Research article

Eigenvalues of fourth-order boundary value problems with distributional potentials

  • Received: 10 November 2021 Revised: 21 January 2022 Accepted: 29 January 2022 Published: 10 February 2022
  • MSC : 34B09, 34L10, 34B05, 47A75

  • This paper aims to investigate the fourth-order boundary value problems with distributional potentials. We first prove that the operators associated with the problems are self-adjoint and the corresponding eigenvalues are real. Then we obtain that the eigenvalues of the problems depend not only continuously but also smoothly on the parameters of the problems: the boundary conditions, the coefficient functions and the endpoints. Moreover, we find the differential expressions for each parameter.

    Citation: Hai-yan Zhang, Ji-jun Ao, Fang-zhen Bo. Eigenvalues of fourth-order boundary value problems with distributional potentials[J]. AIMS Mathematics, 2022, 7(5): 7294-7317. doi: 10.3934/math.2022407

    Related Papers:

  • This paper aims to investigate the fourth-order boundary value problems with distributional potentials. We first prove that the operators associated with the problems are self-adjoint and the corresponding eigenvalues are real. Then we obtain that the eigenvalues of the problems depend not only continuously but also smoothly on the parameters of the problems: the boundary conditions, the coefficient functions and the endpoints. Moreover, we find the differential expressions for each parameter.



    加载中


    [1] S. Albeverio, F. Gesztesy, R. Høegh–Krohn, H. Holden, Solvable Models in Quantum Mechanics, Sec. Edition, Providence, RI: AMS Chelsea Publ., 2005.
    [2] J. J. Ao, M. L. Li, H. Y. Zhang, Eigenvalues of Sturm–Liouville problems with distributional potentials and eigenparameter-dependent boundary conditions, Quaes. Math., to appear. http://dx.doi.org/10.2989/16073606.2022.2033337
    [3] J. J. Ao, J. Wang, Eigenvalues of Sturm–Liouville problems with distribution potentials on time scales, Quaes. Math., 32 (2019), 1185–1197. http://dx.doi.org/10.2989/16073606.2018.1509394 doi: 10.2989/16073606.2018.1509394
    [4] J. Dieudonné, Foundations of Modern Analysis, New York: Academic Press, 1969.
    [5] M. Dauge, B. Helffer, Eigenvalues variation, I. Neumann problem for Sturm–Liouville operators, J. Differ. Equ., 104 (1993), 243–262. http://dx.doi.org/10.1006/jdeq.1993.1071 doi: 10.1006/jdeq.1993.1071
    [6] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl–Tichmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math., 33 (2013), 467–563. http://dx.doi.org/10.7494/OpMath.2013.33.3.467 doi: 10.7494/OpMath.2013.33.3.467
    [7] S. Q. Ge, W. Y. Wang, J. Q. Suo, Dependence of eigenvalues of class of fourth-order Sturm–Liouville problems on the boundary, Appl. Math. Comput., 220 (2013), 268–276. http://dx.doi.org/10.1016/j.amc.2013.06.029 doi: 10.1016/j.amc.2013.06.029
    [8] L. Greenberg, M. Marletta, Numerical methods for higher order Sturm–Liouville problems, J. Comput. Appl. Math., 125 (2000), 367–383. http://dx.doi.org/10.1016/S0377-0427(00)00480-5 doi: 10.1016/S0377-0427(00)00480-5
    [9] X. L. Hao, J. Sun, A. Zettl, Canonical forms of self-adjoint boundary conditions for differential operators of order four, J. Math. Anal. Appl., 387 (2012), 1176–1187. http://dx.doi.org/10.1016/j.jmaa.2011.10.025 doi: 10.1016/j.jmaa.2011.10.025
    [10] X. L. Hao, M. Z. Zhang, J. Sun, A. Zettl, Characterization of domains of self-adjoint ordinary differential operators of any order, even or odd, Electron. J. Qual. Theo. Differ. Equ., 61 (2017), 1–19.
    [11] X. Hu, L. Liu, L Wu, H. Zhu, Singularity of the n-th eigenvalue of high dimensional Sturm–Liouville problems, J. Differ. Equ., 266 (2019), 4106–4136.
    [12] Q. Kong, Sturm–Liouville problems on time scales with separated boundary conditions, Result. Math., 52 (2008), 111–121. http://dx.doi.org/10.1007/s00025-007-0277-x doi: 10.1007/s00025-007-0277-x
    [13] Q. Kong, A. Zettl, Linear ordinary differential equations, In: Inequalities and Applications, (R.P. Agarwal, Ed.), WSSIAA, 3 (1994), 381–397.
    [14] Q. Kong, A. Zettl, Eigenvalues of regular Sturm–Liouville problems, J. Differ. Equ., 131 (1996), 1–19.
    [15] Q. Kong, H. Wu, A. Zettl, Dependence of the nth Sturm–Liouville eigenvalue on the problem, J. Differ. Equa., 156 (1999), 328–354. http://dx.doi.org/10.1006/jdeq.1996.0154 doi: 10.1006/jdeq.1996.0154
    [16] Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm–Liouville problems on the boundary, J. Differ. Equ., 126 (1996), 389–407. http://dx.doi.org/10.1006/jdeq.1996.0056 doi: 10.1006/jdeq.1996.0056
    [17] Q. Kong, H. Wu, A. Zettl, Dependence of eigenvalues on the problem, Math. Nachr., 188 (1997), 173–201.
    [18] P. Kurasov, On the Coulomb potential in one dimension, J. Phys. A, 29 (1996), 1767–1771.
    [19] X. X. Lv, J. J. Ao, Eigenvalues of fourth-order boundary value problems with self-adjoint canonical boundary conditions, Bull. Malays. Math. Sci. Soc., 43 (2020), 833–846. http://dx.doi.org/10.1007/s40840-018-00714-4 doi: 10.1007/s40840-018-00714-4
    [20] X. X. Lv, J. J. Ao, A. Zettl, Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem, J. Math. Anal. Appl., 456 (2017), 671–685. http://dx.doi.org/10.1016/j.jmaa.2017.07.021 doi: 10.1016/j.jmaa.2017.07.021
    [21] K. Li, J. Sun, X. L. Hao, Eigenvalues of regular fourth-order Sturm–Liouville problems with transmission conditions, Math. Methods Appl. Sci., 40 (2017), 3538–3551. http://dx.doi.org/10.1002/mma.4243 doi: 10.1002/mma.4243
    [22] K. Mirzoev, N. Konechnaya, Singular Sturm–Liouville operators with distribution potentials, J. Math. Sci., 200 (2014), 96–105.
    [23] C. Tretter, Boundary eigenvalue problems with differential equations $N\eta = \lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Differ. Equ., 170 (2001), 408–471. http://dx.doi.org/10.1006/jdeq.2000.3829 doi: 10.1006/jdeq.2000.3829
    [24] J. P$\ddot{o}$schel, E. Trubowitz, Inverse Spectral Theory, New York, London, Sydney: Academic Press, 1987.
    [25] A. Savchuk, A. Shkalikov, Inverse problem for Sturm–Liouville operators with distribution potentials: reconstruction from two spectra, Russ. J. Math. Phys., 12 (2005), 507–514.
    [26] J. Q. Suo, W. Y. Wang, Eigenvalues of a class of regular fourth-order Sturm–Liouville problems, Appl. Math. Comput., 218 (2012), 9716–9729. http://dx.doi.org/10.1016/j.amc.2012.03.015 doi: 10.1016/j.amc.2012.03.015
    [27] E. Uğurlu, Singular multiparameter dynamic equation with distributional potentials on time scales, Quaes. Math., 40 (2017), 1023–1040. http://dx.doi.org/10.2989/16073606.2017.1345802 doi: 10.2989/16073606.2017.1345802
    [28] E. Uğurlu, Regular third-order boundary value problems, Appl. Math. Comput., 343 (2019), 247–257. http://dx.doi.org/10.1016/j.amc.2018.09.046 doi: 10.1016/j.amc.2018.09.046
    [29] E. Uğurlu, E. Bairamov, Fourth order differential operators with distributional potentials, Turk. J. Math., 44 (2020), 825–856. http://dx.doi.org/10.3906/mat-1706-34 doi: 10.3906/mat-1706-34
    [30] J. Yan, G. L. Shi, Inequalities among eigenvalues of Sturm–Liouville problem with distribution potentials, J. Math. Anal. Appl., 409 (2014), 509–520. http://dx.doi.org/110.1016/j.jmaa.2013.07.024
    [31] A. Zettl, Sturm–Liouville Theory, Providence, RI: Math. Surveys and Monogr. 121, Amer. Math. Soc., 2005.
    [32] A. Zettl, Eigenvalues of regular self-adjoint Sturm–Liouville problems, Comm. Appl. Anal., 18 (2014), 365–400.
    [33] H. Y. Zhang, J. J. Ao, D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter dependent boundary conditions, J. Math. Anal. Appl., 506 (2022), 125680. http://dx.doi.org/10.1016/j.jmaa.2021.125680 doi: 10.1016/j.jmaa.2021.125680
    [34] M. Z. Zhang, K. Li, Dependence of eigenvalues of Sturm–Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 378 (2020), 125214. http://dx.doi.org/10.1016/j.amc.2020.125214 doi: 10.1016/j.amc.2020.125214
    [35] M. Z. Zhang, Y. C. Wang, Dependence of eigenvalues of Sturm–Liouville problems with interface conditions, Appl. Math. Comput., 265 (2015), 31–39. http://dx.doi.org/10.1016/j.amc.2015.05.002 doi: 10.1016/j.amc.2015.05.002
    [36] H. Zhu, Y. M. Shi, Continuous dependence of the n-th eigenvalue of self-adjoint discrete Sturm–Liouville problems on the problem, J. Differ. Equ., 260 (2016), 5987–6016. http://dx.doi.org/10.1016/j.jde.2015.12.027 doi: 10.1016/j.jde.2015.12.027
    [37] H. Zhu, Y. M. Shi, Dependence of eigenvalues on the boundary conditions of Sturm–Liouville problems with one singular endpoint, J. Differ. Equ., 263 (2017), 5582–5609. http://dx.doi.org/10.1016/j.jde.2017.06.026 doi: 10.1016/j.jde.2017.06.026
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1163) PDF downloads(112) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog