In this paper we find a class of boundary conditions which determine dissipative differential operators of order three and prove that these operators have no real eigenvalues. The completeness of the system of eigenfunctions and associated functions is also established.
Citation: Tao Wang, Jijun Ao, Anton Zettl. A class of dissipative differential operators of order three[J]. AIMS Mathematics, 2021, 6(7): 7034-7043. doi: 10.3934/math.2021412
In this paper we find a class of boundary conditions which determine dissipative differential operators of order three and prove that these operators have no real eigenvalues. The completeness of the system of eigenfunctions and associated functions is also established.
[1] | M. A. Naimark, Linear differential operators, New York: Ungar, 1968. |
[2] | Z. Wang, H. Wu, Dissipative non-self-adjoint Sturm-Liouville operators and completeness of their eigenfunctions, J. Math. Anal. Appl., 394 (2012), 1–12. doi: 10.1016/j.jmaa.2012.04.071 |
[3] | M. C. Yang, J. J. Ao, C. Li, Non-self-adjoint fourth-order dissipative operators and the completeness of their eigenfunctions, Oper. Matrices, 10 (2016), 651–668. |
[4] | G. Sh. Guseinov, H. Tuncay, The determinants of perturbation connected with a dissipative Sturm-Liouville operators, J. Math. Anal. Appl., 194 (1995), 39–49. doi: 10.1006/jmaa.1995.1285 |
[5] | E. Bairamov, A. M. Krall, Dissipative operators generated by the Sturm-Liouville differential expression in the Weyl limit circle case, J. Math. Anal. Appl., 254 (2001), 178–190. doi: 10.1006/jmaa.2000.7233 |
[6] | E. Uğurlu, E. Bairamov, On singular dissipative fourth-order differential operator in lim-4 case, ISRN Math. Anal., 2013 (2013), 549876. |
[7] | X. Y. Zhang, J. Sun, The determinants of fourth order dissipative operators with transmission conditions, J. Math. Anal. Appl., 410 (2014), 55–69. doi: 10.1016/j.jmaa.2013.08.004 |
[8] | E. Uğurlu, E. Bairamov, On the rate of the convergence of the characteristic values of an integral operator associated with a dissipative fourth order differential operator in lim-4 case with finite transmission conditions, J. Math. Chem., 52 (2014), 2627–2644. doi: 10.1007/s10910-014-0404-3 |
[9] | H. Tuna, On spectral properties of dissipative fourth order boundary-value problem with a spectral parameter in the boundary condition, Appl. Math. Comput., 219 (2013), 9377–9387. |
[10] | M. Gregu$\breve{s}$, Third order linear differential equations, Dordrecht: Reidel, 1987. |
[11] | Y. Y. Wu, Z. Q. Zhao, Positive solutions for third-order boundary value problems with change of signs, Appl. Math. Comput., 218 (2011), 2744–2749. |
[12] | D. Anderson, J. M. Davis, Multiple solutions and eigenvalues for third-order right focal boundary value problems, J. Math. Anal. Appl., 267 (2002), 135–157. doi: 10.1006/jmaa.2001.7756 |
[13] | W. N. Everitt, A. Poulkou, Kramer analytic kernels and first-order boundary value problems, J. Comput. Appl. Math., 148 (2002), 29–47. doi: 10.1016/S0377-0427(02)00571-X |
[14] | X. L. Hao, M. Z. Zhang, J. Sun, A. Zettl, Characterization of domains of self-adjoint ordinary differential operators of any order even or odd, Electron. J. Qual. Theor., 61 (2017), 1–19. |
[15] | E. Uğurlu, Extensions of a minimal third-order formally symmetric operator, Bull. Malays. Math. Sci. Soc., 43 (2020), 453–470. doi: 10.1007/s40840-018-0696-8 |
[16] | E. Uğurlu, Regular third-order boundary value problems, Appl. Math. Comput., 343 (2019), 247–257. |
[17] | W. N. Everitt, Integrable-square solution of ordinary differential equation, Quart. J. Math., 10 (1959), 145–155. doi: 10.1093/qmath/10.1.145 |
[18] | M. G. Gasymov, G. Sh. Guseinov, Some uniqueness theorems on inverse of spectral analysis for Sturm-Liouville operators in the Weyls limit-circle case, Differ. Uravn., 25 (1989), 588–599. |
[19] | E. Uğurlu, Singular dissipative third-order operator and its characteristic function, Annals Func. Anal., 11 (2020), 799–814. doi: 10.1007/s43034-020-00055-z |
[20] | E. Uğurlu, Some singular third-order boundary value problems, Math. Method. Appl. Sci., 43 (2020), 2202–2215. doi: 10.1002/mma.6034 |
[21] | Z. Cao, Ordinary differential operators, Beijing: Science Press, 2016. |
[22] | I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Providence, RI: American Math. Soc., 1969. |
[23] | M. G. Krein, On the indeterminate case of the Sturm-Liouville boundary problem in the interval (0, $\infty$), Izv. Akad. Nauk SSSR Ser. Mat., 16 (1952), 293–324. |