We introduce a new heterogeneous multi-scale method for the simulation of flows of non-Newtonian fluids in general geometries and present its application to paradigmatic two-dimensional flows of polymeric fluids. Our method combines micro-scale data from non-equilibrium molecular dynamics (NEMD) with macro-scale continuum equations to achieve a data-driven prediction of complex flows. At the continuum level, the method is model-free, since the Cauchy stress tensor is determined locally in space and time from NEMD data. The modelling effort is thus limited to the identification of suitable interaction potentials at the micro-scale. Compared to previous proposals, our approach takes into account the fact that the material response can depend strongly on the local flow type and we show that this is a necessary feature to correctly capture the macroscopic dynamics. In particular, we highlight the importance of extensional rheology in simulating generic flows of polymeric fluids.
Citation: Francesca Tedeschi, Giulio G. Giusteri, Leonid Yelash, Mária Lukáčová-Medvid'ová. A multi-scale method for complex flows of non-Newtonian fluids[J]. Mathematics in Engineering, 2022, 4(6): 1-22. doi: 10.3934/mine.2022050
We introduce a new heterogeneous multi-scale method for the simulation of flows of non-Newtonian fluids in general geometries and present its application to paradigmatic two-dimensional flows of polymeric fluids. Our method combines micro-scale data from non-equilibrium molecular dynamics (NEMD) with macro-scale continuum equations to achieve a data-driven prediction of complex flows. At the continuum level, the method is model-free, since the Cauchy stress tensor is determined locally in space and time from NEMD data. The modelling effort is thus limited to the identification of suitable interaction potentials at the micro-scale. Compared to previous proposals, our approach takes into account the fact that the material response can depend strongly on the local flow type and we show that this is a necessary feature to correctly capture the macroscopic dynamics. In particular, we highlight the importance of extensional rheology in simulating generic flows of polymeric fluids.
[1] | M. Borg, D. Lockerby, J. Reese, Fluid simulations with atomistic resolution: a hybrid multiscale method with field-wise coupling, J. Comput. Phys., 255 (2013), 149–165. doi: 10.1016/j.jcp.2013.08.022 |
[2] | M. Borg, D. Lockerby, J. Reese, A hybrid molecular–continuum method for unsteady compressible multiscale flows, J. Fluid Mech., 768 (2015), 388–414. doi: 10.1017/jfm.2015.83 |
[3] | F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer Science & Business Media, 2012. |
[4] | M. J. Crochet, A. R. Davies, K. Walters, Numerical simulation of non-Newtonian flow, Elsevier, 2012. |
[5] | P. J. Daivis, B. Todd, A simple, direct derivation and proof of the validity of the sllod equations of motion for generalized homogeneous flows, J. Chem. Phys., 124 (2006), 194103. doi: 10.1063/1.2192775 |
[6] | M. Dobson, Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows, J. Chem. Phys., 141 (2014), 184103. doi: 10.1063/1.4901276 |
[7] | A. Donev, J. B. Bell, A. L. Garcia, B. J. Alder, A hybrid particle-continuum method for hydrodynamics of complex fluids, SIAM J. Multiscale Model. Simul., 8 (2010), 871–911. doi: 10.1137/090774501 |
[8] | W. E, B. Enquist, The heterogeneous multiscale method., Commun. Math. Sci., 1 (2003), 87–133. doi: 10.4310/CMS.2003.v1.n1.a8 |
[9] | W. E, X. Li, Analysis of the heterogeneous multiscale method for gas dynamics, Methods Appl. Anal., 11 (2004), 557–572. doi: 10.4310/MAA.2004.v11.n4.a7 |
[10] | W. E, J. Lu, Seamless multiscale modeling via dynamics on fiber bundles, Commun. Math. Sci., 5 (2007), 649–663. doi: 10.4310/CMS.2007.v5.n3.a7 |
[11] | W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121–157. |
[12] | W. E, W. Ren, E. Vanden-Eijnden, A general strategy for designing seamless multiscale methods, J. Comput. Phys., 228 (2009), 5437–5453. doi: 10.1016/j.jcp.2009.04.030 |
[13] | D. A. Fedosov, G. E. Karniadakis, Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes, J. Comput. Phys., 228 (2009), 1157–1171. doi: 10.1016/j.jcp.2008.10.024 |
[14] | D. A. Fedosov, G. E. Karniadakis, B. Caswell, Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions, J. Chem. Phys., 128 (2008), 144903. doi: 10.1063/1.2897761 |
[15] | E. G. Flekkoy, G. Wagner, J. Feder, Hybrid model for combined particle and continuum dynamics, Europhys. Lett., 271 (2000), 271–276. |
[16] | D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, Elsevier, 2001. |
[17] | G. G. Giusteri, R. Seto, A theoretical framework for steady-state rheometry in generic flow conditions, J. Rheol., 62 (2018), 713–723. doi: 10.1122/1.4986840 |
[18] | T. A. Hunt, Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration, Mol. Simulat., 42 (2016), 347–352. doi: 10.1080/08927022.2015.1051043 |
[19] | I. G. Kevrekidis, G. Samaey, Equation-free multiscale computation: Algorithms and applications, Ann. Rev. Phys. Chem., 60 (2009), 321–344. doi: 10.1146/annurev.physchem.59.032607.093610 |
[20] | I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, C. Theodoropoulos, Equation-free coarse-grained, multiscale computation: enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2004), 715–762. |
[21] | I. G. Kevrekidis, C. W. Gear, G. Hummer, Equation-free: The computer-aided analysis of complex multiscale systems, AIChE J., 50 (2004), 1346–1355. doi: 10.1002/aic.10106 |
[22] | A. Kraynik, D. Reinelt, Extensional motions of spatially periodic lattices, Int. J. Multiph. Flow, 18 (1992), 1045–1059. doi: 10.1016/0301-9322(92)90074-Q |
[23] | H. P. Langtangen, A. Logg, Solving PDEs in python: the FEniCS tutorial I, Springer Nature, 2016. |
[24] | R. G. Larson, The structure and rheology of complex fluids, New York: Oxford university press, 1999. |
[25] | A. Logg, G. N. Wells, Dolfin: Automated finite element computing, ACM Trans. Math. Software, 37 (2010), 1–28. |
[26] | M. Minale, P. Moldenaers, J. Mewis, Effect of shear history on the morphology of immiscible polymer blends, Macromolecules, 30 (1997), 5470–5475. doi: 10.1021/ma9617330 |
[27] | P. Neumann, W. Eckhardt, H.-J. Bungartz, Hybrid molecular-continuum methods: from prototypes to coupling software, Comput. Math. Appl., 67 (2014), 272–281. doi: 10.1016/j.camwa.2013.07.006 |
[28] | D. A. Nicholson, G. C. Rutledge, Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension, J. Chem. Phys., 145 (2016), 244903. doi: 10.1063/1.4972894 |
[29] | S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995), 1–19. doi: 10.1006/jcph.1995.1039 |
[30] | W. Ren, Seamless multiscale modeling of complex fluids using fiber bundle dynamics, Commun. Math. Sci., 5 (2007), 1027–1037. doi: 10.4310/CMS.2007.v5.n4.a15 |
[31] | P. Schunk, L. Scriven, Constitutive equation for modeling mixed extension and shear in polymer solution processing, J. Rheol., 34 (1990), 1085–1119. doi: 10.1122/1.550075 |
[32] | S. Stalter, L. Yelash, N. Emamy, A. Statt, M. Hanke, M. Lukáčová-Medvid'ová, et al., Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats, Comput. Phys. Commun., 224 (2018), 198–208. doi: 10.1016/j.cpc.2017.10.016 |
[33] | C. K. Williams, C. E. Rasmussen, Gaussian processes for regression, In: Advances in neural information processing systems 8, 1995,514–520. |
[34] | S. Yasuda, R. Yamamoto, Multiscale modeling and simulation for polymer melt flows between parallel plates, Phys. Rev. E, 81 (2010), 036308. doi: 10.1103/PhysRevE.81.036308 |