Research article Special Issues

A monotonicity approach to Pogorelov's Hessian estimates for Monge- Ampère equation

  • Received: 21 April 2022 Revised: 25 May 2022 Accepted: 25 May 2022 Published: 02 June 2022
  • We present an integral approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, originally obtained via a pointwise argument.

    Citation: Yu Yuan. A monotonicity approach to Pogorelov's Hessian estimates for Monge- Ampère equation[J]. Mathematics in Engineering, 2023, 5(2): 1-6. doi: 10.3934/mine.2023037

    Related Papers:

  • We present an integral approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, originally obtained via a pointwise argument.



    加载中


    [1] L. A. Caffarelli, A priori estimates and the geometry of the Monge Ampère equation, In: Nonlinear partial differential equations in differential geometry, Providence, RI: Amer. Math. Soc., 1996, 5–63.
    [2] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [3] A. V. Pogorelov, The Minkowski multidimensional problem, New York-Toronto-London: Halsted Press [John Wiley & Sons], 1978.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1744) PDF downloads(251) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog