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Abstract. In this paper, we investigate the global dynamics of a multi-group
SEIR epidemic model, allowing heterogeneity of the host population, delay in

latency and delay due to relapse distribution for the human population. Our

results indicate that when certain restrictions on nonlinear growth rate and
incidence are fulfilled, the basic reproduction number <0 plays the key role of

a global threshold parameter in the sense that the long-time behaviors of the

model depend only on <0. The proofs of the main results utilize the persistence
theory in dynamical systems, Lyapunov functionals guided by graph-theoretical

approach.

1. Introduction. In recent decades, several authors have done a series of works to
analyze the multi-group epidemic models, for example [13, 14, 21, 24, 25, 29, 36, 35].
Some of these models are mainly given by systems of ordinary differential equations,
and delay differential equations for disease transmission dynamics in heterogeneous
host populations [13, 14, 24, 25]. From both the mathematical and epidemiolog-
ical points of view, multi-group models given by systems of differential equations
account for many situations of heterogeneous environments of populations due to
many factors: modes of transmission, contact patterns, gender, and professions etc.
For example, (i) different contact models among children and adults for childhood
diseases (e.g., measles and mumps), children and adults should be treated sepa-
rately. (ii) different behaviors such as the numbers of sexual partners for some
sexually transmitted diseases (e.g., HIV/AIDS, Herpes, Condyloma acuminatum).
Host population are generally divided into several homogeneous groups. They can
also be formed geographically, such as by schools, communities and cities, so that
within-group and inter-group interactions could be modeled separately [24].
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For detailed justifications and more information for multi-group disease models
(or other types of heterogeneity epidemic models), we refer the reader to some recent
works, see, e.g., [5, 13, 14, 17, 21, 25, 31] and the references therein.

Several authors have analyzed the effect of heterogeneity in the local and global
dynamics of the populations, in terms of permanence in each group, bifurcations,
effects of group-targeted vaccination strategies on disease control and prevention,
and several other features [9, 19, 12]. However, it is well known that global dy-
namics of multi-group models with higher dimensions, especially the situation for
the endemic equilibrium when the threshold is greater than one, is a very challeng-
ing subject of intense theoretical analysis [5], if it is not impossible. Especially,
Guo et al. [13] developed a graph-theoretic approach, which is known to be an
effective tool for the global stability analysis of multi-group epidemic models. Sub-
sequently, a series of good results were produced about multi-group epidemic models
in [14, 25, 24, 29, 36, 35, 30]. In [25], the authors studied a class of multi-group
SEIR models with distributed delays and bilinear transmission, and it is proved that
the endemic equilibrium is globally asymptotically stable if the basic reproduction
number is greater than one and without any other additional conditions.

It is more reasonable that many diseases do have a latency period [32]. For
example, tuberculosis may take months to develop into the infectious stage. So, it
is necessary to consider those individuals that are infected but not infectious yet.
Moreover, heterogeneity in the host population can result from many factors during
the spread of disease. For diseases such as human and bovine tuberculosis [3, 8, 27],
and herpes (a human disease that is transmitted by close physical or sexual contact)
[34], recovered individuals may revert back to the infective class due to reactivation
of the latent infection or incomplete treatment [8, 34]. There are many clinical
studies and evidences that many relapse phenomenon of disease is an important
feature of some human and animal diseases, see e.g., [1, 11, 16, 27]. Based on these,
it is of interest for us to investigate whether sustained oscillations are the result of
models with delays of latency and relapse. This provides us with the motivation to
conduct our work.

Under the assumption that the total population size is constant and taking into
account the latency and the possibility of relapse, van den Driessche et al. [32]
formulated and investigated the following model

S′(t) = bN − βS(t)
I(t)

N
− bS(t),

E(t) =

∫ t

0

βS(ξ)
I(ξ)

N
e−b(t−ξ)P (t− ξ)dξ,

R′(t) = rI(t)− (α+ b)R(t),
I(t) = N − S(t)− E(t)−R(t),

(1)

where S(t), E(t), I(t) and R(t) are the population sizes of susceptible, exposed,
infective, and recovered classes, respectively. α > 0 is a constant rate at which
an individual in the recovered class reverts to the infective class. b > 0 is the
recruitment rate and the removal rate such that total population remains constant
N . β > 0 denotes the average number of effective contacts of an infective individual
per unit time, and r > 0 is the rate at which infective individuals recover. P (t)
describes the probability that an exposed individual still remains in the exposed
class t time units after entering the exposed class, which is based on the fact that
the time between new infection and the moment of becoming infectious may differ
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from individual to individual. It is assumed in [32] that P (t) satisfies the following
reasonable properties.

(H1): P : [0,∞)→ [0, 1] is nonincreasing, piecewise continuous with possibly
finitely many jumps, satisfies P (0+) = 1; lim

t→∞
P (t) = 0 and there exists a

constant ε > 0 such that 0 <
∫∞
0
P (t)dt < ε.

Note that the integral in (1) is in the Riemann-Stieltjes sense to allow for possible
jump discontinuities of P (t). In [32], van den Driessche et al. numerically verified
the global stability of endemic equilibrium but the analytic proof is left as an open
problem. Until recently, Liu et al. [26] gave a confirmed answer to the global
stability of endemic equilibrium of model (1) with a general nonlinear incidence
function f(S)I. The proof of main results in [26] used the method of Lyapunov
functionals and LaSalle invariance principle, which has been successfully employed
in [13, 14, 25].

In [33], van den Driessche and Zou proposed the following system to model a
general relapse phenomenon in infectious diseases including herpes:

S′(t) = b− βS(t)I(t)− bS(t),

I ′(t) = −(b+ r)I(t) + βI(t)
[
1− I(t)−

∫ t

0

rI(ξ)e−b(t−ξ)P (t− ξ)dξ
]

−
∫ t

0

rI(ξ)e−b(t−ξ)dtP (t− ξ)dξ,

R′(t) = −bR(t) + rI(t) +

∫ t

0

rI(ξ)e−b(t−ξ)dtP (t− ξ)dξ,

(2)

where the parameters b, β, r are the same as in model (1). It is assumed that no
individuals are initially in the recovered class, i.e., R(0) = 0. The term e−b(t−ξ)

accounts for the death of infective individuals. In model (2), P (t) denotes the
fraction of recovered individuals remaining in the recovered class t time units after
recovery, which satisfies the assumption (H1).

By utilizing the theory of asymptotic autonomous system, the authors in [33]
studied the dynamic behavior of system (2). Three particular forms for P (t) are
investigated, such as a negative exponential function, a function with compact sup-
port, and a step function. The multi-group model of (2) was proposed by Wang et
al. in [36, 35] with general nonlinear incidence function f(S)I and f(S, I), respec-
tively. An effective tool called graph-theoretic approach is developed in [13, 14], and
it is used in the proof of global stability analysis of multi-group epidemic models
of (2). As a special case, the global stability of (2) is established by constructing
suitable Lyapunov functionals.

Motivated by the work in [13, 14, 26, 25, 32, 33, 29, 35, 36], we propose in the
present paper a more general multi-group epidemic model to describe the disease
spread in a heterogeneous host population with latency, relapse distribution and
general incidence rate. We carry out rigorous mathematical analysis to investigate
the global dynamics of the model by constructing suitable Lyapunov functionals.
To the best of our knowledge none of the previous multi-group models considered
delays in both disease latency and relapse. These concerns differentiate our model
from other multi-group models and make it more realistic by allowing it to describe
the effects of disease latency and relapse. In an effort to describe a model based
on reasonable biological findings on nonlinear incidence function, we formulate our
model using the form of f(S)g(I) as used in [29]. Our general multi-group model,
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which includes latency and relapse for host population, is formulated in the next
section.

The main results in present paper demonstrate that the long time dynamical
behaviors of this general model is completely determined by the basic reproduction
number <0, which is biologically defined by the spectral radius of next generation
matrix. More specifically, if <0 ≤ 1, the disease-free equilibrium is globally asymp-
totically stable and the disease dies out; if <0 > 1, a unique endemic equilibrium
exists and is globally asymptotically stable, and the disease persists at the endemic
equilibrium. The proofs of the main results utilize construction of Lyapunov func-
tionals and a subtle grouping technique in estimating the derivatives of Lyapunov
functionals guided by graph theory, which laid out in [13, 14, 25, 24, 29]. It is very
important to highlight the fact that the global stability analysis of such a multi-
group epidemic model is thought to be more difficult than that of corresponding
single-group epidemic models. As such, this work is of both mathematical and
biological interest and importance.

The paper is organized as follows. In Section 2, taking into consideration latency
and the possibility of relapse, we propose a multi-group SEIR epidemic model and
present preliminary results. Our main results are stated and proved in Section 3. We
show that the global dynamics are completely determined by the basic reproduction
number. Summary and discussion are given in Section 4.

Figure 1. Transfer diagram for model (3).

2. The model derivation and preliminaries. Inspired by the aforementioned
works, we consider a general model that captures the main features of both model
(1) and model (2): latency, relapse distribution, and nonlinear intrinsic growth rate
and incidence. In the model, the host population is divided into n homogeneous
groups. For i = 1, 2, . . . , n, Si, Ei, Ii and Ri denote the susceptible, exposed,
infective, and recovered populations in the i-th group, respectively. Within the i-
th group, ϕi(Si) represents the intrinsic growth rate of Si that accounts for both
production and natural death of susceptible individuals. Typical assumptions on
ϕi(Si) are the following:

(H2): There exist S0
i > 0 such that ϕi(S

0
i ) = 0 and(

ϕi(Si)− ϕi(S0
i )
)

(Si − S0
i ) < 0, for Si 6= S0

i , i = 1, 2, . . . , n.
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The class of ϕi(Si) that satisfy (H2) include both λi−dSi Si and λi−dSi Si+riSi(1−
Si/Ni), λi, d

S
i , ri, Ni > 0 which have been widely used in the literature [2, 13, 20].

The disease incidence in the i-th group can be calculated as

n∑
j=1

βijfi(Si(t))gj(Ij(t)),

where the sum takes into account cross-infections from all groups and βij ≥ 0
represents the transmission coefficient between compartments Si and Ij , βij = 0 if
there is no disease transmission between compartments Si and Ij . The restrictions
on nonlinear incidence functions fi(Si(t))gj(Ij(t)) as used in [29] are as follows:

(H3): fi(Si) ∈ C, gi(Ii) are sufficiently smooth; fi(0) = gi(0) = 0, and fi(Si) >
0 for Si > 0, gi(Ii) > 0 for Ii > 0, and there exist 0 < ci ≤ ∞ such that

lim
Ii→0+

gi(Ii)

Ii
= ci, i = 1, 2, . . . , n.

(H4): fi(Si) < fi(S
0
i ) for 0 ≤ Si < S0

i , and

sup
Ii>0

gi(Ii)

Ii
= ci, i = 1, 2, . . . , n.

Typical examples of fi(Si(t))gj(Ij(t)) that satisfy (H3)-(H4) include common inci-
dence functions such as SiIj , S

q
i Ij , ηSiIj/(1 + θSi) with q, η, θ > 0 [13, 2, 20, 37].

To incorporate the delay in latency, and delay due to relapse distribution, the
multi-group SEIR epidemic model can be described as the following system of dif-
ferential and integral equations:

S′i(t) = ϕi(Si(t))−
n∑
j=1

βijfi(Si(t))gj(Ij(t)),

E′i(t) =

n∑
j=1

βijfi(Si(t))gj(Ij(t))− diEi(t)

+

n∑
j=1

∫ t

0

βijfi(Si(ξ))gj(Ij(ξ))e
−di(t−ξ)dtPi(t− ξ)dξ,

I ′i(t) = −
n∑
j=1

∫ t

0

βijfi(Si(ξ))gj(Ij(ξ))e
−di(t−ξ)dtPi(t− ξ)dξ

−
∫ t

0

γiIi(ξ)e
−di(t−ξ)dtPi(t− ξ)dξ − (di + γi)Ii(t),

R′i(t) = γiIi(t)− diRi(t) +

∫ t

0

γiIi(ξ)e
−di(t−ξ)dtPi(t− ξ)dξ,

i = 1, 2, . . . , n,

(3)

where di denotes the natural death rate of exposed, infective and recovered popu-
lation in the i-th group, respectively. γi denotes the rate of recovery of infectious
individuals in the i-th group. All parameter values are assumed to be nonnegative
and di, γi > 0 for all i. The disease transmission diagram is depicted in Fig. 1. Here,
the integrals account for the distributed delays of latency and relapse, respectively.

For instance, the integral −
∫ t
0
γiIi(ξ)e

−di(t−ξ)dtPi(t − ξ)dξ denotes the number of
recovered individuals in the i-th group that are relapsed into infective class at time
t.
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Note that the variables Ei and Ri do not appear in the first and the third
equations, together with∫ t

0

γiIi(ξ)e
−di(t−ξ)dtPi(t− ξ)dξ =

∫ t

0

γiIi(t− ξ)e−diξdξPi(ξ)dξ,

and ∫ t

0

βijfi(Si(ξ))gj(Ij(ξ))e
−di(t−ξ)dtPi(t− ξ)dξ

=

∫ t

0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ,

which allow us to consider the following reduced system

S′i(t) = ϕi(Si(t))−
n∑
j=1

βijfi(Si(t))gj(Ij(t)),

I ′i(t) = −
n∑
j=1

∫ t

0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

−
∫ t

0

γiIi(t− ξ)e−diξdξPi(ξ)dξ − (di + γi)Ii(t), i = 1, 2, . . . , n.

(4)
For any initial condition

(S1(0), I1(0), . . . , Sn(0), In(0)) ∈ R2n
+ ,

the existence, uniqueness and continuity of the solution of system (4) follow from
the standard theory of Volterra integro-differential equation [28]. By using the
similar arguments as in [32, Lemma 2.1], we can easily obtain that the solution of
(4) with nonnegative initial condition remains nonnegative. Moreover, Si(t) > 0 for
all t > 0, i = 1, 2, . . . , n.

Let

Mi = sup
Si∈[0,S0

i ]

ϕi(Si), qi = min{Mi/S
0
i , di} for i = 1, 2, . . . , n. (5)

Next, we show that the solution of system (4) is ultimately bounded in R2n
+ . It

follows from (H2) and the first equation of (4) that lim sup
t→∞

Si(t) ≤ S0
i for all i =

1, 2, . . . , n. For each i, adding the four equations in (3) gives

S′i(t) + E′i(t) + I ′i(t) +R′i(t) ≤ Mi − di (Ei(t) + Ii(t) +Ri(t))

≤ 2Mi −
Mi

S0
i

Si(t)− di (Ei(t) + Ii(t) +Ri(t)) (6)

≤ 2Mi − qi (Si(t) + Ei(t) + Ii(t) +Ri(t)) .

Thus, lim sup
t→∞

(Si(t) + Ei(t) + Ii(t) +Ri(t)) ≤ 2Mi/qi. It follows from S′i(t) ≤

ϕi(Si) and (H2) that if (Si(t), Ei(t), Ii(t), Ri(t)) is a solution satisfying Si(t0) ≤ S0
i

for some t0 > 0, then Si(t) ≤ S0
i for all t > t0. By (6), we have, for any

i = 1, 2, . . . , n, if Si(t1) + Ei(t1) + Ii(t1) + Ri(t1) ≤ 2Mi/qi for some t1 > 0,
then Si(t) + Ei(t) + Ii(t) + Ri(t) ≤ 2Mi/qi for all t ≥ t1. Therefore, we define the
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set

Γ =

{
(Si, Ei, Ii, Ri) ∈ R4n

+ |

0 ≤ Si(t) ≤ S0
i , 0 ≤ Si(t) + Ei(t) + Ii(t) +Ri(t) ≤ 2Mi/qi

}
, (7)

which is a positively invariant compact absorbing set with respect to the system
(3) and all positive semi-orbits are precompact in R4n

+ [4] and thus have non-empty
ω-limit sets.

Thus, it follows from (7) that the set

Γ0 =

{
(Si, Ii) ∈ R2n

+ | 0 ≤ Si(t) ≤ S0
i , 0 ≤ Si(t) + Ii(t) ≤ 2Mi/qi

}
,

is a positively invariant compact absorbing set with respect to the system (4). We
can further obtain that all solutions with initial conditions in R2n

+ enter Γ in finite
time. Summarizing the above analysis, we arrive at the following result.

Lemma 2.1. Assume that (H1) − (H4) hold. Then the region Γ is positively in-
variant and absorbing in R2n

+ with respect to system (4).

Clearly, system (4) always admits a disease-free equilibrium P0 = (S0
1 , 0, ..., S

0
n, 0)

in Γ. We denote

Qi = −
∫ ∞
0

e−diξdξPi(ξ)dξ. (8)

It can be verified that Qi ∈ (0, 1) for all i = 1, 2, . . . , n. Define

Ji(t) = −
∫ ∞
t

e−diξdξPi(ξ)dξ, (9)

then Ji(t) ≥ 0 for all t > 0, Ji(0) = Qi > 0. An integration by parts yields

Ji(t) = e−ditPi(t)−
∫ ∞
t

die
−diξPi(ξ)dξ.

It follows from (H1) that 0 ≤
∫∞
t
die
−diξPi(ξ)dξ ≤ die−dit

∫∞
t
Pi(ξ)dξ → 0 as t→

∞. Therefore,

lim
t→∞

Ji(t) = 0 for all i = 1, 2, . . . , n.

Following Diekmann et al. [10], the basic reproduction number <0 for system (4)
is defined as the spectral radius of a matrix called the next generation matrix,
which describes the expected number of secondary cases produced in an entirely
susceptible population by a typical infected individual during its entire infectious
period. Thus, the basic reproduction number is given by

<0 = ρ(M0), (10)

where

M0 =


f1(S

0
1)c1β11Q1

d1+γ1−γ1Q1
· · · f1(S

0
1)cnβ1nQ1

d1+γ1−γ1Q1

...
. . .

...
fn(S

0
n)c1βn1Qn

dn+γn−γnQn
· · · fn(S

0
n)cnβnnQn

dn+γn−γnQn

 .
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Note that (4) may not have an endemic equilibrium for finite time t. According
to [28], the following limiting system ensures that (4) has an endemic equilibrium,

S′i(t) = ϕi(Si(t))−
n∑
j=1

βijfi(Si(t))gj(Ij(t)),

I ′i(t) = −
n∑
j=1

∫ ∞
0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

−
∫ ∞
0

γiIi(t− ξ)e−diξdξPi(ξ)dξ − (di + γi)Ii(t), i = 1, 2, . . . , n.

(11)
Obviously, system (11) contains infinite delays, thus its associated initial condi-

tion needs to be restricted in an appropriate Banach space. To this end, for any
λi ∈ (0, di) with i = 1, 2, . . . , n, we define the following Banach space of fading
memory type (see e.g., [4, 18]).

Ci =

{
φ ∈ C((−∞, 0],R) : φ(s)eλis is uniformly continuous

for s ∈ (−∞, 0], and sup
s≤0
|φ(s)|eλis <∞

}
,

with norm ‖φ‖i = sups≤0 |φ(s)|eλis. For φ ∈ Ci, let φt ∈ Ci be such that φt(s) =

φ(t+s), s ∈ (−∞, 0]. The nonnegative cone of Ci is defined by C+i = C((−∞, 0],R+).
We consider system (11) in the following phase space

X =

n∏
i=1

(Ci × Ci).

Let ψi ∈ C+i and φi ∈ C+i such that ψi(s) ≥ 0 and φi(s) ≥ 0 for s ∈ (−∞, 0], the
standard theory of functional differential equations [18] ensures that system (11)
with the initial conditions

Si0 = ψi ∈ C+i , Ii0 = φi ∈ C+i , i = 1, 2, . . . , n (12)

has a unique solution. It can be further verified that the solutions of system (11)
with initial conditions (12) are nonnegative and ultimately uniformly bounded in X.
Using the similar arguments as in [29, Proposition 3.1], we obtain that the following
set is positively invariant for system (11),

Θ =

{
(S1(·), I1(·), . . . , Sn(·), In(·)) ∈ X| 0 ≤ Si(s) ≤ S0

i , 0 ≤ Si(0) + Ii(0) ≤ 2Mi

qi
,

Ii(s) ≥ 0, s ∈ (−∞, 0], i = 1, 2, . . . , n

}
,

where Mi and qi are defined in (5). All positive semi-orbits in Θ are precompact in
X [4], and thus have non-empty ω-limit sets.

An equilibrium P ∗ = (S∗1 , I
∗
1 , . . . , S

∗
n, I
∗
n) in the interior of Θ is called an endemic

equilibrium, where S∗i , I
∗
i > 0 satisfy the following equilibrium equations

ϕi(S
∗
i ) =

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j ),

Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j ) = (di + γi − γiQi)I∗i .
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Next, we will show that under biologically reasonable conditions, the endemic equi-
librium P ∗ is unique.

3. Main results. Determining sharp threshold conditions for the global stability
of equilibria is generally a challenging problem. In this section, we will tackle
this problem for the model (4) and (11). We will demonstrate that <0 is the key
threshold parameter whose values completely determine the global dynamics of
systems (4) and (11). Define

H(u) = u− 1− lnu. (13)

Then H(u) ≥ 0 for all u > 0, and H(u) attains its strict and global minimum at
u = 1 with H(1) = 0.

Theorem 3.1. Assume that (H1)− (H4) hold, and B = (βij)n×n is irreducible. If
<0 ≤ 1, then the disease-free equilibrium P0 of system (4) is globally asymptotically
stable in Γ; whereas if <0 > 1, then P0 is unstable.

Proof. We first illustrate that P0 is the unique equilibrium of system (4) in Γ if
<0 ≤ 1. Let S = (S1, S2, . . . , Sn)T , I = (I1, I2, . . . , In)T , S0 = (S0

1 , S
0
2 , . . . , S

0
n)T ,

and define matrix-valued function

M(S) =

(
βijfi(Si)cjQi
di + γi − γiQi

)
n×n

.

Then M(S0) = M0. For 1 ≤ i ≤ n, 0 ≤ Si ≤ S0
i , we have 0 ≤ M(S) ≤ M(S0) =

M0. If S 6= S0, then M(S) < M0. On the other side, since B = (βij)n×n is
irreducible, then M(S) and M0 are also irreducible. Moreover, the matrix M(S) +
M0 is also irreducible. It follows from the Perron-Frobenius Theorem [6, Corollary
2.1.5] that ρ(M(S)) < ρ(M0) provided S 6= S0.

If <0 ≤ 1 and S 6= S0, it follows from the above analysis and <0 = ρ(M0) that
ρ(M(S)) < 1. This implies that the equilibrium equation M(S)I = I has only
the trivial solution I = 0. Therefore the disease-free equilibrium P0 is the unique
equilibrium of system (4) if <0 ≤ 1.

Next, we prove that the disease-free equilibrium P0 is globally asymptotically
stable in Γ. It follows from [6, Theorem 2.1.4] that the nonnegative irreducible
matrix M0 has a strictly positive left eigenvector (ω1, ω2, . . . , ωn) corresponding to
the spectral radius <0 = ρ(M0) such that

(ω1, ω2, . . . , ωn)ρ(M0) = (ω1, ω2, . . . , ωn)M0,

where ωi > 0 for i = 1, 2, . . . , n. Let

ki =
ωi

di + γi − γiQi
> 0.

We consider the following Lyapunov functional L : X→ R,

L =

n∑
i=1

ki

[
Iit(0) + γi

∫ t

0

Ji(ξ)Iit(−ξ)dξ
]
,

where Sit(θ) = Si(t+ θ), Iit(θ) = Ii(t+ θ) for θ ∈ (−∞, 0], i = 1, 2, . . . , n, and Ji(ξ)
is defined in (9). Obviously, L ≥ 0 with the equality holds if and only if Si(t) ≡ S0

i

and Ii(t) ≡ 0. Differentiating
∫ t
0
Ji(ξ)Ii(t − ξ)dξ along the solutions of system (4)

and using integration by parts, we obtain
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d

dt

(∫ t

0

Ji(ξ)Ii(t− ξ)dξ
)

= Ji(t)Ii(0) +

∫ t

0

Ji(ξ)
d

dt
Ii(t− ξ)dξ

= Ji(t)Ii(0)−
∫ t

0

Ji(ξ)
d

dξ
Ii(t− ξ)dξ

= QiIi(t) +

∫ t

0

Ii(t− ξ)e−diξdξPi(ξ)dξ.

Thus the derivative of L along the solutions of system (4) is calculated as

dL

dt

∣∣∣
(4)

=

n∑
i=1

ki

[
−

n∑
j=1

∫ t

0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

−
∫ t

0

γiIi(t− ξ)e−diξdξPi(ξ)dξ

− (di + γi)Ii(t) + γiQiIi(t) +

∫ t

0

γiIi(t− ξ)e−diξdξPi(ξ)dξ
]

≤
n∑
i=1

ωi
di + γi − γiQi

( n∑
j=1

Qiβijfi(S
0
i )gj(Ij)− (di + γi − γiQi)Ii(t)

)
.

Using assumptions (H2)− (H4), and the expression for <0 in (10), we obtain

dL

dt

∣∣∣
(4)
≤

n∑
i=1

ωi
di + γi − γiQi

( n∑
j=1

Qiβijfi(S
0
i )cjIj(t)− (di + γi − γiQi)Ii(t)

)
≤ (ω1, ω2, ..., ωn)(M0I− I)

= (ρ(M0)− 1)(ω1, ω2, ..., ωn)I ≤ 0, if <0 ≤ 1, (14)

where I = (I1(t), I2(t), . . . , In(t))T . Let

Y =

{
(S1, I1, ..., Sn, In) ∈ Γ

∣∣ dL

dt

∣∣
(4)

= 0

}
.

If <0 = ρ(M0) < 1, then it follows from (14) that dL
dt

∣∣
(4)

= 0 if and only if I = 0. If

<0 = ρ(M0) = 1, then dL
dt

∣∣
(4)

implies

(ω1, ω2, ..., ωn)M(S)I = (ω1, ω2, ..., ωn)I. (15)

If S 6= S0, then (ω1, ω2, ..., ωn)M(S) < (ω1, ω2, ..., ωn)M0 = (ω1, ω2, ..., ωn), which
implies that (15) have only the the trivial solution I = 0. Thus, if <0 ≤ 1, dLdt

∣∣
(4)

= 0

if and only if I = 0 or S = S0. Therefore, the maximal compact invariant set in
Y is the singleton {P0}. By the LaSalle’s invariance principle (see [15, Theorem
5.3.1] or [22, Theorem 3.4.7]), P0 is globally attractive in Γ. Furthermore, it can be
verified that P0 is locally stable using the same proof as that for Corollary 5.3.1 in
[15]. Therefore, P0 is globally asymptotically stable in Γ.

If <0 = ρ(M0) > 1 and I 6= 0, we know that

(ω1, ω2, ..., ωn)(M0I− I) = (ρ(M0)− 1)(ω1, ω2, ..., ωn)I > 0.

From (14), assumption (H2) and the continuity of fi and gj , it follows that dL
dt

∣∣
(4)

>

0 in a neighborhood of P0 in the interior of Γ. This implies that P0 is unstable if
<0 > 1.
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Using similar arguments to [36, Theorem 3.2], we can prove the following lemma
on the uniform persistence of system (11) if <0 > 1, which implies that the disease
will persist in all groups.

Lemma 3.2. Assume that (H1) − (H4) hold and that <0 > 1. Then there exists
ε > 0 such that all solutions of system (11) with initial conditions (12) satisfy

lim inf
t→∞

Si(t, Si,0) ≥ ε, lim inf
t→∞

Ii(t, φi) ≥ ε, for i = 1, 2, . . . , n.

The uniform persistence of system (11), together with the uniform boundedness
of solutions in the interior of Θ, implies the existence of a positive equilibrium of
(11) (see [7, Theorem 2.8.6]). Summarizing the above analysis, we arrive at the
following lemma on the existence of endemic equilibrium.

Lemma 3.3. Assume that (H1) − (H4) hold. If <0 > 1, then system (11) has at
least an endemic equilibrium P ∗ in the interior of Θ.

A difficult mathematical question for system (11) is that of whether the EE P ∗ is
unique if <0 > 1, and whether the EE P ∗ is globally asymptotically stable when it
is unique. To answer this question, we arbitrarily choose one endemic equilibrium,
still denoted by P ∗, and prove global attractivity of P ∗. Then we show that P ∗

is actually the only endemic equilibrium, and it is globally asymptotically stable.
The following technical assumptions are required to construct Lyapunov functional
for P ∗. Let P ∗ be an arbitrarily chosen endemic equilibrium, assume that for
i = 1, 2, . . . , n,

(H5): (ϕi(Si)− ϕi(S∗i )) (Si − S∗i ) < 0 for Si 6= S∗i , Si ∈ [0, S0
i ].

(H6): (fi(Si)− fi(S∗i )) (Si − S∗i ) > 0 for Si 6= S∗i , Si ∈ [0, S0
i ].

(H7):

(
gi(Ii(t))
gi(I∗i )

− 1

)(
1− gi(I

∗
i )Ii

gi(Ii(t))I∗i

)
≤ 0 for Ii > 0.

Remark 1. The assumption (H5) is automatically satisfied if ϕi is strictly mono-
tonically decreasing, namely, ϕ′i < 0, on [0, S0

i ]. The assumption (H6) is automat-
ically satisfied if fi is strictly monotonically increasing, namely, f ′i > 0, on [0, S0

i ].
The assumption (H7) is automatically satisfied if gi is strictly monotonically in-
creasing and concave down, namely, g′i > 0 and g′′i < 0, on (0,∞). As we shall see
later, these technical assumptions are crucial in our proof of globally asymptotic
stability result. If some of the conditions are violated, there may exist periodic
solutions; see more discussions in [23].

Theorem 3.4. Assume that (H1)−(H7) hold, and that B = (βij)n×n is irreducible.
If <0 > 1, then for system (11), P ∗ is the unique endemic equilibrium and is globally
asymptotically stable in the interior of Θ.

Proof. Let P ∗ = (S∗1 , I
∗
1 , ..., S

∗
n, I
∗
n) denote an endemic equilibrium whose existence

is established in Lemma 3.3. By a graph-theoretical approach to Lyapunov func-
tionals developed by Guo et al. [13, 14] and Li et al. [24], we prove that P ∗ is
globally asymptotically stable when <0 > 1. In particular, this implies that the
endemic equilibrium is unique in the interior of Θ.

Define a functional LiEE : Ci × Ci → R as follows.

LiEE = LiS + LiI + Li− + Li+,

where

LiS = Qi

∫ Sit(0)

S∗
i

fi(θ)− fi(S∗i )

fi(θ)
dθ, LiI = I∗i H

(
Iit(0)

I∗i

)
,
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Li− = γi

∫ ∞
0

I∗i Ji(ξ)H

(
Iit(−ξ)
I∗i

)
dξ,

Li+ =

n∑
j=1

∫ ∞
0

βijfi(S
∗
i )g(I

∗
j )J(ξ)H

(
fi(Sit(−ξ))gj(Ijt(−ξ))

fi(S∗i )gj(I∗j )

)
dξ,

and Sit(θ) = Si(t + θ), Iit(θ) = Ii(t + θ) for θ ∈ (−∞, 0], i = 1, 2, . . . , n. It is clear
that LiEE ≥ 0 with the equality holds if and only if Si(t) ≡ S∗i , Ii(t) ≡ I∗i , and LiEE
is bounded for all t ≥ 0. Differentiating LiS along the solution of system (11), we
obtain

dLiS
dt

∣∣∣
(11)

=

(
1− fi(S

∗
i )

fi(Si(t))

)
ϕi(Si(t))

+

n∑
j=1

βijfi(S
∗
i )gj(Ij(t))−

n∑
j=1

βijfi(Si(t))gj(Ij(t)). (16)

Differentiating LiI along the solution of system (11), we have

dLiI
dt

∣∣∣
(11)

=

(
1− I∗i

Ii(t)

)(
−

n∑
j=1

∫ ∞
0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

−
∫ ∞
0

γiIi(t− ξ)e−diξdξPi(ξ)dξ − (di + γi)Ii(t)

)
= −

n∑
j=1

∫ ∞
0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

+
I∗i
Ii(t)

n∑
j=1

∫ ∞
0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

−
∫ ∞
0

γiIi(t− ξ)e−diξdξPi(ξ)dξ +
I∗i
Ii(t)

∫ ∞
0

γiIi(t− ξ)e−diξdξPi(ξ)dξ

−Qi
n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )
Ii(t)

I∗i

+Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j ) +QiγiI

∗
i −QiγiIi(t) (17)

Using integration by parts, we can calculate the derivatives of Li− along the solution
of system (11) as follows:

dLi−
dt

∣∣∣
(11)

= − γi
∫ ∞
0

I∗i Ji(ξ)
d

dξ
H

(
Ii(t− ξ)

I∗i

)
dξ

= γiI
∗
i QiH

(
Ii(t)

I∗i

)
+

∫ ∞
0

γiI
∗
i e
−diξdξPi(ξ)H

(
Ii(t− ξ)

I∗i

)
dξ

=

∫ ∞
0

γie
−diξdξPi(ξ)

(
Ii(t− ξ)− Ii(t) + I∗i ln

Ii(t)

Ii(t− ξ)

)
dξ. (18)
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Differentiating Li+ along the solution of system (11), similar to (19) we have

dLi+
dt

∣∣∣
(11)

=

n∑
j=1

∫ ∞
0

e−diξdξPi(ξ)

(
βijfi(Si(t− ξ))gj(Ij(t− ξ))

− βijfi(Si(t))gj(Ij(t))

+ βijfi(S
∗
i )gj(I

∗
j ) ln

fi(Si(t))gj(Ij(t))

fi(Si(t− ξ))gj(Ij(t− ξ))

)
. (19)

Collecting the terms in (16)-(19) gives

dLiEE
dt

∣∣∣
(11)

= Qi

(
1− fi(S

∗
i )

fi(Si(t))

)
(ϕi(Si(t))− ϕi(S∗i ))

+ 2Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )−Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )

fi(S
∗
i )

fi(Si(t))

+Qi

n∑
j=1

βijfi(S
∗
i )gj(Ij(t))−Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )
Ii(t)

I∗i

+
I∗i
Ii(t)

n∑
j=1

∫ ∞
0

βijfi(Si(t− ξ))gj(Ij(t− ξ))e−diξdξPi(ξ)dξ

+

∫ ∞
0

I∗i γie
−diξdξPi(ξ)H

(
Ii(t− ξ)
Ii(t)

)
dξ

−
n∑
j=1

∫ ∞
0

e−diξdξPi(ξ)βijfi(S
∗
i )gj(I

∗
j ) ln

fi(Si(t− ξ))gj(Ij(t− ξ))
fi(Si(t))gj(Ij(t))

.

Further we have

dLiEE
dt
|(11)

= A+

∫ ∞
0

I∗i γie
−diξdξPi(ξ)H

(
Ii(t− ξ)
Ii(t)

)
dξ +Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )

×
(
gj(Ij(t))

gj(I∗j )
+

gj(I
∗
j )Ij

gj(Ij(t))I∗j
− Ii(t)

I∗i
− ln

fi(S
∗
i )

fi(Si(t))
− ln

gj(I
∗
j )Ij(t)

gj(Ij(t))I∗j

)
+

n∑
j=1

∫ ∞
0

βijfi(S
∗
i )gj(I

∗
j )e−diξdξPi(ξ)

×
[
H

(
I∗i fi(Si(t− ξ))gj(Ij(t− ξ))

Ii(t)fi(S∗i )gj(I∗j )

)
+ ln

I∗i fi(Si(t))gj(Ij(t))

Ii(t)fi(S∗i )gj(I∗j )
+ 1

]
= A+

∫ ∞
0

I∗i γie
−diξdξPi(ξ)H

(
Ii(t− ξ)
Ii(t)

)
dξ

+

n∑
j=1

∫ ∞
0

βijfi(S
∗
i )gj(I

∗
j )e−diξdξPi(ξ)H

(
I∗i fi(Si(t− ξ))gj(Ij(t− ξ))

Ii(t)fi(S∗i )gj(I∗j )

)

+Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )

[(
gj(Ij(t))

gj(I∗j )
− 1

)(
1−

gj(I
∗
j )Ij(t)

gj(Ij(t))I∗j

)
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+
Ij(t)

I∗j
− ln

Ij(t)

I∗j
− Ii(t)

I∗i
+ ln

Ii(t)

I∗i

]
,

where

A = Qi

(
1− fi(S

∗
i )

fi(Si(t))

)
(ϕi(Si(t))− ϕi(S∗i ))

−Qi
n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )H

(
fi(S

∗
i )

fi(Si(t))

)

−Qi
n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )H

(
gj(I

∗
j )Ij

gj(Ij(t))I∗j

)
.

From the assumptions (H5)-(H7), we have

f(Si(t))− f(S∗i )

f(Si(t))
(ϕi(Si(t))− ϕi(S∗i )) ≤ 0, (20)

and (
gj(Ij(t))

gj(I∗j )
− 1

)(
1−

gj(I
∗
j )Ij(t)

gj(Ij(t))I∗j

)
≤ 0, (21)

which, together with the properties of the function H(u), implies that

dLiEE
dt

∣∣∣
(11)
≤ Qi

n∑
j=1

βijfi(S
∗
i )gj(I

∗
j )

(
Ij(t)

I∗j
− ln

Ij(t)

I∗j
− Ii(t)

I∗i
+ ln

Ii(t)

I∗i

)
. (22)

Set
β̄ij = βijfi(S

∗
i )gj(I

∗
j ), 1 ≤ i, j ≤ n,

and a Laplacian matrix [24] as

B̄ =


Σl 6=1β̄1l −β̄21 · · · −β̄n1
−β̄12 Σl 6=2β̄2l · · · −β̄n2

...
...

. . .
...

−β̄1n −β̄2n · · · Σl 6=nβ̄nl

 .
Note that B̄ is the Laplacian matrix of the matrix (β̄ij)n×n. Since (βij)n×n is
irreducible, matrices (β̄ij)n×n and B̄ are also irreducible. Let Cii denote the cofactor
of the i-th diagonal entry of B̄ for i = 1, . . . , n. By [13, Lemma 2.1], the linear
system B̄v = 0 has a positive solution v = (v1, v2, ..., vn), where vi = Cii > 0 for
i = 1, . . . , n.

Define a Lyapunov functional LEE :
∏n
i=1(R× Ci)→ R,

LEE =

n∑
i=1

viL
i
EE ,

then the derivative of LEE along the solution of system (11) satisfies

dLEE
dt

∣∣∣
(11)

=

n∑
i=1

vi
dLiEE
dt

∣∣∣
(11)

≤
n∑

i,j=1

viQiβij

(
Ij(t)

I∗j
− ln

Ij(t)

I∗j
− Ii(t)

I∗i
+ ln

Ii(t)

I∗i

)
.
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Using similar arguments in [29, Theorem 4.2], we can prove that dLEE

dt |(11) ≤ 0, and
dLEE

dt |(11) = 0 if and only if Si(t) ≡ S∗i , Ii(t) ≡ I∗i . Therefore, the largest compact
invariant subset of {

(S1, I1, ..., Sn, In) ∈ Θ
∣∣ dLEE

dt

∣∣
(11)

= 0

}
is the singleton {P ∗}. By the LaSalle’s invariance principle (see [15, Theorem
5.3.1]), P ∗ is globally attractive in the interior of Θ, which implies that P ∗ is the
unique endemic equilibrium. Furthermore, by using an argument similar to that in
the proof of Theorem 3.1, we can show that the endemic equilibrium P ∗ is globally
asymptotically stable in the interior of Θ if <0 > 1.

4. Summary and discussion. The global dynamics of system (4) and (11) are
completely determined by the basic reproduction number which is defined as the
spectral radius of next generation matrix. More specifically, if <0 ≤ 1, the disease-
free equilibrium is globally asymptotically stable; if <0 > 1, a unique endemic
equilibrium exists and is globally asymptotically stable. The proofs of our main
results utilize construction of Lyapunov functionals and a subtle grouping technique
in estimating the derivatives of Lyapunov functionals guided by graph theory, which
was recently developed by Guo, Li and Shuai in [13, 14, 25, 24]. Compared with
the results in [13, 14], the group structure in system (11) greatly increases the
complexity exhibited in the derivatives of the Lyapunov functionals. The key to
our analysis is a complete description of the patterns exhibited in the derivative of
the Lyapunov functionals using graph theory. Our result generalizes related works
[36, 35] in determining the global asymptotic stability of the endemic equilibrium
P ∗ with delay in latency and delay due to relapse distribution.

Biologically, Theorems 3.1 and 3.4 imply that,

• if <0 ≤ 1, then the disease always dies out from all groups;
• if <0 > 1, then the disease always persists in all groups at the unique endemic

equilibrium level, irrespective of the initial conditions.

These results also preclude the existence of nonconstant periodic solutions. Note
that our model combines two important biological features, latency and relapse,
in a heterogeneity host. Moreover, it allows nonlinear growth rate and nonlinear
incidence rate. The stability analysis for such model becomes a challenging problem
due to the complexity of the system. The Lyapunov functionals in Theorem 3.1
and 3.4 are tactfully designed to incorporate the distributed delays of latency and
relapse. Our results also demonstrate that latency, relapse, nonlinearity and group
size do not alter the dynamical behaviors of the basic SEIR model.

Note that when n = 1, system (4) reduce to a single-group SEIR model with
latency, relapse, nonlinear growth rate and incidence rate, which is given by

S′(t) = ϕ(S(t))− βf(S(t))g(I(t)),

I ′(t) = −
∫ t

0

βf(S(t))g(I(t))e−d(t−ξ)dtP (t− ξ)dξ

−
∫ t
0
γI(ξ)e−d(t−ξ)dtP (t− ξ)dξ − (d+ γ)I(t).

(23)

In this model, the basic reproduction number is given by

<1
0 =

Qβf(S0)c

d+ γ − γQ
,
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where Q = −
∫∞
0
e−dξdξP (ξ)dξ. Following the method of constructing Lyapunov

functionals, one can determine the global dynamics of single-group SEIR model by

V1 = It(0) +

∫ t

0

J(ξ)It(−ξ)dξ,

V2 = Q

∫ St(0)

S∗

f(θ)− f(S∗)

f(θ)
dθ + I∗H

(
It(0)

I∗

)
+ γI∗

∫ ∞
0

J(ξ)H

(
It(−ξ)
I∗

)
dξ,

where H is defined in (13), and J(ξ) = −
∫∞
t
e−dξdξP (ξ)dξ. Applying Theorems

3.1 and 3.4, we obtain the following results but omit the proof.

Theorem 4.1. Assume that (H1)-(H7) hold and n = 1. Let (S(t), I(t)) be the
solution of system (23) with nonnegative initial condition. If <1

0 ≤ 1, then lim
t→∞

(S(t),

I(t)) = P0 = (S0, 0); If <1
0 > 1, then lim

t→∞
(S(t), I(t)) = P ∗ = (S∗, I∗).

Theorem 4.1 improves the related results in [26] with constant relapse, which
gives part of the proof in the case where g(I) = I of system (11).
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