Citation: Yoshihisa Kaga, Shinya Okabe. A remark on the first p-buckling eigenvalue with an adhesive constraint[J]. Mathematics in Engineering, 2021, 3(4): 1-15. doi: 10.3934/mine.2021035
[1] | Alt HW, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325: 105-144. |
[2] | Ashbaugh MS, Bucur D (2003) On the isoperimetric inequality for the buckling of a clamped plate. Z Angew Math Phys 54: 756-770. doi: 10.1007/s00033-003-3204-3 |
[3] | Benedikt J (2015) Estimates of the principle eigenvalue of the p-Laplacian and the p-biharmonic operator. Math Bohem 140: 215-222. doi: 10.21136/MB.2015.144327 |
[4] | Dall'Acqua A, Deckelnick K, Grunau HC (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv Calc Var 1: 379-397. |
[5] | Drábek P, Ôtani M (2001) Global bifurcation result for the p-biharmonic operator. Electron J Differ Eq 48: 19. |
[6] | Gazzola F, Grunau HC, Sweers G (2010) Polyharmonic Boundary Value Problems, Berlin: Springer-Verlag. |
[7] | Parini E, Ruf B, Tarsi C (2014) The eigenvalue problem for the 1-biharmonic operator. Ann Scuola Norm Sci 13: 307-332. |
[8] | Lindqvist P (2017) Notes on the p-Laplace Equation, 2 Eds., University Jyväskylä, Department of Mathematics and Statics, Report 161. |
[9] | Polya G, Szegö G (1951) Isoperimetric Inequalities in Mathematical Physics, Princeton: Princeton University Press. |
[10] | Stollenwerk K (2016) Optimal shape of a domain which minimizes the first buckling eigenvalue. Calc Var 55: 29. doi: 10.1007/s00526-016-0963-1 |
[11] | Takeuchi S (2012) Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J Math Anal Appl 385: 24-35. doi: 10.1016/j.jmaa.2011.06.063 |
[12] | Watanabe K (2014) Planar p-elastic curves and related generalized complete elliptic integrals. Kodai Math J 37: 453-474. doi: 10.2996/kmj/1404393898 |