Loading [MathJax]/jax/output/SVG/jax.js

Global analysis on a class of multi-group SEIR model with latency and relapse

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 92B05, 34D23; Secondary: 34D20.

  • In this paper, we investigate the global dynamics of a multi-group SEIR epidemic model,allowing heterogeneity of the host population, delay in latency and delay due torelapse distribution for the human population.Our results indicate that when certain restrictions on nonlinear growth rate and incidence are fulfilled, the basic reproduction number R0 plays the key role of a global threshold parameter in the sense that the long-time behaviors of the model depend only on R0. The proofs of the main results utilize the persistence theory indynamical systems, Lyapunov functionals guided by graph-theoretical approach.

    Citation: Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209

    Related Papers:

  • In this paper, we investigate the global dynamics of a multi-group SEIR epidemic model,allowing heterogeneity of the host population, delay in latency and delay due torelapse distribution for the human population.Our results indicate that when certain restrictions on nonlinear growth rate and incidence are fulfilled, the basic reproduction number R0 plays the key role of a global threshold parameter in the sense that the long-time behaviors of the model depend only on R0. The proofs of the main results utilize the persistence theory indynamical systems, Lyapunov functionals guided by graph-theoretical approach.


    [1] in: L.I. Lutwick (eds.), Tuberculosis: A Clinical Handbook, Chapman and Hall, London, 1995, 54-101.
    [2] Nature, 280 (1979), 361-367.
    [3] Oxford University Press, Oxford, 1991.
    [4] Funkcial. Ekvac., 31 (1988), 331-347.
    [5] in: T.G. Hallam, L.J. Gross, S.A. Levin (eds.), Mathematical Ecology, World Scientific, Teaneck NJ, (1988), 317-342.
    [6] Academic Press, New York, 1979.
    [7] in: Lecture Notes in Mathematics, Vol. 35, Springer, Berlin, 1967.
    [8] American Public Health Association, Washington, 1999.
    [9] J. Theor. Biol., 291 (2011), 56-64.
    [10] J. Math. Biol., 28 (1990), 365-382.
    [11] Clin. Inf. Dis., 33 (2001), 1762-1769.
    [12] J. Differential Equations, 218 (2005), 292-324.
    [13] Canad. Appl. Math. Quart., 14 (2006), 259-284.
    [14] Proc. Amer. Math. Soc., 136 (2008), 2793-2802.
    [15] Appl. Math. Sci., vol. 99, Springer, New York, 1993.
    [16] Tran. R. Soc. Trop. Med. Hyg., 94 (2000), 247-249.
    [17] Theor. Popu. Biol., 14 (1978), 338-349.
    [18] in: Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, berlin, 1991.
    [19] SIAM J. Appl. Math., 52 (1992), 835-854.
    [20] Bull. Math. Biol., 71 (2009), 75-83.
    [21] Math. Biosci., 28 (1976), 221-236.
    [22] Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [23] SIAM J. Appl. Math., 70 (2010), 2434-2448.
    [24] J. Differential Equations, 248 (2010), 1-20.
    [25] J. Math. Anal. Appl., 361 (2010), 38-47.
    [26] Nonlinear Anal.: RWA, 12 (2011), 119-127.
    [27] National Academy Press, Washington, 1994.
    [28] W.A. Benjamin Inc., New York, 1971.
    [29] Nonlinear Anal.: RWA, 13 (2012), 1581-1592.
    [30] Appl. Math. Comput., 218 (2011), 280-286.
    [31] in: Mathematics in Biology and Medicine, Lecture Notes in Biomathematics, Springer, 57 (1995), 185-189.
    [32] Math. Biosci. Eng., 4 (2007), 205-219.
    [33] Math. Biosci., 207 (2007), 89-103.
    [34] J. Amer. Med. Assoc., 259 (1988), 1051-1053.
    [35] J. Biol. Dyn., 8 (2014), 99-116.
    [36] J. Biol. Syst., 20 (2012), 235-258.
    [37] Math. Comput. Simul., 79 (2008), 500-510.
  • This article has been cited by:

    1. Ming-Tao Li, Zhen Jin, Gui-Quan Sun, Juan Zhang, Modeling direct and indirect disease transmission using multi-group model, 2017, 446, 0022247X, 1292, 10.1016/j.jmaa.2016.09.043
    2. J. Wang, M. Guo, T. Kuniya, Mathematical analysis for a multi-group SEIR epidemic model with age-dependent relapse, 2018, 97, 0003-6811, 1751, 10.1080/00036811.2017.1336545
    3. Shuang-Hong Ma, Hai-Feng Huo, Hong Xiang, Threshold dynamics of a multi-group SEAR alcoholism model with public health education, 2019, 12, 1793-5245, 1950025, 10.1142/S1793524519500256
    4. Bouchaib Khajji, Abdelfatah Kouidere, Mohamed Elhia, Omar Balatif, Mostafa Rachik, Fractional optimal control problem for an age-structured model of COVID-19 transmission, 2021, 143, 09600779, 110625, 10.1016/j.chaos.2020.110625
    5. Lili Liu, Xianning Liu, Jinliang Wang, Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations, 2016, 21, 1531-3492, 2615, 10.3934/dcdsb.2016064
    6. Tianrui Chen, Ruisong Wang, Boying Wu, Synchronization of multi-group coupled systems on networks with reaction-diffusion terms based on the graph-theoretic approach, 2017, 227, 09252312, 54, 10.1016/j.neucom.2016.09.097
    7. Yuming Chen, Jianquan Li, Shaofen Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, 2019, 42, 0170-4214, 1283, 10.1002/mma.5439
    8. Xiaomei Feng, Kai Wang, Fengqin Zhang, Zhidong Teng, Threshold dynamics of a nonlinear multi-group epidemic model with two infinite distributed delays, 2017, 40, 01704214, 2762, 10.1002/mma.4196
    9. Lili Liu, Xiaomei Feng, A multigroup SEIR epidemic model with age-dependent latency and relapse, 2018, 41, 01704214, 6814, 10.1002/mma.5193
    10. Jinling Zhou, Yu Yang, Tonghua Zhang, Global stability of a discrete multigroup SIR model with nonlinear incidence rate, 2017, 40, 01704214, 5370, 10.1002/mma.4391
    11. Dejun Fan, Pengmiao Hao, Dongyan Sun, Junjie Wei, Global stability of multi-group SEIRS epidemic models with vaccination, 2018, 11, 1793-5245, 1850006, 10.1142/S1793524518500067
    12. Yi Li, Mandy Chen, Joshy George, Edison T. Liu, R. Krishna Murthy Karuturi, Adaptive Sentinel Testing in Workplace for COVID-19 Pandemic, 2022, 1557-8666, 10.1089/cmb.2022.0291
    13. B. M. Almuqati, F. M. Allehiany, Global stability of a multi-group delayed epidemic model with logistic growth, 2023, 8, 2473-6988, 23046, 10.3934/math.20231173
    14. Jian Liu, Qian Ding, Hongpeng Guo, Bo Zheng, DYNAMICS OF AN EPIDEMIC MODEL WITH RELAPSE AND DELAY, 2024, 14, 2156-907X, 2317, 10.11948/20230376
    15. Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6
    16. Abderrazak Nabti, Salih Djilali, Malek Belghit, Dynamics of a Double Age-Structured SEIRI Epidemic Model, 2025, 196, 0167-8019, 10.1007/s10440-025-00723-z
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3217) PDF downloads(611) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog