

http://[www.aimspress.com](http://www.aimspress.com/journal/mine)/journal/mine

Mathematics in Engineering, 3(4): 1–15. DOI:10.3934/[mine.2021035](http://dx.doi.org/10.3934/mine.2021035) Received: 03 July 2020 Accepted: 23 August 2020 Published: 01 September 2020

Research article

A remark on the first *p*-buckling eigenvalue with an adhesive constraint[†]

Yoshihisa Kaga and Shinya Okabe[∗]

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

^{\dagger} This contribution is part of the Special Issue: Geometric Partial Differential Equations in Engineering Guest Editor: James McCoy Link: <www.aimspress.com/mine/article/5820/special-articles>

* Correspondence: Email: shinya.okabe@tohoku.ac.jp.

Abstract: We consider a fourth order nonlinear eigenvalue problem with an adhesive constraint. The problem is regarded as a generalization of the buckling eigenvalue problem with the clamped boundary condition. We prove the existence of the first eigenvalue of the problem and show that the corresponding eigenfunction does not have "flat core of adhesion type".

Keywords: nonlinear fourth order eigenvalue problem; gradient nonlinearity

1. Introduction

In this paper we are interested in a fourth order nonlinear eigenvalue problem

$$
\begin{cases} \Delta(|\Delta u|^{p-2}\Delta u) = -\lambda \nabla \cdot (|\nabla u|^{p-2}\nabla u) & \text{in } \Omega, \\ u = \partial_{\nu} u = 0 & \text{on } \partial \Omega, \end{cases}
$$
 (1.1)

with the adhesive constraint

$$
|O(u)| = \omega_0,\tag{1.2}
$$

where $p > 1$, $0 < \omega_0 < |\Omega|$ and $O(u) := \{x \in \Omega \mid u(x) \neq 0\}$. Here Ω , ν and $|\Omega|$ denote a smooth bounded domain in \mathbb{R}^N , the unit outer normal of $\partial\Omega$ and the Lebesgue measure of Ω , respectively. The eigenvalue problem (1.1) is regarded as a generalization of the buckling eigenvalue problem with the eigenvalue problem [\(1.1\)](#page-0-0) is regarded as a generalization of the buckling eigenvalue problem with the clamped boundary condition

$$
\begin{cases}\n\Delta^2 u = -\lambda \Delta u & \text{in } \Omega, \\
u = \partial_\nu u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(1.3)

The first eigenvalue of (1.3) with $N = 2$ is called the buckling load of a clamped plate and characterized by

$$
\mu_1(\Omega) = \inf_{H_0^2(\Omega)\setminus\{0\}} \frac{\int_{\Omega} |\Delta u|^2 dx}{\int_{\Omega} |\nabla u|^2 dx}.
$$

In 1951, Polya and Szegö [[9\]](#page-13-0) conjectured that the disk minimizes the buckling load μ_1 among domains of given measure. The conjecture has been attracted a great interest and studied by many researchers (e.g., see [\[2,](#page-13-1) [10\]](#page-13-2), [\[6,](#page-13-3) Section 3.2] and references therein). In particular, recently Stollenwerk $[10]$ considered problem (1.3) with constraint (1.2) to study the Polya-Szegö conjecture for $N = 2, 3$. Although nonlinear eigenvalue problems for the *p*-biharmonic operator of the type

$$
\Delta(|\Delta u|^{p-2}\Delta u) = \lambda |u|^{p-2}u \quad \text{in} \quad \Omega
$$

have been well studied in the mathematical literature (e.g., see [\[3,](#page-13-4) [5,](#page-13-5) [7\]](#page-13-6) and references therein), to the best of our knowledge, there is few result on the eigenvalue problem of the type [\(1.1\)](#page-0-0).

The purpose of this paper is to study the first eigenvalue of (1.1) with constraint (1.2) for $N = 1$:

$$
\begin{cases}\n(|u''|^{p-2}u'')'' = -\lambda(|u'|^{p-2}u')' & \text{in} \quad I, \\
u = u' = 0 & \text{on} \quad \partial I,\n\end{cases}
$$
\n(1.4)

with

$$
|O(u)| = \omega_0,\tag{1.5}
$$

where

 $O(u) := \{x \in I \mid u(x) \neq 0\}.$

Here $I \subset \mathbb{R}$ denotes a bounded open interval and $0 < \omega_0 < |I|$ is a given constant.

One of our motivations is to prove the existence of the first eigenvalue and corresponding eigenfunctions of problem [\(1.4\)](#page-1-0) with [\(1.5\)](#page-1-1). To this end, we consider the minimization problem

$$
\min_{v \in \mathcal{A}_{\omega_0}} E(v),\tag{P}
$$

where

$$
E(v) := \frac{\int_I |v''|^p dx}{\int_I |v'|^p dx},
$$

$$
\mathcal{A}_{\omega_0} := \{v \in W_0^{2,p}(I) \mid |O(v)| = \omega_0\}.
$$

As we prove in Lemma [3.2,](#page-5-0) solutions to problem [\(P\)](#page-1-2) satisfy problem [\(1.4\)](#page-1-0) with [\(1.5\)](#page-1-1) in a weak sense. Thus problem [\(P\)](#page-1-2) gives us the first *p*-buckling eigenvalue and corresponding eigenfunctions.

The second motivation is to show a property of the eigenfunction corresponding to the first *p*buckling eigenvalue. In 2014, Watanabe [\[12\]](#page-14-0) studied the *p*-elastic curves which are critical points of the *p*-elastic energy

$$
\int_{\gamma} |\kappa|^p\,ds,
$$

where γ , κ and *s* respectively denote a planar curve, the curvature of γ and the arc length parameter of γ, and proved the existence of solutions with 'flat core'. Here, we say that *^u* : *^I* [→] ^R has 'flat core' if the graph $(x, u(x))$ contains a part where the graph is parallel to the *x*-axis (more precisely, see [\[11,](#page-14-1)[12\]](#page-14-0)). In order to state our second motivation precisely, we define

$$
\mathcal{J}^0 := \{ x \in \partial O(u) \mid u'(x) = 0 \}, \qquad \mathcal{J}^1 := \{ x \in \partial O(u) \mid |u'(x)| > 0 \},
$$

and

$$
\mathcal{I}(u) := O(u) \cup \mathcal{J}^1.
$$

We say that $u : I \to \mathbb{R}$ has *flat core of adhesion type* if the set $I(u)$ is not connected. Our second motivation is to ask whether constraint [\(1.5\)](#page-1-1) can induce the eigenfunction corresponding to the first *p*-buckling eigenvalue to have flat core of adhesion type or not.

The main result of this paper is stated as follows:

Theorem 1.1. *Let I* [⊂] ^R *be an open interval. Let p* > ¹ *and* ⁰ < ω⁰ < [|]*I*|*. Then problem* [\(P\)](#page-1-2) *possesses* a solution $u \in A_{\omega_0}$. Moreover, $I(u)$ is connected.

We deduce from Theorem [1.1](#page-2-0) that the eigenfunction corresponding to the first *p*-buckling eigenvalue does not have flat core of adhesion type. Due to adhesive constraint [\(1.5\)](#page-1-1), it is difficult to solve problem [\(P\)](#page-1-2) by the direct method of calculus of variations. To overcome the difficulty, we employ an idea by Alt and Caffarelli [\[1\]](#page-13-7) as in [\[10\]](#page-13-2). More precisely, considering a penalized problem, once we remove adhesive constraint [\(1.5\)](#page-1-1) from [\(P\)](#page-1-2). Studying the regularity of the penalized solution u_{ε} , we prove the relation $|O(u_{\varepsilon})| = \omega_0$ for sufficiently small $\varepsilon > 0$. Then we obtain a minimizer of problem [\(P\)](#page-1-2). We note that, if we employ the same strategy to find the first *p*-buckling eigenvalue for $N \ge 2$, then one of the arising difficulties is the lack of regularity of the penalized solution u_{ε} .

This paper is organized as follows: In Section [2,](#page-2-1) we collect notations and inequalities which are used in this paper; In Section [3,](#page-3-0) we define a penalized problem and prove the existence and the regularity of the penalized solutions; In Section [4,](#page-10-0) we prove Theorem [1.1.](#page-2-0)

2. Preliminary

In this section, we collect function spaces and inequalities used in this paper.

The space $W_0^{2,p}(I)$ is the closure of $C_c^{\infty}(I)$ in $W^{2,p}(I)$. In this paper, we employ $||v||_{2,p} := ||v''||_{L^p(I)}$ as the norm in $W_0^{2,p}(I)$. Here we note that the norm $||\cdot||_{2,p}$ is equivalent to the standard $W^{2,p}$ norm. Indeed, by the Poincare inequality we find a positive constant C such that

$$
||v||_{L^p(I)} + ||v'||_{L^p(I)} + ||v''||_{L^p(I)} \le C||v||_{2,p} \quad \text{for all} \quad v \in W_0^{2,p}(I).
$$

This clearly implies that the norm $\|\cdot\|_{2,p}$ is equivalent to the standard $W^{2,p}$ norm.

In order to treat L^p norms, we employ the following inequality (see [\[8\]](#page-13-8)):

$$
|b|^p \ge |a|^p + p\langle |a|^{p-2}a, b - a \rangle \quad \text{for all} \quad a, b \in \mathbb{R}^N \quad \text{and} \quad p \ge 1,
$$
 (2.1)

which expresses the convexity of the function $x \mapsto |x|^p$ for $p \ge 1$.

3. Penalized problem

In this section we consider a penalized problem. We define the function f_{ε} and the functional E_{ε} by

$$
f_{\varepsilon}(s) := \begin{cases} \frac{s - \omega_0}{\varepsilon} & \text{if } s \ge \omega_0, \\ 0 & \text{otherwise,} \end{cases}
$$
 (3.1)

$$
E_{\varepsilon}(u) := E(u) + f_{\varepsilon}(|O(u)|), \tag{3.2}
$$

for $\varepsilon > 0$. Then the penalized problem corresponding to [\(P\)](#page-1-2) is written as follows:

$$
\min_{\nu \in W_0^{2,p}(I)} E_{\varepsilon}(\nu). \tag{P\varepsilon}
$$

To begin with, we prove the existence of solutions of penalized problem (P_{ε}) (P_{ε}) .

v∈*W*

Lemma 3.1. *Problem* (P_{ε}) *possesses a nontrivial solution for each* $\varepsilon > 0$ *.*

Proof. Let $\{u_k\}_{k \in \mathbb{N}} \subset W_0^{2,p}(I)$ be a minimizing sequence for E_{ε} , i.e.,

$$
\lim_{k\to\infty} E_{\varepsilon}(u_k) = \inf_{v\in W_0^{2,p}(I)} E_{\varepsilon}(v).
$$

We note that E_{ε} is nonnegative. Extracting a subsequence, we find a constant $C > 0$ such that

$$
E_{\varepsilon}(u_k) \le C \quad \text{for all} \quad k \in \mathbb{N}, \tag{3.3}
$$

where we denote by $\{u_k\}$ this subsequence, for short. Since E_{ε} is homogeneous of degree 0, we are able to normalize the minimizing sequence $\{u_k\}_{k\in\mathbb{N}}$ as follows:

$$
\int_{I} |u'_{k}(x)|^{p} dx = 1 \quad \text{for all} \quad k \in \mathbb{N}.
$$
 (3.4)

Then problem (P_{ε}) (P_{ε}) is reduced into

$$
\min_{v \in \mathcal{A}} E_{\varepsilon}(v),
$$

where

$$
\mathcal{A} := \{ v \in W_0^{2,p}(I) \mid ||v'||_{L^p(I)}^p = 1 \}.
$$

By [\(3.1\)](#page-3-2), [\(3.2\)](#page-3-3), [\(3.3\)](#page-3-4) and [\(3.4\)](#page-3-5) we have

$$
||u_k||_{2,p}^p = E(u_k) \le E_{\varepsilon}(u_k) \le C \quad \text{for all} \quad u_k \in \mathcal{A}.
$$

Thus we find a function $u_{\varepsilon} \in W_0^{2,p}(I)$ such that

$$
u_k \rightharpoonup u_\varepsilon \quad \text{weakly} \quad \text{in} \quad W_0^{2,p}(I) \quad \text{as} \quad k \to \infty,
$$

up to a subsequence. Since the embedding $W_0^{2,p}(I) \subset C^{1,\alpha}(\overline{I})$ is compact for each $\alpha \in (0, 1 - 1/p)$, it follows from (3.5) that follows from [\(3.5\)](#page-3-6) that

$$
u_k \to u_\varepsilon
$$
 in $C^{1,\alpha}(\overline{I})$ as $k \to \infty$. (3.6)

This together with $\{u_k\} \subset \mathcal{A}$ implies that

$$
\int_I |u'_{\varepsilon}(x)|^p dx = 1,
$$

and then $u_{\varepsilon} \in \mathcal{A}$. Moreover, this clearly implies that u_{ε} is nontrivial.

Next we show that $u_{\varepsilon} \in \mathcal{A}$ is the desired minimizer of E_{ε} . First it follows from [\(3.5\)](#page-3-6) that

$$
E(u_{\varepsilon}) = ||u_{\varepsilon}||_{2,p}^{p} \le \liminf_{k \to \infty} ||u_{k}||_{2,p}^{p} = \liminf_{k \to \infty} E(u_{k}).
$$
\n(3.7)

We can prove the relation

$$
f_{\varepsilon}(|O(u_{\varepsilon})|) \le \liminf_{k \to \infty} f_{\varepsilon}(|O(u_k)|)
$$
\n(3.8)

along the same line as in [\[10,](#page-13-2) Theorem 2.1]. Indeed, since f_{ε} is non-decreasing, it suffices to prove the relation

$$
|O(u_{\varepsilon})| \le \liminf_{k \to \infty} |O(u_k)|. \tag{3.9}
$$

By the Banach–Alaoglu theorem we find a function $\rho \in L^{\infty}(I)$ with $0 \le \rho(x) \le 1$ for a.e. $x \in I$ such that that

$$
\lim_{k \to \infty} \int_{I} \chi_{O(u_k)} \varphi \, dx = \int_{I} \rho \varphi \, dx \tag{3.10}
$$

for all $\varphi \in L^1(I)$ up to a subsequence, where

$$
\chi_{O(u_k)}(x) := \begin{cases} 1 & \text{if } x \in O(u_k), \\ 0 & \text{if } x \in I \setminus O(u_k). \end{cases}
$$

Then we observe from [\(3.6\)](#page-3-7) and [\(3.10\)](#page-4-0) that

$$
0 = \lim_{k \to \infty} \Big[\int_I u_k^+ [1 - \chi_{O(u_k)}] \, dx + \int_I u_k^- [1 - \chi_{O(u_k)}] \, dx \Big]
$$

=
$$
\int_I u_{\varepsilon}^+ [1 - \rho] \, dx + \int_I u_{\varepsilon}^- [1 - \rho] \, dx,
$$

where $g^+ := \max\{g, 0\}$ and $g^- := \max\{-g, 0\}$. This together with $0 \le \rho \le 1$ implies that $\rho = 1$ a.e. in $O(u_{\varepsilon})$. Thus we obtain [\(3.8\)](#page-4-1) as follows:

$$
|O(u_{\varepsilon})| = \int_{O(u_{\varepsilon})} 1 dx \le \int_{I} \rho dx = \liminf_{k \to \infty} \int_{I} \chi_{O(u_{k})} dx = \liminf_{k \to \infty} |O(u_{k})|.
$$

Combining (3.7) with (3.8) , we obtain

$$
E_{\varepsilon}(u_{\varepsilon}) = E(u_{\varepsilon}) + f_{\varepsilon}(|O(u_{\varepsilon})|) \le \liminf_{k \to \infty} E(u_k) + \liminf_{k \to \infty} f_{\varepsilon}(|O(u_k)|)
$$

$$
\le \liminf_{k \to \infty} [E(u_k) + f_{\varepsilon}(|O(u_k)|)] = \liminf_{k \to \infty} E_{\varepsilon}(u_k).
$$

Therefore Lemma [3.1](#page-3-8) follows.

From now on, we set

$$
\Lambda_{\varepsilon} := \int_{I} |u_{\varepsilon}^{\prime\prime}|^{p} dx. \tag{3.11}
$$

Moreover, we define

$$
\mathcal{J}_{\varepsilon}^0 := \{ x \in \partial O(u_{\varepsilon}) \mid u_{\varepsilon}'(x) = 0 \}, \qquad \mathcal{J}_{\varepsilon}^1 := \{ x \in \partial O(u_{\varepsilon}) \mid |u_{\varepsilon}'(x)| > 0 \},
$$

and

$$
I(u_{\varepsilon}):=O(u_{\varepsilon})\cup \mathcal{J}_{\varepsilon}^1.
$$

Lemma 3.2. Let u_{ε} be a solution of (P_{ε}) (P_{ε}) . Then $(u_{\varepsilon}, \Lambda_{\varepsilon})$ satisfies the following eigenvalue problem in *the weak sense* :

$$
\begin{cases}\n(|u''_{\varepsilon}|^{p-2}u''_{\varepsilon})'' = -\Lambda_{\varepsilon}(|u'_{\varepsilon}|^{p-2}u'_{\varepsilon})' & \text{in} \quad \mathcal{I}(u_{\varepsilon}), \\
u_{\varepsilon} = u'_{\varepsilon} = 0 & \text{on} \quad \partial \mathcal{I}(u_{\varepsilon}).\n\end{cases}
$$

Proof. It suffices to prove that $(u_{\varepsilon}, \Lambda_{\varepsilon}) \in W_0^{2,p}(I) \times \mathbb{R}$ satisfies

$$
\int_{I} \left[|u_{\varepsilon}^{\prime\prime}|^{p-2} u_{\varepsilon}^{\prime\prime} \varphi^{\prime\prime} - \Lambda_{\varepsilon} |u_{\varepsilon}^{\prime}|^{p-2} u_{\varepsilon}^{\prime} \varphi^{\prime} \right] dx = 0 \quad \text{for all} \quad \varphi \in W_0^{2,p}(\mathcal{I}(u_{\varepsilon})).
$$
 (3.12)

Fix $\varphi \in W_0^{2,p}(\mathcal{I}(u_\varepsilon))$ arbitrarily. Since $u_\varepsilon + \delta \varphi_\varepsilon \in W_0^{2,p}(\mathcal{I}(u_\varepsilon))$, we deduce from the minimality of u_ε that

$$
\frac{d}{d\delta}E_{\varepsilon}(u_{\varepsilon}+\delta\varphi_{\varepsilon})\Big|_{\delta=0}=0.
$$

Moreover, it follows from $|O(u_{\varepsilon} + \delta \varphi_{\varepsilon})| = |O(u_{\varepsilon})|$ that

$$
f_{\varepsilon}(|O(u_{\varepsilon} + \delta \varphi_{\varepsilon})|) = f_{\varepsilon}(|O(u_{\varepsilon})|)
$$

for sufficiently small δ , and then

$$
\frac{d}{d\delta}E(u_{\varepsilon} + \delta\varphi_{\varepsilon})\Big|_{\delta=0} = \frac{d}{d\delta}E_{\varepsilon}(u_{\varepsilon} + \delta\varphi_{\varepsilon})\Big|_{\delta=0} = 0.
$$
\n(3.13)

By a direct calculation we have

$$
\frac{d}{d\delta}E(u_{\varepsilon}+\delta\varphi_{\varepsilon})\Big|_{\delta=0}=\frac{p\displaystyle\int_I|u''_{\varepsilon}|^{p-2}u''_{\varepsilon}\varphi''\,dx\int_I|u'_{\varepsilon}|^p\,dx-p\int_I|u''_{\varepsilon}|^p\,dx\int_I|u'_{\varepsilon}|^{p-2}u'_{\varepsilon}\varphi'\,dx}{\Big[\displaystyle\int_I|u'_{\varepsilon}|^p\,dx\Big]^2}.
$$

Recalling that $||u'_{\xi}||$ $\|u''_{\varepsilon}\|_{L^p(I)} = 1$ and $\|u''_{\varepsilon}\|$ \parallel^p_I $L^p(L) = \Lambda_{\varepsilon}$, we obtain

$$
\frac{d}{d\delta}E(u_{\varepsilon} + \delta\varphi_{\varepsilon})\Big|_{\delta=0} = p \int_{I} [|u_{\varepsilon}^{\prime\prime}|^{p-2}u_{\varepsilon}^{\prime\prime}\varphi^{\prime\prime} - p\Lambda_{\varepsilon}|u_{\varepsilon}^{\prime}|^{p-2}u_{\varepsilon}^{\prime}\varphi^{\prime}] dx.
$$

This together with (3.13) implies (3.12) . Therefore Lemma [3.2](#page-5-0) follows.

We prove the regularity of the minimizer u_{ε} . To begin with, we show some properties of the support of u_{ε} .

Lemma 3.3. *Let* u_{ε} *be a solution of* (P_{ε}) (P_{ε}) *. Then*

$$
|O(u_{\varepsilon})| \ge \omega_0 \quad \text{for all} \quad \varepsilon > 0. \tag{3.14}
$$

Proof. Assume that [\(3.14\)](#page-6-0) does not hold. Then we find $\varepsilon_* > 0$ such that

$$
|O(u_{\varepsilon_{*}})| < \omega_{0}.\tag{3.15}
$$

Then there exist $x_0 \in I$ and $0 < r < 1$ such that

$$
\begin{cases}\nB(x_0, r) \subset I, \\
B(x_0, r) \cap O(u_{\varepsilon_*}) = \emptyset, \\
|O(u_{\varepsilon_*}) \cup B(x_0, r)| \le \omega_0,\n\end{cases}
$$
\n(3.16)

where $B(y, \rho) := \{x \in I \mid |x - y| < \rho\}$. Fix $v \in C_c^\infty(B(0, 1))$ arbitrarily. We define $v_r : B(x_0, r) \to \mathbb{R}$ by $v_r(x) := v(x_0 + rx)$. Since

$$
u_{\varepsilon_*} + v_r \in W_0^{2,p}(B(x_0, r) \cup I(u_{\varepsilon_*})) \subset W_0^{2,p}(I)
$$

and

$$
|O(u_{\varepsilon_*} + v_r)| \le \omega_0,\tag{3.17}
$$

we observe from [\(3.15\)](#page-6-1) and [\(3.17\)](#page-6-2) that

$$
f_{\varepsilon_*}(|O(u_{\varepsilon_*})|) = f_{\varepsilon_*}(|O(u_{\varepsilon_*} + v_r)|) = 0.
$$

This together with the minimality of u_{ε_*} implies that

$$
E(u_{\varepsilon_{*}}) = E_{\varepsilon_{*}}(u_{\varepsilon_{*}}) \le E_{\varepsilon_{*}}(u_{\varepsilon_{*}} + v_{r}) = E(u_{\varepsilon_{*}} + v_{r}). \tag{3.18}
$$

Recalling the definition of Λ_{ε} , we deduce from [\(3.18\)](#page-6-3) that

$$
\Lambda_{\varepsilon_*} \int_{B(x_0,r)\cup O(u_{\varepsilon_*)}} |(u_{\varepsilon_*} + v_r)'|^p \, dx \le \int_{B(x_0,r)\cup O(u_{\varepsilon_*)}} |(u_{\varepsilon_*} + v_r)''|^p \, dx. \tag{3.19}
$$

Thanks to (3.16) , we reduce (3.19) into

$$
\Lambda_{\varepsilon_*}\Big[\int_{O(u_{\varepsilon_*)}}|u'_{\varepsilon_*}|^p\,dx+\int_{B(x_0,r)}|v'_r|^p\,dx\Big]\leq \int_{O(u_{\varepsilon_*)}}|u''_{\varepsilon_*}|^p\,dx+\int_{B(x_0,r)}|v''_r|^p\,dx.\tag{3.20}
$$

Since

$$
\int_{B(x_0,r)} |v'_r|^p \, dx = r^{p-1} \int_{B(0,1)} |v'|^p \, dx, \qquad \int_{B(x_0,r)} |v''_r|^p \, dx = r^{2p-1} \int_{B(0,1)} |v''|^p \, dx,
$$

recalling that $||u'_\n$ $\big\|_I^p$ $L^p(I)} = 1$ and $||u''_{\varepsilon}||$ \parallel^p_I $L_{L^{p}(I)}^{p} = \Lambda_{\varepsilon}$ for all $\varepsilon > 0$, we observe from [\(3.20\)](#page-6-6) that

$$
\Lambda_{\varepsilon_*} \le \frac{\|v''\|_{L^p(B(0,1))}^p}{\|v'\|_{L^p(B(0,1))}^p} r^p. \tag{3.21}
$$

On the other hand, combining $||u'_\nE$ constant $C > 0$ being independent of \overline{r} such that $L^p(I) = 1$ and $||u''_{\varepsilon}||$ $\big\|_I^p$ $L_{L^{p}(I)}^{p} = \Lambda_{\varepsilon}$ with Poincaré's inequality, we find a

$$
0 < \frac{1}{C} \le \Lambda_{\varepsilon} \quad \text{for all} \quad \varepsilon > 0,
$$

This together with [\(3.21\)](#page-6-7) implies that

$$
0 < \frac{1}{C} \le \frac{\|v''\|_{L^p(B(0,1))}^p}{\|v'\|_{L^p(B(0,1))}^p} r^p.
$$

Taking $0 < r < 1$ small enough, we lead a contradiction. Thus Lemma [3.3](#page-6-8) follows.

Lemma [3.3](#page-6-8) implies that the 'size' of the support of minimizer u_{ε} is uniformly bounded from below with respect to $\varepsilon > 0$. Next we prove that the support of u_{ε} is connected.

Lemma 3.4. *Let u_ε be a solution of* (P_{ε}) (P_{ε}) *. Then* $\mathcal{I}(u_{\varepsilon})$ *is connected for all* $\varepsilon > 0$ *.*

Proof. Suppose not, we find $\varepsilon_* > 0$ such that $I(u_{\varepsilon_*)}$ is not connected. Then there exist an open
interval L and an open set L such that $L \cap L = \emptyset$ and interval *I*₁ and an open set *I*₂ such that $I_1 \cap I_2 = \emptyset$ and

$$
\mathcal{I}(u_{\varepsilon}) = I_1 \cup I_2. \tag{3.22}
$$

We define *Uⁱ* by

$$
U_i := \begin{cases} \frac{u_{\varepsilon}}{||u_{\varepsilon}'||_{L^p(I_i)}} & \text{in} \quad I_i, \\ 0 & \text{in} \quad I \setminus I_i, \end{cases} \quad \text{for} \quad i = 1, 2. \tag{3.23}
$$

Then it holds that $U_i \in W_0^{2,p}(I)$ for $i = 1, 2$. If $|I_1| \ge \omega_0$, then we deduce from [\(3.22\)](#page-7-0) that

$$
E_{\varepsilon}(u_{\varepsilon}) = \Lambda_{\varepsilon} + f_{\varepsilon}(O(u_{\varepsilon})) = E(U_1) + E(U_2) + f_{\varepsilon}(O(u_{\varepsilon})) > E(U_1).
$$

This clearly contradicts to the minimality of u_{ε} . If $|I_1| < \omega_0$, then Lemma [3.3](#page-6-8) implies that

$$
E_{\varepsilon}(u_{\varepsilon}) < E_{\varepsilon}(U_1). \tag{3.24}
$$

Since it follows from $|I_1| < \omega_0$ that $f_{\varepsilon}(U_1) = 0$, we observe from [\(3.24\)](#page-7-1) that $\Lambda_{\varepsilon} < E(U_1)$, and then

$$
\Lambda_{\varepsilon} \int_{I_1} |U_1'|^p \, dx < \int_{I_1} |U_1''|^p \, dx. \tag{3.25}
$$

On the other hand, it follows from [\(3.23\)](#page-7-2) that

$$
\int_{I_2} |U_2''|^p \, dx = \int_I |u_{\varepsilon}''|^p \, dx - \int_{I_1} |U_1''|^p \, dx = \Lambda_{\varepsilon} - \int_{I_1} |U_1''|^p \, dx. \tag{3.26}
$$

Plugging (3.25) into (3.26) , we have

$$
\int_{I_2} |U_2''|^p \, dx < \Lambda_{\varepsilon} - \Lambda_{\varepsilon} \int_{I_1} |U_1'|^p \, dx \\
= \Lambda_{\varepsilon} \Big(1 - \int_{I_1} |U_1'|^p \, dx \Big) = \Lambda_{\varepsilon} \Big(\int_I |u_{\varepsilon}'|^p \, dx - \int_{I_1} |U_1'|^p \, dx \Big) = \Lambda_{\varepsilon} \int_{I_2} |U_2'|^p \, dx,\n\tag{3.27}
$$

where we used [\(3.22\)](#page-7-0) again in the last equality of [\(3.27\)](#page-7-5). Then (3.27) implies that

$$
E(U_2) < \Lambda_{\varepsilon} = E(u_{\varepsilon}).\tag{3.28}
$$

Since $f_{\epsilon}(|O(U_2)|) \le f_{\epsilon}(|O(u_{\epsilon})|)$, we deduce form [\(3.28\)](#page-8-0) that

$$
E_{\varepsilon}(U_2) < E_{\varepsilon}(u_{\varepsilon}).
$$

This contradicts to the minimality of u_{ε} . Therefore Lemma [3.4](#page-7-6) follows.

Lemma 3.5. *There exists a constant* Λ_{max} *such that*

$$
\Lambda_{\varepsilon} \leq \Lambda_{\max} \quad \text{for all} \quad \varepsilon > 0.
$$

Proof. Let $r_0 := \omega_0/4$ and set $x_0 \in I$ such that $B(x_0, r_0) \subset I$, where $B(y, \rho) := \{x \in I \mid |x - y| < \rho\}$. We consider the problem

$$
\min_{v \in W_0^{2,p}(B(x_0,r_0))} E(v). \tag{3.29}
$$

Along the same line as in the proof of Lemma [3.1,](#page-3-8) we find a solution $\varphi_0 \in W_0^{2,p}(B(x_0, r_0))$ of problem (3.20) satisfying the following: problem [\(3.29\)](#page-8-1) satisfying the following:

$$
\int_{B(x_0, r_0)} |\varphi'_0|^p \, dx = 1. \tag{3.30}
$$

Since $\varphi_0 \in W_0^{2,p}(B(x_0, r_0))$, we can extend φ_0 as a function in $W_0^{2,p}(I)$. Recalling that

$$
|O(\varphi_0)| \leq |B(x_0, r_0)| \leq \omega_0/2,
$$

we deduce from Lemma [3.3](#page-6-8) that

$$
E_{\varepsilon}(u_{\varepsilon}) < E_{\varepsilon}(\varphi_0) = E(\varphi_0).
$$

This together with [\(3.30\)](#page-8-2) that

$$
\Lambda_{\varepsilon} < \int_{B(x_0,r_0)} |\varphi_0''|^p \, dx =: \Lambda_{\max}.
$$

Therefore Lemma [3.5](#page-8-3) follows.

Here we employ the idea in [\[4,](#page-13-9) Proof of Theorem 3.9]:

Lemma 3.6. *Let* $a_1, a_2 \in I$ *with* $a_1 < a_2$ *. Fix* $\eta \in C_c^{\infty}((a_1, a_2))$ *and set*

$$
\varphi_1(x) := \int_{a_1}^x \int_{a_1}^y \eta(s) \, ds \, dy + \alpha(x - a_1)^2 + \beta(x - a_1)^3,\tag{3.31}
$$

$$
\alpha := \frac{1}{a_2 - a_1} \int_{a_1}^{a_2} \eta(y) \, dy - \frac{3}{(a_2 - a_1)^2} \int_{a_1}^{a_2} \int_{a_1}^{y} \eta(s) \, ds \, dy,\tag{3.32}
$$

$$
\beta := -\frac{\alpha}{a_2 - a_1} - \frac{1}{(a_2 - a_1)^3} \int_{a_1}^{a_2} \int_{a_1}^{y} \eta(s) \, ds \, dy. \tag{3.33}
$$

Then $\varphi_1 \in W_0^{2,p}((a_1, a_2))$ *and there exist* C_1 , C_2 , $C_3 > 0$ *depending only on a*₁ *and a*₂ *such that*

 $\|\varphi_1\|_{W^{1,\infty}((a_1,a_2))} \leq C_1 \|\eta\|_{L^1((a_1,a_2))}, \|\alpha\| \leq C_2 \|\eta\|_{L^1((a_1,a_2))}, \|\beta\| \leq C_3 \|\eta\|_{L^1((a_1,a_2))}.$

$$
\varphi_1'(x) = \int_{a_1}^x \eta(s) \, ds + 2\alpha(x - a_1) + 3\beta(x - a_1)^2,
$$

it follows from [\(3.32\)](#page-8-5) and [\(3.33\)](#page-8-6) that φ'_1
Moreover we have $y'_1(a_1) = \varphi'_1$ $V_1'(a_2) = 0$. Thus we see that $\varphi_1 \in W_0^{2,p}((a_1, a_2))$. Moreover, we have

$$
|\alpha| \leq \frac{1}{a_2 - a_1} ||\eta||_{L^1((a_1, a_2))} + \frac{3}{(a_2 - a_1)^2} \int_{a_1}^{a_2} \int_{a_1}^{a_2} |\eta(s)| ds dy = \frac{4}{a_2 - a_1} ||\eta||_{L^1((a_1, a_2))},
$$

$$
|\beta| \leq \frac{|\alpha|}{a_2 - a_1} + \frac{1}{(a_2 - a_1)^3} \int_{a_1}^{a_2} \int_{a_1}^{a_2} |\eta(s)| ds dy \leq \frac{5}{(a_2 - a_1)^2} ||\eta||_{L^1((a_1, a_2))}.
$$

Similarly we obtain

$$
\|\varphi_1\|_{L^{\infty}((a_1,a_2))} \le (a_2 - a_1) \int_{a_1}^{a_2} |\eta(s)| ds + |\alpha|(a_2 - a_1) + |\beta|(a_2 - a_1)^2 \le 10(a_2 - a_1) \|\eta\|_{L^1((a_1,a_2))},
$$

$$
\|\varphi_1'\|_{L^{\infty}((a_1,a_2))} \le \|\eta\|_{L^1((a_1,a_2))} + 2|\alpha|(a_2 - a_1) + 3|\beta|(a_2 - a_1)^2 \le 24 \|\eta\|_{L^1((a_1,a_2))}.
$$

Thus Lemma [3.6](#page-8-7) follows.

Theorem 3.7. Let $u_{\varepsilon} \in W_0^{2,p}(I)$ be a solution to (P_{ε}) (P_{ε}) . Then there exists a constant $M > 0$ such that

$$
||u''_{\varepsilon}||_{L^{\infty}(I(u_{\varepsilon}))} \leq M \quad \text{for all} \quad \varepsilon > 0.
$$

Proof. Fix $\varepsilon > 0$ arbitrarily. Since $u_{\varepsilon} \in W_0^{2,p}(I)$ is a solution to (P_{ε}) (P_{ε}) , by Lemma [3.2](#page-5-0) we have

$$
\int_{I(u_{\varepsilon})} [|u_{\varepsilon}^{\prime\prime}|^{p-2} u_{\varepsilon}^{\prime\prime} \varphi^{\prime\prime} - \Lambda_{\varepsilon}|u_{\varepsilon}^{\prime}|^{p-2} u_{\varepsilon}^{\prime} \varphi^{\prime}] dx = 0 \quad \text{for all} \quad \varphi \in W_0^{2,p}(I(u_{\varepsilon})), \tag{3.34}
$$

where the constant Λ_{ε} is defined by [\(3.11\)](#page-5-3). By Lemmas [3.3](#page-6-8) and [3.4](#page-7-6) we find $a_1^{\varepsilon}, a_2^{\varepsilon} \in I$ such that

$$
\mathcal{I}(u_{\varepsilon}) = (a_1^{\varepsilon}, a_2^{\varepsilon}), \quad \omega_0 \le |a_2^{\varepsilon} - a_1^{\varepsilon}| \le |I|, \quad \text{for all} \quad \varepsilon > 0. \tag{3.35}
$$

Fix $\eta \in C_c^{\infty}(I(u_\varepsilon))$ arbitrarily. Taking $(a_1^\varepsilon, a_2^\varepsilon)$ as (a_1, a_2) in Lemma [3.6,](#page-8-7) we observe from [\(3.35\)](#page-9-0) that the constants C_c , C_c and C_c in Lemma 3.6 depends only on (a_1, a_2) of Taking $(a_2 - a_1)$ in (3. constants C_1 , C_2 and C_3 in Lemma [3.6](#page-8-7) depends only on ω_0 and *I*. Taking $\varphi = \varphi_1$ in [\(3.34\)](#page-9-1), where φ_1 is the function defined in Lemma [3.6,](#page-8-7) we have

$$
\int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime\prime}|^{p-2} u_{\varepsilon}^{\prime\prime} \eta \, dx = \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime\prime}|^{p-2} u_{\varepsilon}^{\prime\prime} [-2\alpha - 6\beta(x - a_1)] \, dx + \Lambda_{\varepsilon} \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime}|^{p-2} u_{\varepsilon}^{\prime} \varphi_1^{\prime} \, dx.
$$

This together with Lemma [3.6](#page-8-7) implies that

$$
\left| \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime\prime}|^{p-2} u_{\varepsilon}^{\prime\prime} \eta \, dx \right| = \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime\prime}|^{p-1} [2|\alpha| + 6|\beta||I|] \, dx + \Lambda_{\varepsilon} \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime}|^{p-1} |\varphi_1^{\prime}| \, dx
$$

\n
$$
\leq [2C_2 ||\eta||_{L^1(\mathcal{I}(u_{\varepsilon}))} + 6C_3 |I||\eta||_{L^1(\mathcal{I}(u_{\varepsilon}))}] \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime\prime}|^{p-1} \, dx \tag{3.36}
$$

\n
$$
+ C_1 ||\eta||_{L^1(\mathcal{I}(u_{\varepsilon}))} \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{\prime}|^{p-1} \, dx.
$$

By Hölder's inequality we have

$$
\int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{"}|^{p-1} dx \le \Big(\int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{"}|^{p} dx\Big)^{\frac{p-1}{p}} (a_2^{\varepsilon} - a_1^{\varepsilon})^{\frac{1}{p}} \le \Lambda_{\varepsilon}^{\frac{p-1}{p}} |I|^{\frac{1}{p}}.
$$
 (3.37)

Similarly we obtain

$$
\int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}'|^{p-1} dx \le \Big(\int_I |u_{\varepsilon}'|^p dx\Big)^{\frac{p-1}{p}} |I|^{\frac{1}{p}} \le C\Lambda_{\varepsilon}^{\frac{p-1}{p}} |I|^{\frac{1}{p}}.
$$
\n(3.38)

Plugging (3.37) and (3.38) into (3.36) we see that

$$
\Big|\int_{a_1^\varepsilon}^{a_2^\varepsilon} |u_{\varepsilon}''|^{p-2} u_{\varepsilon}''\eta\,dx\Big|\leq C\Lambda_{\varepsilon}^{\frac{p-1}{p}}\|\eta\|_{L^1({\mathcal I}(u_{\varepsilon}))},
$$

where the constant $C > 0$ depends only on ω_0 and *I*. This together with Lemma [3.5](#page-8-3) implies that

$$
\left| \int_{a_1^{\varepsilon}}^{a_2^{\varepsilon}} |u_{\varepsilon}^{"}|^{p-2} u_{\varepsilon}^{"} \eta \, dx \right| \leq C ||\eta||_{L^1(\mathcal{I}(u_{\varepsilon}))},\tag{3.39}
$$

where *C* > 0 depends only on ω₀ and *I*. Using the fact that $(L^1(\mathcal{I}(u_\varepsilon)))^* = L^\infty(\mathcal{I}(u_\varepsilon))$ and Riesz's representation theorem we deduce from (3.30) that representation theorem, we deduce from [\(3.39\)](#page-10-3) that

$$
\|u_{\varepsilon}''|^{p-1}\|_{L^{\infty}(I(u_{\varepsilon}))}\leq C.
$$

Therefore Theorem [3.7](#page-9-3) follows.

4. Proof of Theorem [1.1](#page-2-0)

In order to prove Theorem [1.1,](#page-2-0) it suffices to show the following:

Theorem 4.1. *Let u_ε be a solution to* (P_{ε}) (P_{ε}) *obtained by Lemma [3.1.](#page-3-8) Then there exists a constant* $\varepsilon_0 > 0$ *such that*

$$
|O(u_{\varepsilon})| = \omega_0 \quad \text{for all} \quad 0 < \varepsilon < \varepsilon_0. \tag{4.1}
$$

Proof. Assume that [\(4.1\)](#page-10-4) does not hold. Then, by Lemma [3.3](#page-6-8) we find a sequence $\{\varepsilon_j\}_{j\in\mathbb{N}}$ such that $\varepsilon_j \to 0$ as $j \to \infty$ and

$$
|\mathcal{I}(u_{\varepsilon_j})| = |O(u_{\varepsilon_j})| > \omega_0 \quad \text{for all} \quad j \in \mathbb{N}.
$$

Fix $j \in \mathbb{N}$ arbitrarily, and set $\varepsilon_j = \varepsilon$ for short. By [\(4.2\)](#page-10-5) we find $x_\varepsilon \in \mathcal{I}(u_\varepsilon)$ such that

$$
|\mathcal{I}(u_{\varepsilon})| - |B(x_{\varepsilon}, r_{\varepsilon})| > \omega_0,
$$

where

$$
r_{\varepsilon} := \frac{1}{2} \text{dist}(x_{\varepsilon}, \partial \mathcal{I}(u_{\varepsilon})).
$$

Let $\eta \in C_c^{\infty}(B(x_{\varepsilon}, 2r_{\varepsilon}))$ be a cut-off function with

$$
\begin{cases}\n0 \le \eta \le 1 & \text{in } I, \\
\eta \equiv 1 & \text{in } B(x_{\varepsilon}, r_{\varepsilon}), \\
\|\eta'\|_{L^{\infty}(I)} \le \frac{C}{r_{\varepsilon}}, & \|\eta''\|_{L^{\infty}(I)} \le \frac{C}{r_{\varepsilon}^2},\n\end{cases} (4.3)
$$

where *C* is a positive constant. Let $v_{\varepsilon} := u_{\varepsilon} - \eta u_{\varepsilon}$. Then we see that $v_{\varepsilon} \in W_0^{2,p}(I)$ and

$$
v_{\varepsilon} = \begin{cases} u_{\varepsilon} & \text{in} \quad I \setminus B(x_{\varepsilon}, 2r_{\varepsilon}), \\ 0 & \text{in} \quad B(x_{\varepsilon}, r_{\varepsilon}). \end{cases}
$$
 (4.4)

Recalling that

$$
|O(v_{\varepsilon})| = |I(u_{\varepsilon})| - |B(x_{\varepsilon}, r_{\varepsilon})| > \omega_0,
$$

by the minimality of u_{ε} we have $E_{\varepsilon}(u_{\varepsilon}) \leq E_{\varepsilon}(v_{\varepsilon}),$ i.e.,

$$
\Lambda_{\varepsilon} + f_{\varepsilon}(|O(u_{\varepsilon})|) \le \frac{\int_{I} |v_{\varepsilon}^{\prime\prime}|^{p} dx}{\int_{I} |v_{\varepsilon}^{\prime}|^{p} dx} + f_{\varepsilon}(|O(v_{\varepsilon})|). \tag{4.5}
$$

Since it follows from [\(3.1\)](#page-3-2) that

$$
f_{\varepsilon}(|O(u_{\varepsilon})|) - f_{\varepsilon}(|O(v_{\varepsilon})|) = \frac{2r_{\varepsilon}}{\varepsilon},
$$
\n(4.6)

plugging [\(4.6\)](#page-11-0) into [\(4.5\)](#page-11-1), we obtain

$$
\Lambda_{\varepsilon} \int_{I} |v_{\varepsilon}'|^p \, dx + \frac{2r_{\varepsilon}}{\varepsilon} \int_{I} |v_{\varepsilon}'|^p \, dx \le \int_{I} |v_{\varepsilon}''|^p \, dx. \tag{4.7}
$$

From [\(4.4\)](#page-11-2) we see that

$$
\int_{I} |v_{\varepsilon}'|^{p} dx = \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} |((1 - \eta)u_{\varepsilon})'|^{p} dx + \int_{I \setminus B(x_{\varepsilon}, 2r_{\varepsilon})} |u_{\varepsilon}'|^{p} dx
$$
\n
$$
= \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} [|((1 - \eta)u_{\varepsilon})'|^{p} - |u_{\varepsilon}'|^{p}] dx + 1.
$$
\n(4.8)

Similarly we have

$$
\int_{I} |v_{\varepsilon}^{\prime\prime}|^{p} dx = \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} \left[|((1 - \eta)u_{\varepsilon})^{\prime\prime}|^{p} - |u_{\varepsilon}^{\prime\prime}|^{p} \right] dx + \Lambda_{\varepsilon}.
$$
\n(4.9)

Combining (4.7) with (4.8) and (4.9) , we find

$$
\Lambda_{\varepsilon} \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} \left[|((1 - \eta)u_{\varepsilon})'|^{p} - |u'_{\varepsilon}|^{p} \right] dx + \frac{2r_{\varepsilon}}{\varepsilon} \int_{I} |v'_{\varepsilon}|^{p} dx \le \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} \left[|((1 - \eta)u_{\varepsilon})''|^{p} - |u''_{\varepsilon}|^{p} \right] dx. \tag{4.10}
$$

Since it follows from [\(2.1\)](#page-2-2) that

$$
\int_{B(x_\varepsilon,2r_\varepsilon)}\!\!\!\left[|((1-\eta)u_\varepsilon)'\|^p-|u_\varepsilon'|^p\right]dx\geq -p\int_{B(x_\varepsilon,2r_\varepsilon)}|u_\varepsilon'|^{p-2}u_\varepsilon'(\eta u_\varepsilon)'\,dx
$$

and

$$
\int_{B(x_{\varepsilon},2r_{\varepsilon})} [|((1-\eta)u_{\varepsilon})''|^{p} - |u_{\varepsilon}''|^{p}] dx \leq p \int_{B(x_{\varepsilon},2r_{\varepsilon})} |((1-\eta)u_{\varepsilon})''|^{p-2} ((1-\eta)u_{\varepsilon})''(\eta u_{\varepsilon})'' dx,
$$

we reduce [\(4.10\)](#page-11-6) into

$$
\frac{2r_{\varepsilon}}{\varepsilon} \int_{I} |v_{\varepsilon}'|^{p} dx \leq p\Lambda_{\varepsilon} \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} |u_{\varepsilon}'|^{p-2} u_{\varepsilon}'(\eta u_{\varepsilon})' dx \n+ p \int_{B(x_{\varepsilon}, 2r_{\varepsilon})} |((1 - \eta)u_{\varepsilon})''|^{p-2} ((1 - \eta)u_{\varepsilon})''(\eta u_{\varepsilon})'' dx \n=: K_{1} + K_{2}.
$$
\n(4.11)

By Theorem [3.7](#page-9-3) we have

$$
|u_{\varepsilon}'(x)| = |u_{\varepsilon}'(x) - u_{\varepsilon}'(y)| \le C|x - y| \le 2Cr_{\varepsilon} \quad \text{for all} \quad x \in \bar{B}(x_{\varepsilon}, 2r_{\varepsilon}),\tag{4.12}
$$

where $y \in \partial I(u_{\varepsilon})$, and the constant *C* is independent of ε . Moreover, we deduce from [\(4.12\)](#page-12-0) that

$$
|u_{\varepsilon}(x)| = \left| \int_{y}^{x} u_{\varepsilon}'(\xi) d\xi \right| \le 2Cr_{\varepsilon}|x - y| \le 4Cr_{\varepsilon}^{2},\tag{4.13}
$$

where $y \in \partial I(u_{\varepsilon})$. It follows from [\(4.3\)](#page-11-7), [\(4.12\)](#page-12-0) and [\(4.13\)](#page-12-1) that

$$
K_1 \le C\Lambda_{\varepsilon} r_{\varepsilon}^p |B(x_{\varepsilon}, 2r_{\varepsilon})| \le C\Lambda_{\varepsilon} r_{\varepsilon}^{p+1},\tag{4.14}
$$

where $C > 0$ is independent of ε . Similarly, we infer from [\(4.3\)](#page-11-7), [\(4.12\)](#page-12-0), [\(4.13\)](#page-12-1) and Theorem [3.7](#page-9-3) that

$$
K_2 \le C|B(x_{\varepsilon}, 2r_{\varepsilon})| \le Cr_{\varepsilon},\tag{4.15}
$$

where $C > 0$ is independent of ε . Plugging [\(4.14\)](#page-12-2) and [\(4.15\)](#page-12-3) into [\(4.11\)](#page-12-4), we obtain

$$
\frac{2r_{\varepsilon}}{\varepsilon} \int_{I} |v_{\varepsilon}'|^p dx \le Cr_{\varepsilon}(1+r_{\varepsilon}^p),\tag{4.16}
$$

where $C > 0$ is independent of ε . Since $||u'_{\varepsilon}||_{L^p(I)} = 1$, by [\(2.1\)](#page-2-2) we have

$$
\int_I |v'_\varepsilon|^p\,dx = 1 + \int_I [|v'_\varepsilon|^p - |u'_\varepsilon|^p]\,dx \ge 1 - p \int_{B(x_\varepsilon, 2r_\varepsilon)} |u'_\varepsilon|^{p-2} u'_\varepsilon (\eta u_\varepsilon)' \,dx \ge 1 - Cr_\varepsilon^{p+1}.
$$

Taking $x_{\varepsilon} \in I(u_{\varepsilon})$ sufficiently close to $\partial I(u_{\varepsilon})$, we see that

$$
\int_I |v_\varepsilon'|^p \, dx \ge \frac{1}{2}
$$

This together with [\(4.16\)](#page-12-5) implies that

$$
\frac{1}{\varepsilon} \leq C(1 + r_{\varepsilon}^p).
$$

Letting $\varepsilon \to 0$, we lead a contradiction. Therefore Theorem [4.1](#page-10-6) follows.

We are in a position to prove Theorem [1.1:](#page-2-0)

proof of Theorem [1.1.](#page-2-0) By Lemma [3.1](#page-3-8) we see that there exists a solution u_{ε} of (P_{ε}) (P_{ε}) for each $\varepsilon > 0$. Thanks to Theorem [4.1,](#page-10-6) we find $\varepsilon_0 > 0$ such that

$$
|O(u_{\varepsilon})| = \omega_0 \quad \text{for all} \quad 0 < \varepsilon < \varepsilon_0.
$$

This implies that u_{ε} is a solution of problem [\(P\)](#page-1-2), providing that $\varepsilon > 0$ is small enough. Moreover, it follows from Lemma [3.2](#page-5-0) that $(u_{\varepsilon}, \Lambda_{\varepsilon})$ satisfies problem [\(1.4\)](#page-1-0) in a weak sense. Finally, we deduce from Lemma 3.4 that $\mathcal{I}(u_{\varepsilon})$ is connected. Therefore Theorem 1.1 follows. Lemma [3.4](#page-7-6) that $\mathcal{I}(u_{\varepsilon})$ is connected. Therefore Theorem [1.1](#page-2-0) follows.

Acknowledgments

The second author was partially supported by the Grant-in-Aid for Scientific Research (S) (No. 19H05599). Moreover, the authors would like to thank the referee for useful comments.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Alt HW, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. *J Reine Angew Math* 325: 105–144.
- 2. Ashbaugh MS, Bucur D (2003) On the isoperimetric inequality for the buckling of a clamped plate. *Z Angew Math Phys* 54: 756–770.
- 3. Benedikt J (2015) Estimates of the principle eigenvalue of the *p*-Laplacian and the *p*-biharmonic operator. *Math Bohem* 140: 215–222.
- 4. Dall'Acqua A, Deckelnick K, Grunau HC (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. *Adv Calc Var* 1: 379–397.
- 5. Drábek P, Ôtani M (2001) Global bifurcation result for the *p*-biharmonic operator. *Electron J Differ Eq* 48: 19.
- 6. Gazzola F, Grunau HC, Sweers G (2010) *Polyharmonic Boundary Value Problems*, Berlin: Springer-Verlag.
- 7. Parini E, Ruf B, Tarsi C (2014) The eigenvalue problem for the 1-biharmonic operator. *Ann Scuola Norm Sci* 13: 307–332.
- 8. Lindqvist P (2017) *Notes on the p-Laplace Equation*, 2 Eds., University Jyväskylä, Department of Mathematics and Statics, Report 161.
- 9. Polya G, Szegö G (1951) *Isoperimetric Inequalities in Mathematical Physics*, Princeton: Princeton University Press.
- 10. Stollenwerk K (2016) Optimal shape of a domain which minimizes the first buckling eigenvalue. *Calc Var* 55: 29.
- 11. Takeuchi S (2012) Generalized Jacobian elliptic functions and their application to bifurcation problems associated with *p*-Laplacian. *J Math Anal Appl* 385: 24–35.
- 12. Watanabe K (2014) Planar *p*-elastic curves and related generalized complete elliptic integrals. *Kodai Math J* 37: 453–474.

 c 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)