Research article Special Issues

A remark on the first p-buckling eigenvalue with an adhesive constraint

  • Received: 03 July 2020 Accepted: 23 August 2020 Published: 01 September 2020
  • We consider a fourth order nonlinear eigenvalue problem with an adhesive constraint. The problem is regarded as a generalization of the buckling eigenvalue problem with the clamped boundary condition. We prove the existence of the first eigenvalue of the problem and show that the corresponding eigenfunction does not have "flat core of adhesion type".

    Citation: Yoshihisa Kaga, Shinya Okabe. A remark on the first p-buckling eigenvalue with an adhesive constraint[J]. Mathematics in Engineering, 2021, 3(4): 1-15. doi: 10.3934/mine.2021035

    Related Papers:

  • We consider a fourth order nonlinear eigenvalue problem with an adhesive constraint. The problem is regarded as a generalization of the buckling eigenvalue problem with the clamped boundary condition. We prove the existence of the first eigenvalue of the problem and show that the corresponding eigenfunction does not have "flat core of adhesion type".


    加载中


    [1] Alt HW, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325: 105-144.
    [2] Ashbaugh MS, Bucur D (2003) On the isoperimetric inequality for the buckling of a clamped plate. Z Angew Math Phys 54: 756-770. doi: 10.1007/s00033-003-3204-3
    [3] Benedikt J (2015) Estimates of the principle eigenvalue of the p-Laplacian and the p-biharmonic operator. Math Bohem 140: 215-222. doi: 10.21136/MB.2015.144327
    [4] Dall'Acqua A, Deckelnick K, Grunau HC (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv Calc Var 1: 379-397.
    [5] Drábek P, Ôtani M (2001) Global bifurcation result for the p-biharmonic operator. Electron J Differ Eq 48: 19.
    [6] Gazzola F, Grunau HC, Sweers G (2010) Polyharmonic Boundary Value Problems, Berlin: Springer-Verlag.
    [7] Parini E, Ruf B, Tarsi C (2014) The eigenvalue problem for the 1-biharmonic operator. Ann Scuola Norm Sci 13: 307-332.
    [8] Lindqvist P (2017) Notes on the p-Laplace Equation, 2 Eds., University Jyväskylä, Department of Mathematics and Statics, Report 161.
    [9] Polya G, Szegö G (1951) Isoperimetric Inequalities in Mathematical Physics, Princeton: Princeton University Press.
    [10] Stollenwerk K (2016) Optimal shape of a domain which minimizes the first buckling eigenvalue. Calc Var 55: 29. doi: 10.1007/s00526-016-0963-1
    [11] Takeuchi S (2012) Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J Math Anal Appl 385: 24-35. doi: 10.1016/j.jmaa.2011.06.063
    [12] Watanabe K (2014) Planar p-elastic curves and related generalized complete elliptic integrals. Kodai Math J 37: 453-474. doi: 10.2996/kmj/1404393898
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3161) PDF downloads(297) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog