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Abstract: A passive scalar equation for the heat diffusion and transport in an infinite channel is
studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid.
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solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with
augmented diffusion coefficients.
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1. Introduction

In the last four years, a new understanding of heat diffusion in a turbulant fluid modeled by white
noise has been developed. The equation for the heat diffusion and transport, with a heat source q, is

∂tθ + u · ∇θ = κ∆θ + q (1.1)

where θ = θ (t, x) is the temperature, κ is the diffusion constant and u = u (t, x) is the velocity field of
the fluid. By turbulent fluid modeled by white noise we mean the case when, instead of considering
true equations of motion of the fluid (which should also include the effect of the temperature on the
motion), we assume that u is a random field, Gaussian and white in time, with covariance structure give
a priori (hence the temperature is a passive scalar). In this paper we choose the following description
for u:

u (t, x) =
∑
k∈K

σk (x)
dWk

t

dt
(1.2)
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where σk are vector fields and Wk
t are independent Brownian motions on a filtered probability space(

Ω,F , (Ft)t≥0 ,P
)
; for simplicity, assume K is a finite set, but the case of a countable set can be studied

without troubles at the price of additional summability assumptions. As expained in a number of
classical or more modern works [4,5,19,20,30,34,35], which extend to SPDE the remarkable principle
of Wong-Zakai [36], the correct interpretation of Eq (1.1) when u has the form (1.2) is the Stratonovich
equation

dθ +
∑
k∈K

uk · ∇θ ◦ dWk
t = (κ∆θ + q) dt (1.3)

or equivalently the Itô equation with corrector Lθ given by the second order differential operator (*)
below:

dθ +
∑
k∈K

uk · ∇θdWk
t = (κ∆θ +Lθ + q) dt. (1.4)

This is the equation we shall investigate below.
Diffusion in a white noise velocity field is a classical subject, see for instance [6,15,17,24,25,28,33].

The new approach mentioned at the beginning of the introduction started with [16], and was interpreted
initially as a scaling limit, for a suitable parametrization of the coefficients σk (x) of the noise, such that
in the limit the solution of Eq (1.4) converges (in a suitable topology) to the solution of the deterministic
parabolic equation

∂tΘ = (κ∆ +L) Θ + q (1.5)

where for simplicity of exposition we assume that the source q is deterministic. Assuming that also the
initial temperature θ0 is deterministic, the solution Θ is the average of θ:

Θ (t, x) = E [θ (t, x)]

where E denotes the mathematical expectation on (Ω,F ,P). That the mean temperature Θ (t, x) has
enhanced dissipative properties (due to L) was obviously well known, see for instance [28] Chapter 4,
but the fact that in a suitable scaling limit the solution θ (t, x) was close to its average Θ (t, x) is a new
information provided by [16]. Later on this result was perfectioned into quantitative estimates on the
difference θ−Θ, in [11] and [12]; the present note is a continuation of these works. Let us mention the
very important fact that both the scaling limit framework of [16] and the quantitative estimates extend
to nonlinear problems, like the Navier-Stokes equations and others, as well as Wong-Zakai type results
which motivate the Stratonovich operation, see [9, 10, 12–14, 21–23, 26, 27].

As already said, the present work is a continuation of [11, 12]. The main novelty, beside the fact
that we work in an infinite 2D channel, is the presence of a heat source q, neglected in previous works.
This detail has an important consequence, not investigated before: that the deterministic Eq (1.5) has a
unique non trivial stationary solution Θst and it becomes interesting to understand whether the solution
θ of the stochastic problem (1.4) is close to Θst, for large times. One of our main results, Theorem 7
below, gives sufficient conditions on the noise to have that θ is close to Θst.

In Section 2 we define precisely the problem and state the main results, including the numerical
ones. In Section 3 we prove the well posedness of the equations and in Section 4 we prove the main
result on the link between θ (t, x) and Θst.

Remark 1. We only focused our attention on an infinite 2d channel, to avoid the potential confusion
of mixing different set-ups. However, all the results can be extended to Rd × (−1, 1) and Td × (−1, 1)
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(Td being the torus in dimension d), for both d = 1, 2, without any change or addition of stronger
assumptions on the coefficients σk, the heat source q and the initial condition θ0. To this purpose two
key remarks are the validity of Poincaré inequality in these domains as well as the embedding of W2,2

into L∞.

2. Main results

2.1. Notations and definitions

Consider the 2D domain D = R × (−1, 1), namely an infinite channel. We write the coordinates
using the notation

x = (x1, z) ∈ D

because the global notation x appears very often but also the vertical coordinate z will play a basic role.
Let Z be a separable Hilbert space, denote by L2(Ft0 ,Z) the space of square integrable random variables
with values in Z, measurable with respect to Ft0 . Moreover, denote by CF ([0,T ] ; Z) the space of
continuous adapted processes (Xt)t∈[0,T ] with values in Z such that

E

[
sup

t∈[0,T ]
‖Xt‖

2
Z

]
< ∞

and by L2
F

(0,T ; Z) the space of progressively measurable processes (Xt)t∈[0,T ] with values in Z such
that

E

[∫ T

0
‖Xt‖

2
Z dt

]
< ∞.

Denote by L2 (D) and Wk,2 (D) the usual Lebesgue and Sobolev spaces and by Wk,2
0 (D) the closure

in Wk,2 (D) of smooth compact support functions. Set H = L2 (D), V = W1,2
0 (D), D (A) = W2,2 (D)∩V .

We denote by 〈·, ·〉 and ‖·‖ the inner product and the norm in H respectively.
Assume that K is a finite set and σk ∈

(
D (A) ∩C∞b (D)

)2
, divσk = 0, k ∈ K (less is sufficient but

we do not stress this level of generality). Define the matrix-valued function

Q (x, y) =
∑
k∈K

σk (x) ⊗ σk (y) .

If we denote by W (t, x) the vector valued random field

W (t, x) =
∑
k∈K

σk (x) Wk
t

(the velocity field u given by (1.2) is the distributional time derivative of W) then we see that Q (x, y)
is the space-covarance of W (1, x):

Q (x, y) = E
[
W (1, x) ⊗W (1, y)

]
.

The matrix-function Q (x, x) is elliptic:

d∑
i, j=1

Qi j (x, x) ξiξ j = E
[
|W (t, x) · ξ|2

]
≥ 0
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for all ξ = (ξ1, ..., ξd) ∈ Rd. Consider the divergence form elliptic operator L defined as

(Lθ) (x) =
1
2

d∑
i, j=1

∂i

(
Qi j (x, x) ∂ jθ (x)

)
(*)

for θ ∈ W2,2 (D). Define the linear operator A : D (A) ⊂ H → H as

Aθ = (κ∆ +L) θ

It is the infinitesimal generator of an analytic semigroup, see Section 3 and [31], that we denote by etA,
t ≥ 0. Moreover, we denote by Vα the Hilbert space D((−A)

α
2 ), see Section 3.

Definition 2. Given θ0 ∈ L2(F0,H) and q ∈ L2(0,T ; H), a stochastic process

θ ∈ CF ([0,T ] ; H) ∩ L2
F

(0,T ; V)

is a mild solution of equation (1.4) if the following identity holds

θ (t) = etAθ0 +

∫ t

0
e(t−s)Aq (s) ds −

∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s

for every t ∈ [0,T ], P-a.s.

2.2. Existence, uniqueness and regularity

Definition 3. Let α ∈ R. Problem (1.4) is well posed in Vα, if for every θ0 ∈ L2(F0,Vα) and
q ∈ L2(0,T ; Vα) there exists a unique θ mild solution of Eq (1.4) in CF ([0,T ]; Vα) ∩ L2

F
(0,T ; Vα+1).

Moreover θ depends continuously on θ0 and q.

Theorem 4. Equation (1.4) is well posed in H in the sense of definition 3.

Theorem 5. Equation (1.4) is well posed in Vα for 0 ≤ α ≤ 2 in the sense of definition 3.
Moreover, if we assume only θ0 ∈ L2(F0,H) and q ∈ L2(0,T ; Vα) for some 0 ≤ α ≤ 2, then for every
ε ∈ (0,T ) we have θ|[ε,T ] ∈ CF (ε,T ; Vα) ∩ L2

F
(ε,T ; Vα+1) and this restriction depends continuously on

θ0 and q.

It is possible to get stronger regularity results adding further assumputions on the coefficients σk,
see [8] for similar results in bounded domains. We do not stress these assumptions because in the
following sections we need just the estimate guaranteed by the following corollary.

Corollary 6. If θ0 ∈ L2(F0; D(A)), q(t) ≡ q ∈ D(A), then

sup
t∈[0,T ]

E
[
‖θ(t)‖2∞

]
≤ C(‖q‖2D(A) + ‖u0‖

2
D(A))

for some C independent from T.
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2.3. Link between θ (t, x) and the stationary solution Θst

In this section we state our main result about the behavior of θ (t) for large times. Assume that q is
independent of time and introduce the stationary solution of Eq (1.5):

Θst := −A−1q.

Define εQ ≥ 0 as the smallest number such that∫ ∫
v (x)T Q (x, y) v (y) dxdy ≤ εQ

∫
|v (x)|2 dx (2.1)

for all v ∈ L2
(
D,Rd

)
. Call C∞ (θ0, q) > 0 a constant such that

sup
t≥0
E ‖θ (t)‖2∞ ≤ C∞ (θ0, q) .

Theorem 7. For every φ ∈ H,

lim sup
t→∞

E
[
〈θ (t) − Θst, φ〉

2
]
≤
εQ

κ
‖φ‖2 C∞ (θ0, q) .

The theorem is proved in Section 4 below. The existence of a constant C∞ (θ0, q) is provided by
Corollary 6 above. In order to be of interest for applications, this theorem requires two conditions:

1). that εQ is small.
2). that Θst is significantly affected by the noise.

In this section we discuss the first problem, the size of εQ. In the next section we give numerical
simulations which show the great difference between the prensence or absence of noise in the shape of
Θst.

Proposition 8. Assume that the family of coefficients (σk (·))k∈K has the following approximate
orthogonality property: there exists a finite number M ∈ N and a partition K = K1 ∪ ...∪KM such that

〈σk, σk′〉 = 0 for all k, k′ ∈ Ki

for all i = 1, ...,M. Then
εQ ≤ M sup

k∈K
‖σk‖

2 .

Proof. ∫ ∫
v (x)T Q (x, y) v (y) dxdy =

∑
k∈K

〈σk, v〉2 =

M∑
i=1

∑
k∈Ki

‖σk‖
2
〈
σk

‖σk‖
, v

〉2

≤ M
(
sup
k∈K
‖σk‖

2
)
‖v‖2 .

�

Mathematics in Engineering Volume 4, Issue 4, 1–21.



6

The approximate orthogonality property imposed in the previous proposition is a consequence, in
examples, of the fact that the supports of elements of Ki are disjoint, for all i = 1, ...,M. Therefore the
approximation between θ (t) and Θst is good if the coefficients σk have sufficiently disjoint supports
and have sufficiently small size ‖σk‖

2.
These conditions are compatible with a strong modification of the profile Θst, with respect to the

case of the parabolic profile given by the solution of κ∆θ = −q. For other domains, in [11], a theoretical
investigation of the difference is made; the theoretical result requires strong conditions; for instance
the cardinality of K must be very large and a finite but not small M is required: certain supports have
to overlap so that the noise acts everywhere. In the present work we show numerically, in the next
section, that Θst differs significantly from the parabolic profile even for relatively modest sets K and
for M = 1.

2.4. Numerical results

As announced in the previous section, the purpose of this numerical section is to show that the
presence of the correction Lθ, due to the noise, in the deterministic Eq (1.5), modifies the asymptotic
profile, even when the noise is weak in intensity, as described in the previous section, in order to have
a small constant εQ.

We explain here this fact in two ways. The first one is theoretical, based on a very ideal noise. The
second one is numerical.

2.4.1. An ideal computation

In this subsection we suspend the requirement that q,Θ have to decay at infinity and accept a
geometrically simpler case, although not strictly covered by the previous theory. We assume that the
function q (x) is equal to a constant q, and both the stationary solution Θst (x) and Q (x, x) depend only
on the vertical direction z ∈ [−1, 1] and they are symmetric with respect to z = 0; and smooth. The
equation

div
((
κI +

1
2

Q (x, x)
)
∇Θst (x)

)
= −q (x)

becomes
∂z ((κ + Q22 (z)) ∂zΘst (z)) = −q.

It gives us
(κ + Q22 (z)) ∂zΘst (z) = −qz

without constants, since both sides of the identity should vanish at z = 0 (the function Θst is symmetric
with respect to z = 0 and smooth, hence ∂zΘst (0) = 0). Therefore we have to solve

∂zΘst (z) = −
qz

κ + Q22 (z)
Θst (1) = 0.

The solution of the previous equation is

Θst (z) = −

∫ z

−1

qs
κ + Q22 (s)

ds.
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Without noise the solution is

Θ
Q=0
st (z) =

q
κ

1 − z2

2
=

q
2κ
−

q
2κ

z2

so the curvature q
κ

is large (for κ small) and also the maximum is large:

max Θ
Q=0
st =

q
2κ
.

Assume
c2σ

21[−1+δ,1−δ] ≤ Q22 (z) ≤ c2σ
2

with large σ2 and small δ. Then

q
κ + c2σ2

1 − z2

2
≤ Θst (z) ≤ −

∫ z

−1

qs
κ + c1σ21[−1+δ,1−δ] (s)

ds.

If z ∈ [−1,−1 + δ] we have

Θst (z) ≤
q
κ

1 − z2

2
like in the case without noise but, for z ∈ [−1 + δ, 0] we have

Θst (z) ≤
q
κ

1 − (1 − δ)2

2
+

q
κ + c1σ2

(1 − δ)2
− z2

2

= C
(
κ, q, δ, σ2

)
−

q
κ + c1σ2

z2

2
.

The curvature q
κ+c1σ2 is much smaller than q

κ
and the maximum

max Θst (z) = C
(
κ, q, δ, σ2

)
≥

q
κ + c1σ2

(1 − δ)2

2

is very small for large σ2 and small δ.
Figure 1 illustrates the modification of profile, from the standard parabolic one of free diffusion in

a steady medium, to the case of turbulent decay. The reduction in heat content can be dramatic, due to
turbulence, creating a fundamental engineering problem.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

steady medium

turbulent decay

Figure 1. The dashed profile is the classical parabolic profile with Q = 0. The solid-line
profile is the one obtained by a large σ2 and small δ.
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2.4.2. 2d numerical simulation of stationary solutions

The purpose of this subsection is the numerical simulation of the effects of an operator L, based on
the idea of vortex structures, to the solution of the problem

(κ∆ +L)Θst = −q.

More details on the construction of this operatorL can be found in [11]. In this subsection we continue
to suspend the requirement that q,Θ have to decay at infinity and accept that the function q (x) is equal
to a constant q.

Recalling that

(Lθ)(x) =
1
2

d∑
i, j=1

∂i

∑
k∈K

σk(x) ⊗ σk(x)∂ jθ(x)

 ,
the σk’s are chosen in order to be a rescaled and shifted version of a vector field w which satisfies
several conditions:

1). w is smooth and div w = 0;
2). w has compact support contained in B(0, 1);
3). w is close to 1

2π
x⊥
|x|2 near x = 0.

The first two properties are useful in order to have that the σk’s model the velocity of an incompressible
fluid at rest. The third one is close to our idea of vortex structures. In particular, for r > 0 and
{xk}k∈K ⊆ R

2|K| fixed, then
σk(x) = Γr−1w

( x − xk

r

)
,

where Γ is another parameter larger than 0. It remains to describe how to choose w. We construct it as
w = ∇⊥ψ so that it is divergence free. It remains to fix ψ compactly supported in B(0, 1) such that it is
close to log|x|

2π near x = 0.

ψ(x) =

∫
R2
ψ0(x − y) fε(y) dy

where fε is a mollifier with support in B(0, ε) and ψ0 is a C∞(R2 \ {0}) radial function such that

ψ0(x) =
log |x|

2π
for |x| ≤

1
3

and ψ0(x) = 0 for |x| >
2
3
.

For numerical reasons we consider the problem in the bounded domain

D̃ = (tan(−1.54), tan(1.54)) × (−0.1, 0.1).

In order to have that the σk’s model a fluid at rest, we can take

r ≤ maxk∈Kd(∂D̃, xk) and ε <
1
6
.

These are the real constraints on the parameters of our numerical simulation. The other parameters
Γ, K, {xk}k∈K can be chosen more arbitrarily in order to have satisfactory results. In fact, even if we
do not examine the other constraints described in [11] the profile changes considerably in the region
where the vortex structures have an impact.
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The centers of the vortex structures {xk} have been chosen on a grid equally spaced in both
directions. In particular we have chosen to take 10 points in the x1 direction between −0.5 and 0.5 and
3 points in the z direction between −0.05 and 0.05. Moreover, we take r = 0.04, ε = 0.1 and
Γ = 0.02

√
2. The other parameters of the problem are κ = 0.05 and q ≡ 1. In this way the impact of

the operator L is related to a small portion of the domain D̃ and we can completely appreciate how it
changes the profile of the solution.

Figure 2. Solution in the critical Region.
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Figure 3. Profiles at different values of x1.

Figures 2 and 3 illustrate the modification of the profile, from the standard parabolic one of free
diffusion in a steady medium, to the case of turbulent decay. Even if we use just a really reduced
number of vortices we can observe a significant decay modification of the profile due to turbulence.
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3. Proof of Theorems 4, 5 and Corollary 6

3.1. Abstract results

The following abstract results are taken from [8]. The regularity theory of these equations has been
recently raised and improved by [2, 3, 29], where the reader may find additional results.

Let H be a separable Hilbert space, A : D(A) ⊆ H → H the infinitesimal generator of a strongly
continuous semigroup of negative type. Under these assumptions the family

Vα := D((−A)
α
2 )

forms a Hilbert scale with inner product 〈·, ·〉Vα and norm ‖·‖Vα , see [32]. We note that

A ∈ L(Vα+2,Vα) ∀α ∈ R,

are linear bounded operators. For α > 0 we mean the restriction of A to Vα+2 and for α < 0 there exists
a unique linear bounded extension of A from Vα+2 and Vα. Moreover, ∀α ∈ R, A generates an analytic
semigroup of negative type in Vα denoted by eAt ∈ L(Vα), t ≥ 0.
Consider the stochastic evolution equationdu(t) = (Au(t) + q(t))dt +

∑N
k=1 Bku(t)dWk

t t ∈ [t0,T ]
u(t0) = u0

, (3.1)

interpreted in mild sense

u(t) = eAtu0 +

∫ t

t0
eA(t−s)q(s) ds +

N∑
k=1

∫ t

t0
eA(t−s)Bku(s)dWk

s . (3.2)

Definition 9. Let α ∈ R, Bk ∈ L(Vα+1,Vα), problem (3.1) is well posed in Vα, if for every u0 ∈

L2(Ft0 ,Vα) and q ∈ L2(t0,T ; Vα) there exists a unique u mild solution of Eq (3.2) in CF ([0,T ]; Vα) ∩
L2
F

(0,T ; Vα+1). Moreover u depends continuously on u0 and q.

Theorem 10. Let α ∈ R be fixed. Let Bk ∈ L(Vα+1,Vα) such that

1
2

N∑
k=1

‖Bku‖2Vα ≤ −η〈Au, u〉Vα + λ‖u‖2Vα , u ∈ Vα+2

and
N∑

k=1

‖Bku‖2Vα ≤ c‖u‖2Vα+1
, u ∈ Vα+1

for some constants η ∈ (0, 1) λ ≥ 0 and c > 0. Then Eq (3.1) is well posed in Vα. Moreover

‖u‖2CF ([0,T ];Vα) + ‖u‖2L2
F

(0,T ;Vα+1) ≤ C
(
‖φ‖2CF ([0,T ];Vα) + ‖φ‖2L2

F
(0,T ;Vα+1)

)
for φ(t) = eAtu0 +

∫ t

t0
eA(t−s)q(s) ds and some constant c > 0 independent of u0 and q.
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Theorem 11. Let α < β be given real numbers. If Eq (3.1) is well posed in Vα and Vβ, then it is well
posed in Vγ for all γ ∈ [α, β]. Moreover, for every u0 ∈ L2

F
(Vα), q ∈ L2(t0,T ; Vβ) and ε ∈ (t0,T ), then

u|[ε,T ] ∈ CF (ε,T ; Vβ) ∩ L2
F

(ε,T ; Vβ+1) and depends continuously from u0 and q.

Theorem 12. Fixed α ∈ R, if the assumptions of theorem 10 hold true and

• Bk ∈ L(Vα+3,Vα+2);
• Lk := ABk − BkA ∈ L(Vα+3,Vα) and

N∑
k=1

‖Lku‖2Vα ≤ c2‖u‖2Vα+2
, u ∈ Vα+3

for some c2 > 0

then
1
2

N∑
k=1

‖Bku‖2Vα+2
≤ −η̃〈Au, u〉Vα+2 + λ̃‖u‖2Vα+2

, u ∈ Vα+4

N∑
k=1

‖Bku‖2Vα+2
≤ c‖u‖2Vα+3

, u ∈ Vα+3

for some η̃ ∈ (0, 1), λ̃ ≥ 0 and c > 0. In particular Eq (3.1) is well posed in Vα+2.

3.2. Some results on elliptic operators

Let A, H, V, D(A) and D as described in Section 2.1. In particular A is an elliptic operator. In fact
∀x ∈ D and ξ ∈ R2

〈ξ, (κ +
1
2

Q(x, x))ξ〉R2 =
∑
k∈K

〈ξ, (κI +
1
2
σk(x)σk(x)t)ξ〉R2 ≥ κ|ξ|2 .

Moreover from the boundedness of D in the second direction the Poincaré inequality holds, namely

∃Cp > 0 : ‖u‖2V ≤ Cp‖u‖2 ∀u ∈ V.

For the operator A the following results hold, see for example [1, 7, 18].

Proposition 13. -A is self-adjoint.

Proposition 14. A is the infinitesimal generator of an analytic semigroup of negative type.

Under these assumptions, as described in Section 3.1, the family

Vα := D((−A)
α
2 )

form a Hilbert scale with inner product 〈·, ·〉Vα and norm ‖·‖Vα . We note that

A ∈ L(Vα+2,Vα) ∀α ∈ R,

are linear bounder operators. For α > 0 we mean the restriction of A to Vα+2 and for α < 0 there exists
a unique linear bounded extension of A from Vα+2 and Vα. Moreover, ∀α ∈ R, A generates an analytic
semigroup of negative type in Vα denoted by eAt ∈ L(Vα), t ≥ 0.
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Proposition 15.

• D((−A)θ) = H2θ(D) i f θ ∈ (0, 1
4 );

• D((−A)θ) = {u ∈ H2θ(D) : u|∂D = 0} i f θ ∈ (1
4 , 1).

In particular, H = V0, V = V1, D(A) = V2.

3.3. Well posedness

3.3.1. Reformulation of the problem

Equation (1.4) can be rewritten as
dθ(t, x) = (Aθ(t, x) + q(t, x))dt +

∑
k∈K Bkθ(t, x)dWk

t (t, x) ∈ [0,T ] × D

θ(t, (x1,±1)) = 0 x1 ∈ R, t ∈ [0,T ]
θ(0, x) = θ0(x) x ∈ D

, (3.3)

where Bku := −
∑2

j=1 σ
j
k
∂u
∂x j

. Bk ∈ L(V1,H) without any further assumption on {σk}k∈K . The linearity is
obvious, the continuity follows from the boundedness of σk.

Definition 16. Given θ0 ∈ L2(F0,H) and q ∈ L2(0,T ; H), we say that a stochastic process θ is a weak
solution of Eq (1.4) if

θ ∈ CF ([0,T ]; H) ∩ L2
F

(0,T ; V)

and for every φ ∈ D(A), we have

〈θ(t), φ〉 =〈θ0, φ〉 +

∫ t

0
〈θ(s), Aφ〉 ds +

∫ t

0
〈q(s), φ〉+

−
∑
k∈K

∫ t

0
〈θ(s), Bkφ〉 dWk

s

for every t ∈ [0,T ], P − a.s.

Proposition 17. θ is a weak solution of problem (1.4) if and only if is a mild solution of problem (1.4).

Proof. Let θ(t) be a weak solution and φ(t) ∈ C1([0,T ]; H) ∩C([0,T ]; D(A)). Let, moreover, π = {0 =

t0 < t1 < · · · < Tn = T } be a partition of [0,T ]. Thus, using the identity

〈θ(ti+1), φ(ti+1)〉 − 〈θ(ti+1), φ(ti)〉 =

∫ ti+1

ti
〈θ(ti+1), ∂sφ(s)〉 ds,

we get

〈θ(ti+1), φ(ti+1)〉 =〈θ(ti), φ(ti)〉 +
∫ ti+1

ti
〈θ(s), Aφ(ti)〉 ds

+

∫ ti+1

ti
〈q(s), φ(ti)〉 ds +

∫ ti+1

ti
〈θ(ti+1), ∂sφ(s)〉 ds

−
∑
k∈K

∫ ti+1

ti
〈θ(s), Bkφ(ti)〉 dWk

s .
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It implies

〈θ(T ), φ(T )〉 =〈θ0, φ(0)〉 +
∫ T

0
〈θ(s), Aφ(s−π (s))〉 ds

+

∫ T

0
〈θ(s+

π (s)), ∂sφ(s)〉 ds +

∫ t

0
〈q(s), φ(s−π (s))〉 ds

−
∑
k∈K

∫ T

0
〈θ(s), Bkφ(s−π (s))〉 dWk

s ,

where s−π (s) = ti if s ∈ [ti, ti+1] and s+
π (s) = ti+1 if s ∈ [ti, ti+1]. Taking the limit over a sequence of

partitions πN with size going to zero, we get

〈θ(T ), φ(T )〉 =〈θ0, φ(0)〉 +
∫ T

0
〈θ(s), Aφ(s)〉 ds

+

∫ T

0
〈θ(s), ∂sφ(s)〉 ds +

∫ T

0
〈q(s), φ(s)〉 ds

−
∑
k∈K

∫ T

0
〈θ(s), Bkφ(s)〉 dWk

s

(thanks to the regularity of θ, φ, q, dominated convergence theorem and Itô isometry). The argument
applies to a generic t ∈ [0,T ], hence we have

〈θ(t), φ(t)〉 =〈θ0, φ(0)〉 +
∫ t

0
〈θ(s), Aφ(s)〉 ds

+

∫ t

0
〈θ(s), ∂sφ(s)〉 ds +

∫ t

0
〈q(s), φ(s)〉 ds

−
∑
k∈K

∫ t

0
〈θ(s), Bkφ(s)〉 dWk

s .

For such value of t, take the function φt(s) = e(t−s)Aψ with ψ ∈ D(A). This function is of class φt ∈

C1([0, t]; H) ∩C([0, t]; D(A)). Hence from previous identity we get

〈θ(t), ψ〉 =〈θ0, etAψ〉 +

∫ t

0
〈θ(s), Ae(t−s)Aψ〉 ds

−

∫ t

0
〈θ(s), Ae(t−s)Aψ〉 ds +

∫ t

0
〈q(s), e(t−s)Aψ〉 ds

−
∑
k∈K

∫ t

0
〈θ(s), Bke(t−s)Aψ〉 dWk

s

=〈θ0, etAψ〉 +

∫ t

0
〈q(s), e(t−s)Aψ〉 ds

−
∑
k∈K

∫ t

0
〈θ(s), Bke(t−s)Aψ〉 dWk

s .
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Recalling that Bkv = −σk · ∇v, div(σk) = 0, integrating by parts and using the fact that A is selfadjoint
we get

〈θ(t), ψ〉 = 〈etAθ0, ψ〉 +
∑
k∈K

∫ t

0
〈e(t−s)ABkθ(s), ψ〉 dWk

s +

∫ t

0
〈e(t−s)Aq(s), ψ〉 ds.

By the arbitrarity of ψ we get that θ is a mild solution, namely

θ(t) = etAθ0 +

∫ t

0
e(t−s)Aq(s) ds +

∑
k∈K

∫ t

0
e(t−s)ABkθ(s)dWk

s .

Let now θ(t) be a mild solution and φ ∈ D(A). Doing the scalar product between θ(t) and φ we get

〈θ(t), φ〉 = 〈etAθ0, φ〉 +

∫ t

0
〈e(t−s)Aq(s), φ〉 ds +

∑
k∈K

∫ t

0
〈e(t−s)ABkθ(s), φ〉 dWk

s .

Let us analyze the quantity 〈etAθ0, φ〉. Using the fact that A is selfadjoint and integrating by parts
backwards we get

〈etAθ0, φ〉 = 〈θ0, etAφ〉 = 〈θ0, φ〉 +

∫ t

0
〈θ0, AesAφ〉 ds.

Now thanks to the regularity of φ ∈ D(A) and the fact that A is selfadjoint, exploiting the definition of
mild solution we get∫ t

0
〈θ0, AesAφ〉ds =

∫ t

0
〈esAθ0, Aφ〉 ds

=

∫ t

0
〈θ(s), Aφ〉 ds −

∫ t

0
ds

∫ s

0
du〈e(s−u)Aq(u), Aφ〉

−
∑
k∈K

∫ t

0
ds

∫ s

0
〈e(s−u)ABkθ(u), Aφ〉 dWk

u .

Let us note that ∫ T

t
dxE

[∫ T

0
|〈e(x−t)ABkθ(t), Aφ〉|2 dt

] 1
2

≤

∫ T

t
dx E

[∫ T

0
‖Bkθ(t)‖2‖Aφ‖2 dt

] 1
2

≤ C‖Aφ‖‖θ‖L2
F

(0,T ;V) < +∞.

Thus we can apply the stochastic Fubini theorem to the stochastic integrals and, exploiting arguments
analogous to the previous ones, we get

−

∫ t

0
ds

∫ s

0
〈e(s−u)ABkθ(u), Aφ〉 dWk

u = −

∫ t

0
dWk

u

∫ t

u
〈e(s−u)ABkθ(u), Aφ〉 ds

= −

∫ t

0
dWk

u

[
〈Bkθ(u), e(s−u)Aφ〉

]s=t

s=u
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= −

∫ t

0
dWk

u〈e
(t−u)ABkθ(u), φ〉

−

∫ t

0
dWk

u〈θ(u), Bkφ〉.

Applying Fubini theorem to −
∫ t

0
ds

∫ s

0
du〈e(s−u)Aq(u), Aφ〉 we get

−

∫ t

0
ds

∫ s

0
〈e(s−u)Aq(u), Aφ〉 du = −

∫ t

0
du

∫ t

u
〈e(s−u)Aq(u), Aφ〉 ds

= −

∫ t

0
du

[
〈q(u), e(s−u)Aφ〉

]s=t

s=u

= −

∫ t

0
du〈e(t−u)Aq(u), φ〉 +

∫ t

0
du〈q(u), φ〉.

Putting together all these relations we get the weak formulation. �

Remark 18. From the weak formulation we can obtain easily the Itô formula

‖θ(t)‖2 − ‖θ(0)‖2 = − 2
∑
k∈K

∫ t

0
dWk

s 〈θ(s), σk · ∇θ(s)〉 + 2
∫ t

0
〈θ(s), q(s)〉 ds

− 2
∫ t

0
〈(−A)

1
2 θ(s), (−A)

1
2 θ(s)〉 ds

+
∑
k∈K

∫ t

0
‖σk · ∇θ(s)‖2 ds.

Thanks to the results of Section 3.2 we know that A is the infinitesimal generator of an analytic
semigroup of negative type, hence we can apply the abstract results of Section 3.1.

3.3.2. Proof of Theorem 4

Thanks to theorem 10 it is enough to show that there exist η ∈ (0, 1),
λ ≥ 0, c > 0 such that:

1). 1
2

∑
k∈K‖

∑2
j=1 σ

j
k
∂u
∂x j
‖2 ≤ −η〈Au, u〉 + λ‖u‖2 ∀u ∈ D(A).

2).
∑

k∈K‖
∑2

j=1 σ
j
k
∂u
∂x j
‖2 ≤ c‖u‖2V ∀u ∈ V .

1). Calling M := ‖Q‖L∞(D), the first inequality holds taking λ ≥ 0, η ∈ [ M
2κ+M , 1). In fact

−η < Au, u > +λ‖u‖2 = ηκ

∫
D
|∇u|2 dx + λ

∫
D
|u|2 dx +

η

2

∫
D
∇u · Q∇u dx

and
1
2

∑
k∈K

‖

2∑
j=1

σ
j
k

∂u
∂x j
‖2 =

1
2

∑
k∈K

∫
D
∇u · σkσk · ∇u dx =

1
2

∫
D
∇u · Q∇u dx.
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Under previous assumptions on λ and η

1
2

∑
k∈K

‖

2∑
j=1

σ
j
k

∂u
∂x j
‖2 + η〈Au, u〉 − λ‖u‖2

= − ηκ

∫
D
|∇u|2 dx − λ

∫
D
|u|2 dx +

1 − η
2

∫
D
∇u · Q∇u dx

≤ − ηκ

∫
D
|∇u|2 dx +

M(1 − η)
2

∫
D
|∇u|2 dx ≤ 0.

In particular, if we choose η = M
2κ+M and λ = 0 we get

1
2

∑
k∈K

‖

2∑
j=1

σ
j
k

∂u
∂x j
‖2 ≤ −

M
2κ + M

〈Au, u〉 ∀u ∈ D(A)

2). The second inequality is satisfied taking c = M := ‖Q‖L∞(D). In fact, as above,

∑
k∈K

‖

2∑
j=1

σ
j
k

∂u
∂x j
‖2 =

∫
D
∇u · Q∇u dx ≤ M‖u‖2V .

The assumptions of theorem 10 are satisfied for α = 0. In particular, Eq (1.4) is well posed in H and
the thesis follows.

Remark 19. As a corollary one gets existence and uniqueness of the weak solution in the sense of
definition 16.

3.3.3. Proof of Theorem 5 and Corollary 6

1). Theorem 5. Since Theorem 4 was proved verifying the assumptions of Theorem 10, we can
exploit a bootstrapping procedure thanks to Theorem 11 and 12. Regardless of the other
hypotheses, if Bk ∈ L(V3,D(A)) then

Lku = (ABk − BkA)u =

2∑
i, j,l=1

κ∂i,iσ
l
k∂lu + 2κ∂iσ

l
k∂i,lu +

1
2

(∂iQi, j∂ jσ
l
k∂lu + Qi, j∂i, jσ

l
k∂lu

+ 2Qi, j∂iσ
l
k∂ j,lu − ∂i,lQi, jσl

k∂ ju − ∂lQi, jσl
k∂i, ju).

In particular, if u ∈ V3 thanks to the regularity of σk, then∑
k∈K

‖Lku‖2 ≤ C
∑

j,l

(
‖
∂2u
∂x j∂xl

‖2 + ‖
∂u
∂x j
‖2

)
≤ C‖u‖2D(A).

Moreover, thanks to the assumptions on σk, Bk ∈ L(V3,D(A)). The linearity is obvious. If u ∈ V3,
then Bku ∈ D(A) which means in particular that Bku|{x2=±1} = 0. In fact

Bku|{x2=±1} = σ2
k
∂u
∂x2
|{x2=±1} = 0.

Mathematics in Engineering Volume 4, Issue 4, 1–21.



17

The continuity follows from the boundedness of the derivatives of σk and by the equivalence
between the norm of H3(D) and V3 for u ∈ V3. Then we get the first part of the thesis applying
Theorem 12 and Theorem 11. The second part follows by the first one and Theorem 11.

2). Corollary 6. Under these assumptions

θ ∈ L2
F

(0,T ; V3) ∩CF ([0,T ]; D(A)),

thus from the Itô formula described in Remark 18, with starting time t0 = t and ending time t + h
we get

‖θ(t + h)‖2 − ‖θ(t)‖2 = − 2
∑
k∈K

∫ t+h

t
dWk

s 〈θ(s), σk · ∇θ(s)〉

+
∑
k∈K

∫ t+h

t
‖σk · ∇θ(s)‖2 ds

+ 2
∫ t+h

t
〈θ(s), q〉 ds + 2

∫ t+h

t
〈θ(s), Aθ(s)〉 ds.

Looking carefully at the proof of Theorem 4 we know that ∃η ∈ (0, 1) such that

1
2

∑
k∈K

‖σk · ∇u‖2 ≤ −η〈Au, u〉 ∀u ∈ D(A).

Thus, taking the expected value and exploiting this relation, Young and Poincaré inequalities we
get

E
[
‖θ(t + h)‖2

]
= E

[
‖θ(t)‖2

]
+ 2E

[∫ t+h

t
〈θ(s), q〉 ds

]
+ 2E

[∫ t+h

t
〈θ(s), Aθ(s)〉 ds

]
+

∑
k∈K

E

[∫ t+h

t
‖σk · ∇θ(s)‖2 ds

]
≤ E

[
‖θ(t)‖2

]
+ 2 (1 − η)E

[∫ t+h

t
〈θ(s), Aθ(s)〉 ds

]
+ 2E

[∫ t+h

t
‖θ(s)‖‖q‖ ds

]
≤ E

[
‖θ(t)‖2

]
− 2(1 − η)κE

[∫ t+h

t
‖∇θ(s)‖2 ds

]
+ (1 − η)

κ

Cp
E

[∫ t+h

t
‖θ(s)‖2 ds

]
+

Cp

4(1 − λ)κ
h‖q‖2

≤ E
[
‖θ(t)‖2

]
− 2(1 − η)

κ

Cp
E

[∫ t+h

t
‖θ(s)‖2 ds

]
+ (1 − η)

κ

Cp
E

[∫ t+h

t
‖θ(s)‖2 ds

]
+

Cp

4(1 − λ)κ
h‖q‖2,
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namely there exist C1, C2 depending on η, κ and Cp such that

E
[
‖θ(t + h)‖2

]
≤ E

[
‖θ(t)‖2

]
−C1

∫ t+h

t
E

[
‖θ(s)‖2

]
ds + C2h‖q‖2. (3.4)

From Eq (3.4), exploiting the arbitrariness of t and h and the regularity of θ, we can apply
Gronwall’s lemma in differential form proving that

E
[
‖θ(t)‖2

]
≤ ‖θ0‖

2 +
C2

C1
‖q‖2.

Moreover we can apply the second part of Theorem 5 with parameters
t0 = t, T = t + 2. From the regularity of θ we get that

θ(t0) ∈ L2(Ft0 ,D(A)),

thus thanks to previous inequality

E
[
‖θ(t + 1)‖2D(A)

]
≤ C(E

[
‖θ(t)‖2

]
+ 2‖q‖2D(A)) ≤ C(‖θ0‖

2 + ‖q‖2D(A)).

From the arbitrariness of t

sup
t∈[1,T ]

E
[
‖θ(t)‖2D(A)

]
≤ C(‖θ0‖

2
D(A) + ‖q‖2D(A)).

It remains to show that

sup
t∈[0,1]
E

[
‖θ(t)‖2D(A)

]
≤ C(‖θ0‖

2
D(A) + ‖q‖2D(A)).

This inequality can be obtained directly from the well-posedness in D(A) and we omit the details.
Lastly by Sobolev embedding theorem, recalling that

D(A) ↪→ L∞(D)

we get the thesis.

4. Proof of Theorem 7

Recall the identity

θ (t) = etAθ0 +

∫ t

0
e(t−s)Aq (s) ds −

∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .

Set

Θ (t) = etAθ0 +

∫ t

0
e(t−s)Aq (s) ds.

Then

θ (t) − Θ (t) = −
∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .
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If φ ∈ H,

〈θ (t) − Θ (t) , φ〉 =
∑
k∈K

∫ t

0

〈
θ (s) , σk · ∇θe(t−s)Aφ

〉
dWk

s .

Then (here we take advantage of the cancellations of Itô integrals)

E
[
〈θ (t) − Θ (t) , φ〉2

]
=

∑
k∈K

E

∫ t

0

〈
θ (s) , σk · ∇e(t−s)Aφ

〉2
ds.

Write φt,s := e(t−s)Aφ. Then∑
k∈K

〈
θ (s) , σk · ∇φt,s

〉2

=
∑
k∈K

∫ ∫
θ (s, x) θ (s, y)σk (x) · ∇φt,s (x)σk (y) · ∇φt,s (y) dxdy

=

∫ ∫
θ (s, y)∇φt,s (y)T Q (x, y)∇φt,s (x) θ (s, x) dxdy

≤ −
εQ

k
‖θ (s)‖2∞

〈
Ae(t−s)Aφ, e(t−s)Aφ

〉
.

Therefore

E
[
〈θ (t) − Θ (t) , φ〉2

]
≤
εQ

k
C∞ (θ0, q)

∫ t

0

〈
(−A) e(t−s)Aφ, e(t−s)Aφ

〉
ds

=
εQ

k
C∞ (θ0, q)

∫ t

0

d
ds

∥∥∥e(t−s)Aφ
∥∥∥2

ds

≤
εQ

k
C∞ (θ0, q) ‖φ‖2 .

Now we use the fact that
lim
t→∞
〈Θ (t) − Θst, φ〉 = 0.

Indeed,
Θ (t) − Θst = etA

(
θ0 + A−1q

)
.

For every ε > 0, from the inequality (a + b)2
≤ (1 + ε) a2 +

(
1 + 4

ε

)
b2 we have

E
[
〈θ (t) − Θst, φ〉

2
]

≤ (1 + ε)E
[
〈θ (t) − Θ (t) , φ〉2

]
+

(
1 +

4
ε

)
E

[
〈Θ (t) − Θst, φ〉

2
]
.

This implies the result of the theorem.
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