.
    [13] P. Caro, R.-Y. Lai, Y.-H. Lin, T. Zhou, Boundary determination of electromagnetic and Lamé parameters with corrupted data, Inverse Probl. Imag., 15 (2021), 1171–1198. doi: 10.3934/ipi.2021033
    [14] B. Cassano, L. Cossetti, L. Fanelli, Eigenvalue bounds and spectral stability of Lamé operators with complex potentials, J. Differ. Equations, 298 (2021), 528–559. doi: 10.1016/j.jde.2021.07.017
    [15] L. Cossetti, Uniform resolvent estimates and absence of eigenvalues for Lamé operators with subordinated complex potentials, J. Math. Anal. Appl., 1 (2017), 336–360.
    [16] L. Cossetti, Bounds on eigenvalues of perturbed Lamé operators with complex potentials, Mathematics in Engineering, 4 (2022), 1–29.
    [17] E. B. Davies, J. Nath, Schrödinger operators with slowly decaying potentials, J. Comput. Appl. Math., 148 (2002), 1–28. doi: 10.1016/S0377-0427(02)00570-8
    [18] G. Eskin, J. Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Probl., 18 (2002), 907–921. doi: 10.1088/0266-5611/18/3/324
    [19] L. Fanelli, D. Krejčiřík, L. Vega, Spectral stability of Schrödinger operators with subordinated complex potentials, J. Spectr. Theory, 8 (2018), 575–604. doi: 10.4171/JST/208
    [20] L. Fanelli, D. Krejčiřík, L. Vega, Absence of eigenvalues of two-dimensional magnetic Schrödinger operators, J. Funct. Anal., 275 (2018), 2453–2472. doi: 10.1016/j.jfa.2018.08.007
    [21] Y. Imanuvilov, M. Yamamoto, Global uniqueness in inverse boundary value problems for the Navier Stokes equations and Lamé system in two dimensions, Inverse Probl., 31 (2015), 121–142.
    [22] S. Kim, Y. Kwon, S. Lee, I. Seo, Strichartz and uniform Sobolev inequalities for the elastic wave equation, 2021, arXiv: 2102.04684v1.
    [23] S. Kim, Y. Kwon, I. Seo, Strichartz estimates and local regularity for the elastic wave equation with singular potentials, Discrete Cont. Dyn. Syst., 41 (2021), 1897–1911. doi: 10.3934/dcds.2020344
    [24] Y. Kwon, S. Lee, Sharp resolvent estimates outside of the uniform boundedness range, Commun. Math. Phys., 374 (2020), 1417–1467. doi: 10.1007/s00220-019-03536-y
    [25] Y. Kwon, S. Lee, I. Seo, Resolvent estimates for the Lamé operator and failure of Carleman estimates, J. Fourier Anal. Appl., 27 (2021), 53. doi: 10.1007/s00041-021-09859-6
    [26] D. Krejčičík, T. Kurimaiová, From Lieb–Thirring inequalities to spectral enclosures for the damped wave equation, Integr. Equ. Oper. Theory, 92 (2020), 47. doi: 10.1007/s00020-020-02607-3
    [27] A. Laptev, Spectral inequalities for partial differential equations and their applications, AMS/IP Stud. Adv. Math., 51 (2012), 629–643.
    [28] A. Laptev, T. Weidl, Recent results on Lieb-Thirring inequalities, Journées Équations aux dérivées partielles, 2000, 20.
    [29] Y.-H. Lin, G. Nakamura, Boundary determination of the Lamé moduli for the isotropic elasticity system, Inverse Probl., 33 (2017), 125004. doi: 10.1088/1361-6420/aa942d
    [30] M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci., 41 (2018), 192–204. doi: 10.1002/mma.4604
    [31] M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. doi: 10.1016/j.jmaa.2017.08.019
    [32] G. Nakamura, G. Uhlmann, Global uniqueness for an inverse boundary value problem arising in elasticity, Invent. Math., 118 (1994), 457–474. doi: 10.1007/BF01231541
    [33] M. Reed, B. Simon, IV: Analysis of operators, Academic Press, 1978.
    [34] L. Tartar, On the characterization of traces of a Sobolev space used for Maxwell's equation, In: Proceedings of a Meeting held in Bordeaux, in Honour of Michel Artola, 1997.
    [35] V. E. Zakharov, L. D. Faddeev, Korteweg De Vries equation: a completely integrable Hamiltonian system, In: Fifty years of mathematical physics, World Scientific, 2016,277–284.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1720) PDF downloads(119) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog