Research article Special Issues

Heat diffusion in a channel under white noise modeling of turbulence

  • Received: 02 June 2021 Accepted: 01 September 2021 Published: 24 September 2021
  • A passive scalar equation for the heat diffusion and transport in an infinite channel is studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid. Under the driving effect of a heat source, the phenomenon of eddy dissipation is investigated: the solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with augmented diffusion coefficients.

    Citation: Franco Flandoli, Eliseo Luongo. Heat diffusion in a channel under white noise modeling of turbulence[J]. Mathematics in Engineering, 2022, 4(4): 1-21. doi: 10.3934/mine.2022034

    Related Papers:

  • A passive scalar equation for the heat diffusion and transport in an infinite channel is studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid. Under the driving effect of a heat source, the phenomenon of eddy dissipation is investigated: the solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with augmented diffusion coefficients.



    加载中


    [1] S. A. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, 1965.
    [2] A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence, Nonlinearity, To appear.
    [3] A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part II. Blow-up criteria and instantaneous regularization, arXiv: 2012.04448.
    [4] Z. Brzeźniak, M. Capinski, F. Flandoli, Approximation for diffusion in random fields, Stoch. Anal. Appl., 8 (1990), 293–313. doi: 10.1080/07362999008809210
    [5] Z. Brzeźniak, F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stoch. Proc. Appl., 55 (1995), 329–358. doi: 10.1016/0304-4149(94)00037-T
    [6] M. Chertkov, G. Falkovich, Anomalous scaling exponents of a White-Advected passive scalar, Phys. Rev. Lett., 76 (1996), 2706–2709. doi: 10.1103/PhysRevLett.76.2706
    [7] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge university press, 1992.
    [8] F. Flandoli, Regularity theory and stochastic flows for parabolic SPDEs, Singapone: Gordon and Breach Publ., 1995.
    [9] F. Flandoli, L. Galeati, D. Luo, Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations, J. Evol. Equ., 21 (2021), 567–600. doi: 10.1007/s00028-020-00592-z
    [10] F. Flandoli, L. Galeati, D. Luo, Delayed blow-up by transport noise, Commun. Part. Diff. Eq., 46 (2021), 1–39. doi: 10.1080/03605302.2020.1817072
    [11] F. Flandoli, L. Galeati, D. Luo, Eddy heat exchange at the boundary under white noise turbulence, arXiv: 2103.08098.
    [12] F. Flandoli, L. Galeati, D. Luo, Mixing, dissipation enhancement and convergence rates for scaling limit of SPDEs with transport noise, arXiv: 2104.01740.
    [13] F. Flandoli, D. Luo, High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations, Probab. Theory Rel., 180 (2021), 309–363. doi: 10.1007/s00440-021-01037-5
    [14] F. Flandoli, U. Pappalettera, 2D Euler equations with Stratonovich transport noise as a large scale stochastic model reduction, J. Nonlinear Sci., 31 (2021), 1–38. doi: 10.1007/s00332-020-09667-0
    [15] U. Frisch, A. Mazzino, M. Vergassola, Intermittency in Passive scalar advection, Phys. Rev. Lett., 80 (1998), 5532–5535. doi: 10.1103/PhysRevLett.80.5532
    [16] L. Galeati, On the convergence of stochastic transport equations to a deterministic parabolic one, Stoch. Partial Differ., 8 (2020), 833–868.
    [17] K. Gawedzki, A. Kupiainen, Anomalous scaling of the passive scalar, Phys. Rev. Lett., 75 (1995), 3834–3837. doi: 10.1103/PhysRevLett.75.3834
    [18] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pure. Appl., 45 (1966), 143–290.
    [19] I. Gyongy, On the approximation of stochastic partial differential equations i, Stochastics, 25 (1988), 59–85. doi: 10.1080/17442508808833533
    [20] I. Gyongy, On the approximation of stochastic partial differential equations ii, Stochastics, 26 (1989), 129–164.
    [21] M. Hofmanova, J. Leahy, T. Nilssen, On the N avier-Stokes equations perturbed by rough transport noise J. Evol. Eq., 19 (2019), 203–247. doi: 10.1007/s00028-018-0473-z
    [22] M. Hofmanova, J. Leahy, T. Nilssen, On a rough perturbation of the Navier-Stokes system and its vorticity formulation, arXiv: 1902.09348.
    [23] D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. R. Soc. A., 471 (2015), 1–19.
    [24] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967), 1417–1423. doi: 10.1063/1.1762301
    [25] R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett., 72 (1994), 1016–1019. doi: 10.1103/PhysRevLett.72.1016
    [26] D. Luo, Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system, arXiv: 2008.01434.
    [27] D. Luo, M. Saal, A scaling limit for the stochastic mSQG equations with multiplicative transport noises, Stoch. Dynam., 20 (2020), 2040001. doi: 10.1142/S0219493720400018
    [28] A. J. Majda, P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Physics Reports, 314 (1999), 237–574. doi: 10.1016/S0370-1573(98)00083-0
    [29] J. M. A. M. van Neerven, M. C. Veraar, L. W. Weis, Stochastic maximal $L^p$-regularity, Ann. Probab., 40 (2012), 788–812.
    [30] U. Pappalettera, Quantitative mixing and dissipation enhancement property of Ornstein-Uhlenbeck flow, arXiv: 2104.03732.
    [31] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983.
    [32] D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math., 115 (1982), 243–290. doi: 10.2307/1971392
    [33] K. R. Sreenivasan, Turbulent mixing: A perspective, PNAS, 116 (2019), 18175–18183. doi: 10.1073/pnas.1800463115
    [34] G. Tessitore, J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, J. Evol. Eq., 6 (2006), 621–655. doi: 10.1007/s00028-006-0280-9
    [35] K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Rozprawy Matematyczne tom/nr w serii: 325, 1993.
    [36] E. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic integrals, The Annals of Mathematical Statistics, 36 (1965), 1560–1564.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1486) PDF downloads(121) Cited by(4)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog