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Abstract: We consider a fourth order nonlinear eigenvalue problem with an adhesive constraint.
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1. Introduction

In this paper we are interested in a fourth order nonlinear eigenvalue problem∆(|∆u|p−2∆u) = −λ∇ · (|∇u|p−2∇u) in Ω,

u = ∂νu = 0 on ∂Ω,
(1.1)

with the adhesive constraint
|O(u)| = ω0, (1.2)

where p > 1, 0 < ω0 < |Ω| and O(u) := {x ∈ Ω | u(x) , 0}. Here Ω, ν and |Ω| denote a smooth
bounded domain in RN , the unit outer normal of ∂Ω and the Lebesgue measure of Ω, respectively. The
eigenvalue problem (1.1) is regarded as a generalization of the buckling eigenvalue problem with the
clamped boundary condition ∆2u = −λ∆u in Ω,

u = ∂νu = 0 on ∂Ω.
(1.3)
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The first eigenvalue of (1.3) with N = 2 is called the buckling load of a clamped plate and characterized
by

µ1(Ω) = inf
H2

0 (Ω)\{0}

∫
Ω

|∆u|2 dx∫
Ω

|∇u|2 dx
.

In 1951, Polya and Szegö [9] conjectured that the disk minimizes the buckling load µ1 among
domains of given measure. The conjecture has been attracted a great interest and studied by many
researchers (e.g., see [2, 10], [6, Section 3.2] and references therein). In particular, recently
Stollenwerk [10] considered problem (1.3) with constraint (1.2) to study the Polya-Szegö conjecture
for N = 2, 3. Although nonlinear eigenvalue problems for the p-biharmonic operator of the type

∆(|∆u|p−2∆u) = λ|u|p−2u in Ω

have been well studied in the mathematical literature (e.g., see [3, 5, 7] and references therein), to the
best of our knowledge, there is few result on the eigenvalue problem of the type (1.1).

The purpose of this paper is to study the first eigenvalue of (1.1) with constraint (1.2) for N = 1:(|u′′|p−2u′′)′′ = −λ(|u′|p−2u′)′ in I,

u = u′ = 0 on ∂I,
(1.4)

with
|O(u)| = ω0, (1.5)

where
O(u) := {x ∈ I | u(x) , 0}.

Here I ⊂ R denotes a bounded open interval and 0 < ω0 < |I| is a given constant.
One of our motivations is to prove the existence of the first eigenvalue and corresponding

eigenfunctions of problem (1.4) with (1.5). To this end, we consider the minimization problem

min
v∈Aω0

E(v), (P)

where

E(v) :=

∫
I
|v′′|pdx∫

I
|v′|pdx

,

Aω0 := {v ∈ W2,p
0 (I) | |O(v)| = ω0}.

As we prove in Lemma 3.2, solutions to problem (P) satisfy problem (1.4) with (1.5) in a weak sense.
Thus problem (P) gives us the first p-buckling eigenvalue and corresponding eigenfunctions.

The second motivation is to show a property of the eigenfunction corresponding to the first p-
buckling eigenvalue. In 2014, Watanabe [12] studied the p-elastic curves which are critical points of
the p-elastic energy ∫

γ

|κ|p ds,

Mathematics in Engineering Volume 3, Issue 4, 1–15.



3

where γ, κ and s respectively denote a planar curve, the curvature of γ and the arc length parameter of
γ, and proved the existence of solutions with ‘flat core’. Here, we say that u : I → R has ‘flat core’ if
the graph (x, u(x)) contains a part where the graph is parallel to the x-axis (more precisely, see [11,12]).
In order to state our second motivation precisely, we define

J0 := {x ∈ ∂O(u) | u′(x) = 0}, J1 := {x ∈ ∂O(u) | |u′(x)| > 0},

and
I(u) := O(u) ∪ J1.

We say that u : I → R has flat core of adhesion type if the set I(u) is not connected. Our second
motivation is to ask whether constraint (1.5) can induce the eigenfunction corresponding to the first
p-buckling eigenvalue to have flat core of adhesion type or not.

The main result of this paper is stated as follows:

Theorem 1.1. Let I ⊂ R be an open interval. Let p > 1 and 0 < ω0 < |I|. Then problem (P) possesses
a solution u ∈ Aω0 . Moreover, I(u) is connected.

We deduce from Theorem 1.1 that the eigenfunction corresponding to the first p-buckling
eigenvalue does not have flat core of adhesion type. Due to adhesive constraint (1.5), it is difficult to
solve problem (P) by the direct method of calculus of variations. To overcome the difficulty, we
employ an idea by Alt and Caffarelli [1] as in [10]. More precisely, considering a penalized problem,
once we remove adhesive constraint (1.5) from (P). Studying the regularity of the penalized solution
uε, we prove the relation |O(uε)| = ω0 for sufficiently small ε > 0. Then we obtain a minimizer of
problem (P). We note that, if we employ the same strategy to find the first p-buckling eigenvalue for
N ≥ 2, then one of the arising difficulties is the lack of regularity of the penalized solution uε.

This paper is organized as follows: In Section 2, we collect notations and inequalities which are used
in this paper; In Section 3, we define a penalized problem and prove the existence and the regularity of
the penalized solutions; In Section 4, we prove Theorem 1.1.

2. Preliminary

In this section, we collect function spaces and inequalities used in this paper.
The space W2,p

0 (I) is the closure of C∞c (I) in W2,p(I). In this paper, we employ ‖v‖2,p := ‖v′′‖Lp(I) as
the norm in W2,p

0 (I). Here we note that the norm ‖ · ‖2,p is equivalent to the standard W2,p norm. Indeed,
by the Poincaŕe inequality we find a positive constant C such that

‖v‖Lp(I) + ‖v′‖Lp(I) + ‖v′′‖Lp(I) ≤ C‖v‖2,p for all v ∈ W2,p
0 (I).

This clearly implies that the norm ‖ · ‖2,p is equivalent to the standard W2,p norm.
In order to treat Lp norms, we employ the following inequality (see [8]):

|b|p ≥ |a|p + p〈|a|p−2a, b − a〉 for all a, b ∈ RN and p ≥ 1, (2.1)

which expresses the convexity of the function x 7→ |x|p for p ≥ 1.
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3. Penalized problem

In this section we consider a penalized problem. We define the function fε and the functional Eε by

fε(s) :=


s − ω0

ε
if s ≥ ω0,

0 otherwise,
(3.1)

Eε(u) := E(u) + fε(|O(u)|), (3.2)

for ε > 0. Then the penalized problem corresponding to (P) is written as follows:

min
v∈W2,p

0 (I)
Eε(v). (Pε)

To begin with, we prove the existence of solutions of penalized problem (Pε).

Lemma 3.1. Problem (Pε) possesses a nontrivial solution for each ε > 0.

Proof. Let {uk}k∈N ⊂ W2,p
0 (I) be a minimizing sequence for Eε, i.e.,

lim
k→∞

Eε(uk) = inf
v∈W2,p

0 (I)
Eε(v).

We note that Eε is nonnegative. Extracting a subsequence, we find a constant C > 0 such that

Eε(uk) ≤ C for all k ∈ N, (3.3)

where we denote by {uk} this subsequence, for short. Since Eε is homogeneous of degree 0, we are able
to normalize the minimizing sequence {uk}k∈N as follows:∫

I
|u′k(x)|p dx = 1 for all k ∈ N. (3.4)

Then problem (Pε) is reduced into
min
v∈A

Eε(v),

where

A := {v ∈ W2,p
0 (I) | ‖v′‖p

Lp(I) = 1}.

By (3.1), (3.2), (3.3) and (3.4) we have

‖uk‖
p
2,p = E(uk) ≤ Eε(uk) ≤ C for all uk ∈ A.

Thus we find a function uε ∈ W2,p
0 (I) such that

uk ⇀ uε weakly in W2,p
0 (I) as k → ∞, (3.5)

up to a subsequence. Since the embedding W2,p
0 (I) ⊂ C1,α(Ī) is compact for each α ∈ (0, 1 − 1/p), it

follows from (3.5) that
uk → uε in C1,α(Ī) as k → ∞. (3.6)
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This together with {uk} ⊂ A implies that ∫
I
|u′ε(x)|pdx = 1,

and then uε ∈ A. Moreover, this clearly implies that uε is nontrivial.
Next we show that uε ∈ A is the desired minimizer of Eε. First it follows from (3.5) that

E(uε) = ‖uε‖
p
2,p ≤ lim inf

k→∞
‖uk‖

p
2,p = lim inf

k→∞
E(uk). (3.7)

We can prove the relation
fε(|O(uε)|) ≤ lim inf

k→∞
fε(|O(uk)|) (3.8)

along the same line as in [10, Theorem 2.1]. Indeed, since fε is non-decreasing, it suffices to prove the
relation

|O(uε)| ≤ lim inf
k→∞

|O(uk)|. (3.9)

By the Banach–Alaoglu theorem we find a function ρ ∈ L∞(I) with 0 ≤ ρ(x) ≤ 1 for a.e. x ∈ I such
that

lim
k→∞

∫
I
χO(uk)ϕ dx =

∫
I
ρϕ dx (3.10)

for all ϕ ∈ L1(I) up to a subsequence, where

χO(uk)(x) :=

1 if x ∈ O(uk),
0 if x ∈ I \ O(uk).

Then we observe from (3.6) and (3.10) that

0 = lim
k→∞

[∫
I
u+

k
[
1 − χO(uk)

]
dx +

∫
I
u−k

[
1 − χO(uk)

]
dx

]
=

∫
I
u+
ε

[
1 − ρ

]
dx +

∫
I
u−ε

[
1 − ρ

]
dx,

where g+ := max{g, 0} and g− := max{−g, 0}. This together with 0 ≤ ρ ≤ 1 implies that ρ = 1 a.e.
in O(uε). Thus we obtain (3.8) as follows:

|O(uε)| =
∫
O(uε)

1 dx ≤
∫

I
ρ dx = lim inf

k→∞

∫
I
χO(uk) dx = lim inf

k→∞
|O(uk)|.

Combining (3.7) with (3.8), we obtain

Eε(uε) = E(uε) + fε(|O(uε)|) ≤ lim inf
k→∞

E(uk) + lim inf
k→∞

fε(|O(uk)|)

≤ lim inf
k→∞

[E(uk) + fε(|O(uk)|)] = lim inf
k→∞

Eε(uk).

Therefore Lemma 3.1 follows. �
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From now on, we set

Λε :=
∫

I
|u′′ε |

pdx. (3.11)

Moreover, we define

J0
ε := {x ∈ ∂O(uε) | u′ε(x) = 0}, J1

ε := {x ∈ ∂O(uε) | |u′ε(x)| > 0},

and
I(uε) := O(uε) ∪ J1

ε .

Lemma 3.2. Let uε be a solution of (Pε). Then (uε,Λε) satisfies the following eigenvalue problem in
the weak sense : (|u′′ε |

p−2u′′ε )′′ = −Λε(|u′ε|
p−2u′ε)

′ in I(uε),
uε = u′ε = 0 on ∂I(uε).

Proof. It suffices to prove that (uε,Λε) ∈ W2,p
0 (I) × R satisfies∫

I

[
|u′′ε |

p−2u′′ε ϕ
′′ − Λε|u′ε|

p−2u′εϕ
′] dx = 0 for all ϕ ∈ W2,p

0 (I(uε)). (3.12)

Fix ϕ ∈ W2,p
0 (I(uε)) arbitrarily. Since uε+δϕε ∈ W2,p

0 (I(uε)), we deduce from the minimality of uε that

d
dδ

Eε(uε + δϕε)
∣∣∣∣
δ=0

= 0.

Moreover, it follows from |O(uε + δϕε)| = |O(uε)| that

fε(|O(uε + δϕε)|) = fε(|O(uε)|)

for sufficiently small δ, and then

d
dδ

E(uε + δϕε)
∣∣∣∣
δ=0

=
d
dδ

Eε(uε + δϕε)
∣∣∣∣
δ=0

= 0. (3.13)

By a direct calculation we have

d
dδ

E(uε + δϕε)
∣∣∣∣
δ=0

=

p
∫

I
|u′′ε |

p−2u′′ε ϕ
′′ dx

∫
I
|u′ε|

p dx − p
∫

I
|u′′ε |

pdx
∫

I
|u′ε|

p−2u′εϕ
′ dx[∫

I
|u′ε|

p dx
]2

.

Recalling that ‖u′ε‖Lp(I) = 1 and ‖u′′ε ‖
p
Lp(I) = Λε, we obtain

d
dδ

E(uε + δϕε)
∣∣∣∣
δ=0

= p
∫

I

[
|u′′ε |

p−2u′′ε ϕ
′′ − pΛε|u′ε|

p−2u′εϕ
′]dx.

This together with (3.13) implies (3.12). Therefore Lemma 3.2 follows. �

We prove the regularity of the minimizer uε. To begin with, we show some properties of the support
of uε.
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Lemma 3.3. Let uε be a solution of (Pε). Then

|O(uε)| ≥ ω0 for all ε > 0. (3.14)

Proof. Assume that (3.14) does not hold. Then we find ε∗ > 0 such that

|O(uε∗)| < ω0. (3.15)

Then there exist x0 ∈ I and 0 < r < 1 such that
B(x0, r) ⊂ I,

B(x0, r) ∩ O(uε∗) = ∅,

|O(uε∗) ∪ B(x0, r)| ≤ ω0,

(3.16)

where B(y, ρ) := {x ∈ I | |x − y| < ρ}. Fix v ∈ C∞c (B(0, 1)) arbitrarily. We define vr : B(x0, r) → R
by vr(x) := v(x0 + rx). Since

uε∗ + vr ∈ W2,p
0 (B(x0, r) ∪ I(uε∗)) ⊂ W2,p

0 (I)

and
|O(uε∗ + vr)| ≤ ω0, (3.17)

we observe from (3.15) and (3.17) that

fε∗(|O(uε∗)|) = fε∗(|O(uε∗ + vr)|) = 0.

This together with the minimality of uε∗ implies that

E(uε∗) = Eε∗(uε∗) ≤ Eε∗(uε∗ + vr) = E(uε∗ + vr). (3.18)

Recalling the definition of Λε, we deduce from (3.18) that

Λε∗

∫
B(x0,r)∪O(uε∗ )

|(uε∗ + vr)′|p dx ≤
∫

B(x0,r)∪O(uε∗ )
|(uε∗ + vr)′′|p dx. (3.19)

Thanks to (3.16), we reduce (3.19) into

Λε∗

[∫
O(uε∗ )

|u′ε∗ |
p dx +

∫
B(x0,r)

|v′r|
p dx

]
≤

∫
O(uε∗ )

|u′′ε∗ |
p dx +

∫
B(x0,r)

|v′′r |
p dx. (3.20)

Since ∫
B(x0,r)

|v′r|
p dx = rp−1

∫
B(0,1)
|v′|p dx,

∫
B(x0,r)

|v′′r |
p dx = r2p−1

∫
B(0,1)
|v′′|p dx,

recalling that ‖u′ε‖
p
Lp(I) = 1 and ‖u′′ε ‖

p
Lp(I) = Λε for all ε > 0, we observe from (3.20) that

Λε∗ ≤
‖v′′‖p

Lp(B(0,1))

‖v′‖p
Lp(B(0,1))

rp. (3.21)
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On the other hand, combining ‖u′ε‖
p
Lp(I) = 1 and ‖u′′ε ‖

p
Lp(I) = Λε with Poincaré’s inequality, we find a

constant C > 0 being independent of r such that

0 <
1
C
≤ Λε for all ε > 0,

This together with (3.21) implies that

0 <
1
C
≤
‖v′′‖p

Lp(B(0,1))

‖v′‖p
Lp(B(0,1))

rp.

Taking 0 < r < 1 small enough, we lead a contradiction. Thus Lemma 3.3 follows. �

Lemma 3.3 implies that the ‘size’ of the support of minimizer uε is uniformly bounded from below
with respect to ε > 0. Next we prove that the support of uε is connected.

Lemma 3.4. Let uε be a solution of (Pε). Then I(uε) is connected for all ε > 0.

Proof. Suppose not, we find ε∗ > 0 such that I(uε∗) is not connected. Then there exist an open
interval I1 and an open set I2 such that I1 ∩ I2 = ∅ and

I(uε) = I1 ∪ I2. (3.22)

We define Ui by

Ui :=


uε

‖u′ε‖Lp(Ii)
in Ii,

0 in I \ Ii,
for i = 1, 2. (3.23)

Then it holds that Ui ∈ W2,p
0 (I) for i = 1, 2. If |I1| ≥ ω0, then we deduce from (3.22) that

Eε(uε) = Λε + fε(O(uε)) = E(U1) + E(U2) + fε(O(uε)) > E(U1).

This clearly contradicts to the minimality of uε. If |I1| < ω0, then Lemma 3.3 implies that

Eε(uε) < Eε(U1). (3.24)

Since it follows from |I1| < ω0 that fε(U1) = 0, we observe from (3.24) that Λε < E(U1), and then

Λε

∫
I1

|U′1|
p dx <

∫
I1

|U′′1 |
p dx. (3.25)

On the other hand, it follows from (3.23) that∫
I2

|U′′2 |
p dx =

∫
I
|u′′ε |

p dx −
∫

I1

|U′′1 |
p dx = Λε −

∫
I1

|U′′1 |
p dx. (3.26)

Plugging (3.25) into (3.26), we have∫
I2

|U′′2 |
p dx < Λε − Λε

∫
I1

|U′1|
p dx

= Λε

(
1 −

∫
I1

|U′1|
p dx

)
= Λε

(∫
I
|u′ε|

p dx −
∫

I1

|U′1|
p dx

)
= Λε

∫
I2

|U′2|
p dx,

(3.27)
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where we used (3.22) again in the last equality of (3.27). Then (3.27) implies that

E(U2) < Λε = E(uε). (3.28)

Since fε(|O(U2)|) ≤ fε(|O(uε)|), we deduce form (3.28) that

Eε(U2) < Eε(uε).

This contradicts to the minimality of uε. Therefore Lemma 3.4 follows. �

Lemma 3.5. There exists a constant Λmax such that

Λε ≤ Λmax for all ε > 0.

Proof. Let r0 := ω0/4 and set x0 ∈ I such that B(x0, r0) ⊂ I, where B(y, ρ) := {x ∈ I | |x − y| < ρ}. We
consider the problem

min
v∈W2,p

0 (B(x0,r0))
E(v). (3.29)

Along the same line as in the proof of Lemma 3.1, we find a solution ϕ0 ∈ W2,p
0 (B(x0, r0)) of

problem (3.29) satisfying the following: ∫
B(x0,r0)

|ϕ′0|
p dx = 1. (3.30)

Since ϕ0 ∈ W2,p
0 (B(x0, r0)), we can extend ϕ0 as a function in W2,p

0 (I). Recalling that

|O(ϕ0)| ≤ |B(x0, r0)| ≤ ω0/2,

we deduce from Lemma 3.3 that
Eε(uε) < Eε(ϕ0) = E(ϕ0).

This together with (3.30) that

Λε <

∫
B(x0,r0)

|ϕ′′0 |
p dx =: Λmax.

Therefore Lemma 3.5 follows. �

Here we employ the idea in [4, Proof of Theorem 3.9]:

Lemma 3.6. Let a1, a2 ∈ I with a1 < a2. Fix η ∈ C∞c ((a1, a2)) and set

ϕ1(x) :=
∫ x

a1

∫ y

a1

η(s) dsdy + α(x − a1)2 + β(x − a1)3, (3.31)

α :=
1

a2 − a1

∫ a2

a1

η(y) dy −
3

(a2 − a1)2

∫ a2

a1

∫ y

a1

η(s) dsdy, (3.32)

β := −
α

a2 − a1
−

1
(a2 − a1)3

∫ a2

a1

∫ y

a1

η(s) dsdy. (3.33)

Then ϕ1 ∈ W2,p
0 ((a1, a2)) and there exist C1,C2,C3 > 0 depending only on a1 and a2 such that

‖ϕ1‖W1,∞((a1,a2)) ≤ C1‖η‖L1((a1,a2)), |α| ≤ C2‖η‖L1((a1,a2)), |β| ≤ C3‖η‖L1((a1,a2)).
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Proof. By (3.31), (3.32) and (3.33) we have ϕ1(a1) = ϕ1(a2) = 0. Since

ϕ′1(x) =

∫ x

a1

η(s) ds + 2α(x − a1) + 3β(x − a1)2,

it follows from (3.32) and (3.33) that ϕ′1(a1) = ϕ′1(a2) = 0. Thus we see that ϕ1 ∈ W2,p
0 ((a1, a2)).

Moreover, we have

|α| ≤
1

a2 − a1
‖η‖L1((a1,a2)) +

3
(a2 − a1)2

∫ a2

a1

∫ a2

a1

|η(s)| dsdy =
4

a2 − a1
‖η‖L1((a1,a2)),

|β| ≤
|α|

a2 − a1
+

1
(a2 − a1)3

∫ a2

a1

∫ a2

a1

|η(s)| dsdy ≤
5

(a2 − a1)2 ‖η‖L1((a1,a2)).

Similarly we obtain

‖ϕ1‖L∞((a1,a2)) ≤ (a2 − a1)
∫ a2

a1

|η(s)| ds + |α|(a2 − a1) + |β|(a2 − a1)2 ≤ 10(a2 − a1)‖η‖L1((a1,a2)),

‖ϕ′1‖L∞((a1,a2)) ≤ ‖η‖L1((a1,a2)) + 2|α|(a2 − a1) + 3|β|(a2 − a1)2 ≤ 24‖η‖L1((a1,a2)).

Thus Lemma 3.6 follows. �

Theorem 3.7. Let uε ∈ W2,p
0 (I) be a solution to (Pε). Then there exists a constant M > 0 such that

‖u′′ε ‖L∞(I(uε)) ≤ M for all ε > 0.

Proof. Fix ε > 0 arbitrarily. Since uε ∈ W2,p
0 (I) is a solution to (Pε), by Lemma 3.2 we have∫

I(uε)

[
|u′′ε |

p−2u′′ε ϕ
′′ − Λε|u′ε|

p−2u′εϕ
′] dx = 0 for all ϕ ∈ W2,p

0 (I(uε)), (3.34)

where the constant Λε is defined by (3.11). By Lemmas 3.3 and 3.4 we find aε1, a
ε
2 ∈ I such that

I(uε) = (aε1, a
ε
2), ω0 ≤ |aε2 − aε1| ≤ |I|, for all ε > 0. (3.35)

Fix η ∈ C∞c (I(uε)) arbitrarily. Taking (aε1, a
ε
2) as (a1, a2) in Lemma 3.6, we observe from (3.35) that the

constants C1, C2 and C3 in Lemma 3.6 depends only on ω0 and I. Taking ϕ = ϕ1 in (3.34), where ϕ1 is
the function defined in Lemma 3.6, we have∫ aε2

aε1

|u′′ε |
p−2u′′ε η dx =

∫ aε2

aε1

|u′′ε |
p−2u′′ε [−2α − 6β(x − a1)] dx + Λε

∫ aε2

aε1

|u′ε|
p−2u′εϕ

′
1 dx.

This together with Lemma 3.6 implies that∣∣∣∣∫ aε2

aε1

|u′′ε |
p−2u′′ε η dx

∣∣∣∣ =

∫ aε2

aε1

|u′′ε |
p−1[2|α| + 6|β||I|] dx + Λε

∫ aε2

aε1

|u′ε|
p−1|ϕ′1| dx

≤
[
2C2‖η‖L1(I(uε)) + 6C3|I|‖η‖L1(I(uε))

] ∫ aε2

aε1

|u′′ε |
p−1 dx

+ C1‖η‖L1(I(uε))

∫ aε2

aε1

|u′ε|
p−1 dx.

(3.36)
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By Hölder’s inequality we have∫ aε2

aε1

|u′′ε |
p−1 dx ≤

(∫ aε2

aε1

|u′′ε |
p dx

) p−1
p (aε2 − aε1)

1
p ≤ Λ

p−1
p

ε |I|
1
p . (3.37)

Similarly we obtain ∫ aε2

aε1

|u′ε|
p−1 dx ≤

(∫
I
|u′ε|

p dx
) p−1

p
|I|

1
p ≤ CΛ

p−1
p

ε |I|
1
p . (3.38)

Plugging (3.37) and (3.38) into (3.36) we see that

∣∣∣∣∫ aε2

aε1

|u′′ε |
p−2u′′ε η dx

∣∣∣∣ ≤ CΛ
p−1

p
ε ‖η‖L1(I(uε)),

where the constant C > 0 depends only on ω0 and I. This together with Lemma 3.5 implies that

∣∣∣∣∫ aε2

aε1

|u′′ε |
p−2u′′ε η dx

∣∣∣∣ ≤ C‖η‖L1(I(uε)), (3.39)

where C > 0 depends only on ω0 and I. Using the fact that (L1(I(uε)))∗ = L∞(I(uε)) and Riesz’s
representation theorem, we deduce from (3.39) that

‖|u′′ε |
p−1‖L∞(I(uε)) ≤ C.

Therefore Theorem 3.7 follows. �

4. Proof of Theorem 1.1

In order to prove Theorem 1.1, it suffices to show the following:

Theorem 4.1. Let uε be a solution to (Pε) obtained by Lemma 3.1. Then there exists a constant ε0 > 0
such that

|O(uε)| = ω0 for all 0 < ε < ε0. (4.1)

Proof. Assume that (4.1) does not hold. Then, by Lemma 3.3 we find a sequence {ε j} j∈N such that
ε j → 0 as j→ ∞ and

|I(uε j)| = |O(uε j)| > ω0 for all j ∈ N. (4.2)

Fix j ∈ N arbitrarily, and set ε j = ε for short. By (4.2) we find xε ∈ I(uε) such that

|I(uε)| − |B(xε, rε)| > ω0,

where

rε :=
1
2

dist(xε, ∂I(uε)).
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Let η ∈ C∞c (B(xε, 2rε)) be a cut-off function with
0 ≤ η ≤ 1 in I,

η ≡ 1 in B(xε, rε),

‖η′‖L∞(I) ≤
C
rε
, ‖η′′‖L∞(I) ≤

C
r2
ε

,

(4.3)

where C is a positive constant. Let vε := uε − ηuε. Then we see that vε ∈ W2,p
0 (I) and

vε =

uε in I \ B(xε, 2rε),
0 in B(xε, rε).

(4.4)

Recalling that

|O(vε)| = |I(uε)| − |B(xε, rε)| > ω0,

by the minimality of uε we have Eε(uε) ≤ Eε(vε), i.e.,

Λε + fε(|O(uε)|) ≤

∫
I
|v′′ε |

p dx∫
I
|v′ε|

p dx
+ fε(|O(vε)|). (4.5)

Since it follows from (3.1) that

fε(|O(uε)|) − fε(|O(vε)|) =
2rε
ε
, (4.6)

plugging (4.6) into (4.5), we obtain

Λε

∫
I
|v′ε|

p dx +
2rε
ε

∫
I
|v′ε|

p dx ≤
∫

I
|v′′ε |

p dx. (4.7)

From (4.4) we see that∫
I
|v′ε|

p dx =

∫
B(xε,2rε)

|((1 − η)uε)′|p dx +

∫
I\B(xε,2rε)

|u′ε|
p dx

=

∫
B(xε,2rε)

[
|((1 − η)uε)′|p − |u′ε|

p] dx + 1.
(4.8)

Similarly we have ∫
I
|v′′ε |

p dx =

∫
B(xε,2rε)

[
|((1 − η)uε)′′|p − |u′′ε |

p] dx + Λε. (4.9)

Combining (4.7) with (4.8) and (4.9), we find

Λε

∫
B(xε,2rε)

[
|((1 − η)uε)′|p − |u′ε|

p] dx +
2rε
ε

∫
I
|v′ε|

p dx ≤
∫

B(xε,2rε)

[
|((1 − η)uε)′′|p − |u′′ε |

p] dx. (4.10)
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Since it follows from (2.1) that∫
B(xε,2rε)

[
|((1 − η)uε)′|p − |u′ε|

p] dx ≥ −p
∫

B(xε,2rε)
|u′ε|

p−2u′ε(ηuε)′ dx

and ∫
B(xε,2rε)

[
|((1 − η)uε)′′|p − |u′′ε |

p] dx ≤ p
∫

B(xε,2rε)
|((1 − η)uε)′′|p−2((1 − η)uε)′′(ηuε)′′ dx,

we reduce (4.10) into

2rε
ε

∫
I
|v′ε|

p dx ≤ pΛε

∫
B(xε,2rε)

|u′ε|
p−2u′ε(ηuε)′ dx

+ p
∫

B(xε,2rε)
|((1 − η)uε)′′|p−2((1 − η)uε)′′(ηuε)′′ dx

=: K1 + K2.

(4.11)

By Theorem 3.7 we have

|u′ε(x)| = |u′ε(x) − u′ε(y)| ≤ C|x − y| ≤ 2Crε for all x ∈ B̄(xε, 2rε), (4.12)

where y ∈ ∂I(uε), and the constant C is independent of ε. Moreover, we deduce from (4.12) that

|uε(x)| =
∣∣∣∣∫ x

y
u′ε(ξ) dξ

∣∣∣∣ ≤ 2Crε|x − y| ≤ 4Cr2
ε , (4.13)

where y ∈ ∂I(uε). It follows from (4.3), (4.12) and (4.13) that

K1 ≤ CΛεrp
ε |B(xε, 2rε)| ≤ CΛεrp+1

ε , (4.14)

where C > 0 is independent of ε. Similarly, we infer from (4.3), (4.12), (4.13) and Theorem 3.7 that

K2 ≤ C|B(xε, 2rε)| ≤ Crε, (4.15)

where C > 0 is independent of ε. Plugging (4.14) and (4.15) into (4.11), we obtain

2rε
ε

∫
I
|v′ε|

p dx ≤ Crε(1 + rp
ε ), (4.16)

where C > 0 is independent of ε. Since ‖u′ε‖Lp(I) = 1, by (2.1) we have∫
I
|v′ε|

p dx = 1 +

∫
I
[|v′ε|

p − |u′ε|
p] dx ≥ 1 − p

∫
B(xε,2rε)

|u′ε|
p−2u′ε(ηuε)′ dx ≥ 1 −Crp+1

ε .

Taking xε ∈ I(uε) sufficiently close to ∂I(uε), we see that∫
I
|v′ε|

p dx ≥
1
2
.

This together with (4.16) implies that
1
ε
≤ C(1 + rp

ε ).

Letting ε→ 0, we lead a contradiction. Therefore Theorem 4.1 follows. �
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We are in a position to prove Theorem 1.1:

proof of Theorem 1.1. By Lemma 3.1 we see that there exists a solution uε of (Pε) for each ε > 0.
Thanks to Theorem 4.1, we find ε0 > 0 such that

|O(uε)| = ω0 for all 0 < ε < ε0.

This implies that uε is a solution of problem (P), providing that ε > 0 is small enough. Moreover, it
follows from Lemma 3.2 that (uε,Λε) satisfies problem (1.4) in a weak sense. Finally, we deduce from
Lemma 3.4 that I(uε) is connected. Therefore Theorem 1.1 follows. �
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Mathematics and Statics, Report 161.
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