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1. Introduction

In the long history of the development on the studies of the differential operators, the dependence
of eigenvalues on the problems plays an important role in the fundamental theory of differential oper-
ators and numerical computation of the spectrum. In the classical Sturm-Liouville(S–L) problems, the
dependence of eigenvalues on the problems is widely studied by many authors [5,14–16]. The detailed
explanation of the dependence of eigenvalues on the Sturm-Liouville problems can be found in [31]
and [32].

Recent years, the research on dependence of eigenvalues of a differential operator or boundary
value problem on the problem has been extended in various aspects. For example, in 2015, Zhang et al.
studied the eigenvalues of the Sturm-Liouville problems with interface conditions and obtained that the
eigenvalues depend not only continuously but also smoothly on the coefficient functions, the boundary
conditions and the interface conditions [35]. In 2016 and 2017, Zhu et al. generalized the problems
to discrete case and singular case of Sturm-Liouville problems in [36, 37], respectively. They showed
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the continuous dependence of eigenvalues on the problems and the discontinuous dependence of the
n-th eigenvalue on the boundary conditions in detail. In 2019, Hu et al. investigated the continuity
and discontinuity of the n-th eigenvalue of high dimensional Sturm-Liouville problems in detail [11].
In 2020, Zhang and Li [34] extended the eigenvalue dependent problems to Sturm-Liouville problems
with eigenparameter-dependent boundary conditions. The analogous results can also be found from
the references in these literature.

Higher order boundary value problems always appear in the physical problems and engineering
problems such as the vibration beams and fluid mechanics and so on, see [8] and [23]. For higher order
boundary value problems, there are still several literature consisting on the dependence of eigenvalues
on the problems, for example in [7, 17, 19–21, 26, 28, 33].

The Sturm-Liouville problems with distributional potentials are another research topic for the past
few years. In quantum mechanics, the Schrödinger equation with generalized potential functions is
widely used to describe the interaction between individual particles [1,18]. The integrability condition
of potential function has to be weakened in the classical Sturm-Liouville theory to find the way for
the solution. Such a problem not only generalizes the classical Sturm-Liouville theory, but also gives
a list of new characters on physical problems. These years, scholars studied this topic from different
aspects and some important results have been made [1,3,18,27,29,30]. In 2020, Uǧurlu and Bairamov
considered the fourth-order differential operators with distributional potentials, they not only proved
the existence and uniqueness of solutions of the fourth-order differential equation, but also showed the
deficiency indices theory of the corresponding minimal symmetric operator [29].

Recently, we considered the eigenvalues of the second order Sturm-Liouville problems with distri-
butional potentials and eigenparameter-dependent boundary conditions, and found the continuity and
differential properties on these problems [2]. However, for higher order boundary value problems with
distributional potentials, there are few studies, and the dependence of eigenvalues on the problems has
not been studied yet. Motivated by this way, in this paper, we will consider the fourth-order boundary
value problems with distributional potentials and show the eigenvalue dependence of these kind of
problems. We show the continuity and differential properties of the eigenvalues on the data, including
the boundary conditions, the coefficient functions and the endpoints. The main novelty of this paper
is to extend eigenvalue dependence results to higher order boundary value problems with distribu-
tional potentials. Compare to previous known results, we not only show the self-adjointness and some
eigenvalue properties of the problems, but also list some derivative formulas of several distributional
potential functions, which have not been discussed before. It is hard to display the differential expres-
sions of eigenvalues with respect to the coefficient functions, due to the complicated relations between
the much more coefficient functions appeared in the differential equation. In order to overcome this dif-
ficulty and solve the problem better, we give the differential expressions of some coefficient functions
under the vanishing condition of certain coefficient functions.

This paper is organized as follows. Following this Introduction, in Section 2 we introduce the
problems studied here and show some basic results related to the problems. Section 3 shows the
continuous dependence of eigenvalues on the problems. In Section 4, the differential properties of
eigenvalues with respect to the data of the problems are given, in particular, the derivative formulas of
the boundary conditions, the coefficient functions and the endpoints are listed respectively. At last, a
brief conclusion is listed in Section 5.
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2. Notation

Consider the general fourth-order differential equation with distributional potentials{[
q2(y(2) − s1y(1) − s2y)

](1)
+ q2s1(y(2) − s1y(1)) − q1(y(1) + s4y) + s3y

}(1)

+ q2s2y(2) − s3y(1) + q1s4(y(1) + s4y) + q0y = λwy on J′ = (a′, b′) ⊆ R, λ ∈ C,
(2.1)

by introducing the quasi-derivatives

y[0] = y,

y[1] = −y(1),

y[2] = q2(y(2) − s1y(1) − s2y),

y[3] = −
[
q2(y(2) − s1y(1) − s2y)

](1)
− q2s1(y(2) − s1y(1)) + q1(y(1) + s4y) − s3y,

the differential equation (2.1) can be written as the following form:

− (y[3])′ + s2y[2] − (q2s1s2 − s3 + q1s4)y[1] + (q2s2
2 + q1s2

4 + q0)y = λwy on J′. (2.2)

Let
J = [a, b] ⊆ J′ = (a′, b′), −∞ ≤ a′ < a < b < b′ ≤ ∞, (2.3)

and assume the coefficients satisfying:

q0, q1, q2, s1, s2, s3, s4 : (a′, b′)→ R, q0, q1, q−1
2 , s1, s2, s3, s4, q1s4, q2s1,

q2s2
1, q2s2, q1s2

4, q2s1s2, q2s2
2, w ∈ Lloc(J′), q2 > 0 on J and w > 0 a.e. on J′.

(2.4)

Consider the boundary conditions (BCs)

AY(a) + BY(b) = 0, Y =
(
y[0], y[1], y[2], y[3]

)T
, (2.5)

where the complex 4 ∗ 4 matrices A and B satisfy:

rank(A|B) = 4; AEA∗ = BEB∗, with E =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (2.6)

It is well known the BCs (2.5) are self-adjoint BCs under the conditions (2.6) [9,19]. Here the equa-
tion (2.1) or (2.2) together with the BCs (2.5) is called as boundary value problem (BVP) with distri-
butional potentials. The fourth-order self-adjoint BCs are much complicated and have many canonical
forms compared to the second order case. In this paper we will consider certain types of special self-
adjoint BCs. For more general self-adjoint BCs and corresponding eigenvalue dependence results of
the fourth-order case without distributional potentials the reader may refer to [19]. From [26], we know
that there are three types of self-adjoint BCs and each type of them can be introduced as follows
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• (i) Separated self-adjoint BCs:

y[0](a) cosα − y[1](a) sinα = 0,
y[2](a) cosα − y[3](a) sinα = 0, 0 ≤ α < π;
y[0](b) cos β − y[1](b) sin β = 0,
y[2](b) cos β − y[3](b) sin β = 0, 0 < β ≤ π.

(2.7)

• (ii) Real coupled self-adjoint BCs:
Y(b) = KY(a), (2.8)

where K ∈ S L4(R), i.e., K satisfies

K = (ki j)4×4, ki j ∈ R, detK = 1, KEK∗ = E. (2.9)

• (iii) Complex coupled self-adjoint BCs:

Y(b) = eiθKY(a), (2.10)

where K satisfies (2.9) and −π < θ < 0 or 0 < θ < π.

Let l(y) = −(y[3])′ + s2y[2] − (q2s2s1 − s3 + q1s4)y[1] + (q2s2
2 + q1s2

4 + q0)y and τ[y] = w−1l(y)
on J′ = (a′, b′), then we can introduce the following definition.

Definition 1. A linearly independent system of solutions y1, · · · , y4 of the equation

l(y) = λwy or τ[y] = λy, x ∈ (a′, b′)

is called a fundamental system.

Let the weighted space be defined as

H = L2
w(J) =

{
y :

∫ b

a
|y(x)|2w(x)dx < ∞

}
,

with the inner product ( f , g)H =
∫ b

a
f ḡwdx for any f , g ∈ H .

For any y, χ ∈ H , the Lagrange form [y, χ] of the functions y and χ is defined as

[y, χ] = y[0]χ̄[3] − y[3]χ̄[0] − y[1]χ̄[2] + y[2]χ̄[1]. (2.11)

Definition 2. Let

D =
{
y ∈ H : y[0], y[1], y[2], y[3] ∈ ACloc(a′, b′), τ[y] ∈ H

}
,

then the operators related to the problems studied in this paper can be listed as follows:

•
D = {y ∈ D : (2.5) and (2.6) hold} ,

Ty = τ[y], y ∈ D.
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•
Ds = {y ∈ D : (2.7) holds} ,

Tsy = τ[y], y ∈ Ds.

•
Drc = {y ∈ D : (2.8) holds} ,

Trcy = τ[y], y ∈ Drc.

•
Dc = {y ∈ D : (2.10) holds} ,

Tcy = τ[y], y ∈ Dc.

Lemma 1. Let λ = µ and λ = ν be the eigenvalues of the BVP (2.2), (2.5) and (2.6), u and v are the
eigenfunctions corresponding to µ and ν, then

(Tu, v) − (u,Tv)

= (µ − ν)
∫ b

a
uv̄w = [u, v]b

a

= [u[0]v[3]
− u[3]v[0]

− u[1]v[2]
+ u[2]v[1]](b) − [u[0]v[3]

− u[3]v[0]
− u[1]v[2]

+ u[2]v[1]](a).

Proof. This follows from integration by parts. �

Theorem 1. The fourth-order differential expression l(y) is formally symmetric on J′.

Proof. Note that the differential expression l(y) can be transformed into

l(y) = (q2y(2))(2) −
{[

(q2s1)(1) + q2s2
1 + q1

]
y(1)

}(1)
+

[
q1s2

4 − (q2s2)(2) − (q1s4)(1) + s(1)
3 + q0

]
y.

Now let

P2 = q2;

P1 = −
[
(q2s1)(1) + q2s2

1 + q1

]
;

P0 = q1s2
4 − (q2s2)(2) − (q1s4)(1) + s(1)

3 + q0.

Then l(y) can be written as

l(y) = (P2y(2))(2) + (P1y(1))(1) + P0y,

from the definition of basic formally symmetric differential expression, it is easy to see that l(y) is
symmetric on J′. �

Lemma 2. [10] A linear submanifold D ofD is the self-adjoint domain of the operator T if and only
if
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• rank(A|B) = 4;
• AEA∗ = BEB∗;
• D =

{
y ∈ D : AY(a) + BY(b) = 0, Y =

(
y[0], y[1], y[2], y[3]

)T
}
.

From the well-known theory of ordinary differential operators and by Theorem 1 and Lemma 2, we
have the following conclusion immediately

Theorem 2. T is self-adjoint operator inH .

Corollary 1. Ts, Trc and Tc are self-adjoint operators inH .

Since the eigenvalues and eigenfunctions of the BVP (2.2), (2.5) and (2.6) coincide with the eigen-
values and eigenfunctions of the operator T , we have the following conclusions immediately.

Theorem 3. The fourth-order BVP (2.2), (2.5) and (2.6) has only a discrete spectrum consisting of an
infinite but countable number of real eigenvalues, each eigenvalue has a geometric multiplicity at most
4 and the multiplicity may be different for different eigenvalue. Moreover, the eigenvalues are bounded
below and form a sequence accumulating to +∞, and can be ordered as:

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · .

Proof. The proof please see [17] and its references. �

Corollary 2. Assume that λ1 and λ2 are eigenvalues of the BVP (2.2), (2.5) and (2.6)(i.e. the operator
T), f (x) and g(x) are corresponding eigenfunctions of λ1 and λ2 respectively, if λ1 , λ2, then the
eigenfunctions f (x) and g(x) are orthogonal to each other, i.e.∫ b

a
f (x)ḡ(x)w(x)dx = 0.

3. Continuous dependence of eigenvalues and eigenfunctions

In this section we establish the characterization of the eigenvalues as zeros of an entire function and
prove the continuity of the eigenvalues and eigenfunctions for the regular fourth-order BVP (2.2), (2.5)
and (2.6).

Let

Ω =

{
ω = (A, B, a, b, q0, q1,

1
q2
, s1, s2, s3, s4,w)

}
such that (2.3), (2.4), (2.6) hold. For the special case of the separated BCs (2.7) we also use the notation

Ωs =

{
ω = (α, β, a, b, q0, q1,

1
q2
, s1, s2, s3, s4,w)

}
,

and for the real coupled case (2.8) we let

Ωrc =

{
ω = (K, a, b, q0, q1,

1
q2
, s1, s2, s3, s4,w)

}
AIMS Mathematics Volume 7, Issue 5, 7294–7317.
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and for the complex coupled case (2.10) we let

Ωc =

{
ω = (θ,K, a, b, q0, q1,

1
q2
, s1, s2, s3, s4,w)

}
,

to highlight the dependence of the parameters of each case on the problem.
Observe that the values of q0, q1,

1
q2
, s1, s2, s3, s4,w outside the interval J, that is, in J′\J, do not

affect the spectrum of the problem determined by ω. To account for this and to facilitate comparisons
between eigenvalues of problems defined on different intervals, we let

Ω̌ =

{
ω̌ = (A, B, a, b, q̌0, q̌1,

1
q̌2
, š1, š2, š3, š4, w̌)

}
,

where

q̌0 =

{
q0, x ∈ [a, b],
0, otherwise

and q̌1,
1
q̌2
, š1, š2, š3, š4, w̌ are defined similarly. Now, we introduce the Banach space

B := M4×4(C) ⊕ M4×4(C) ⊕ R ⊕ R ⊕ L(J′) ⊕ · · · ⊕ L(J′)︸                 ︷︷                 ︸,
equipped with the norm

‖ ω ‖=‖ ω̌ ‖=‖ A ‖ + ‖ B ‖ +|a| + |b| +
∫ b

a
(|q0| + |q1| + |

1
q2
| + |s1| + |s2| + |s3| + |s4| + |w|)dx

for any ω = (A, B, a, b, q0, q1,
1
q2
, s1, s2, s3, s4,w) ∈ B, where ‖ A ‖ is any fixed matrix norm.

It is clear that Ω̌ is a subset of B but Ω is not. We identify Ω with Ω̌ as a subset of B to inherit the
norm from B and the convergence in Ω which is determined by this norm.

Let Φ(x, λ) be the matrix solution of the initial value problem

Y′ =


0 −1 0 0
−s2 s1 − 1

q2
0

q1s4 − q2s1s2 − s3 −q1 −s1 −1
q1s2

4 + q0 + q2s2
2 − λw −(q1s4 + q2s1s2 − s3) s2 0

Y on (a′, b′), (3.1)

with Y(a) = I, where I is the identity matrix, i.e. the first row of Y is a fundamental system of the
equation (2.2). Then we have the following conclusions.

Lemma 3. The complex number λ is an eigenvalue of the BVP (2.2), (2.5) and (2.6) if and only if

∆(λ) := det[A + BΦ(b, λ)] = 0.

Proof. The proof is omitted since it is routine. �

AIMS Mathematics Volume 7, Issue 5, 7294–7317.
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Theorem 4. Let ω̃ =
(
Ã, B̃, ã, b̃, q̃0, q̃1,

1
q̃2
, s̃1, s̃2, s̃3, s̃4, w̃

)
∈ Ω, assume that µ = λ(ω̃) is the eigenvalue

of BVP (2.2), (2.5) and (2.6) determined by ω̃. Then, given any ε > 0 sufficiently small, there exists a
δ > 0 such that for any ω = (A, B, a, b, q0, q1,

1
q2
, s1, s2, s3, s4,w) ∈ Ω satisfying

‖ ω − ω̃ ‖= ‖ A − Ã ‖ + ‖ B − B̃ ‖ +|a − ã| + |b − b̃| +
∫ b

a
(|q0 − q̃0| + |q1 − q̃1|

+ |
1
q2
−

1
q̃2
| + |s1 − s̃1| + |s2 − s̃2| + |s3 − s̃3| + |s4 − s̃4| + |w − w̃|) < δ,

then
|λ(ω) − λ(ω̃)| < ε.

Proof. For ω ∈ Ω and λ ∈ C let Φ(·, a, q0, q1,
1
q2
, s1, s2, s3, s4,w, λ) be the matrix solution of (3.1)

and use this notation to highlight the dependence of the parameters here. According to Lemma 3,
the complex number λ(ω) is an eigenvalue of the BVP (2.2), (2.5) and (2.6) if and only if ∆(ω, λ) =

det[A + BΦ(b, λ)] = 0 holds, hence ∆(ω̃, µ) = 0, µ = λ(ω̃). Furthermore, for any ω ∈ Ω, ∆(ω, λ) is an
entire function of λ and it is continuous in ω, see Theorems 2.7, 2.8 of [13]. It is obvious that ∆(ω̃, λ) is
not a constant in λ since µ is an isolated eigenvalue. Hence there exists ρ0 > 0 such that ∆(ω̃, λ) , 0 for
λ ∈ S ρ0 := {λ ∈ C : |λ − µ| = ρ0} . By the well known theorem on continuity of the roots of an equation
as a function of parameters [4], the result follows. �

Remark 1. The statement of Theorem 4 also holds true for ω ∈ Ωs, ω ∈ Ωrc and ω ∈ Ωc, respectively.

Theorem 5. Let (2.4) hold, let c ∈ [a, b] and d1, d2, d3, d4 ∈ C. Consider the initial value problem{
−(y[3])′ + s2y[2] − (q2s2s1 − s3 + q1s4)y[1] + (q2s2

2 + q1s2
4 + q0)y = λwy,

y[0](c) = d1, y[1](c) = d2, y[2](c) = d3, y[3](c) = d4.
(3.2)

Then the unique solution y = y(·, c, d1, d2, d3, d4) is a continuous function of all its variables. More
precisely, given ε > 0 and any compact subinterval J of (a′, b′), there exists a δ > 0 such that if

|c − c0| + |d1 − d10| + |d2 − d20| + |d3 − d30| + |d4 − d40| < δ,

then

|y[0](x, c, d1, d2, d3, d4) − y[0](x, c0, d10, d20, d30, d40)| < ε,
|y[1](x, c, d1, d2, d3, d4) − y[1](x, c0, d10, d20, d30, d40)| < ε,
|y[2](x, c, d1, d2, d3, d4) − y[2](x, c0, d10, d20, d30, d40)| < ε,
|y[3](x, c, d1, d2, d3, d4) − y[3](x, c0, d10, d20, d30, d40)| < ε,

for all x ∈ J.

Proof. The proof is similar to [13], it extends readily to our case. �

Definition 3. A normalized eigenfunction u of the BVP (2.2), (2.5) and (2.6) we mean an eigenfunction
u that satisfies ∫ b

a
|u|2w = 1.

AIMS Mathematics Volume 7, Issue 5, 7294–7317.
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Theorem 6. Let the notation and hypotheses of Theorem 4 hold.
(1) Assume the eigenvalue λ(ω̃) is simple for some ω̃ ∈ Ω and let u = u(·, ω̃) denote a normalized

eigenfunction of λ(ω̃), then there exists normalized eigenfunction u = u(·, ω) of λ(ω) for ω ∈ Ω such
that when ω→ ω̃ in Ω, we have

u[k](·, ω)→ u[k](·, ω̃), k = 0, 1, 2, 3, (3.3)

all uniformly on any compact subinterval J of (a′, b′).
(2) Assume that λ(ω) is an eigenvalue of multiplicity l (l = 2, 3, 4) for all ω in some neighborhood

M of ω̃ in Ω. Then there exist l linearly independent normalized eigenfunctions u1 = u1(·, ω), · · · , ul =

ul(·, ω)(l = 2, 3, 4) of λ(ω) such that when ω→ ω̃ in Ω, we have

u[k]
i (·, ω)→ u[k]

i (·, ω̃), k = 0, 1, 2, 3, i = 1, 2, · · · , l, (3.4)

all uniformly on any compact subinterval J of (a′, b′).

Proof. The proof is similar to the papers in [26] and [29], only to note the quasi derivatives are different
from those in [26] and [29], but they do not affect the conclusions, hence we omitted here. �

4. Differential expressions of eigenvalues

In this section, we shall show the eigenvalues determined in Theorem 4 are differentiable, and in
particular, we give the derivative formulas of the eigenvalues for the parameters. To this end, we first
introduce the definition of Frechet derivative, which is different from the classical derivative, to show
the derivative formulas of some parameters.

Definition 4. A map T from a Banach space X into another Banach space Y is differentiable at a point
x ∈ X if there exists a bounded linear operator dTx : X → Y such that for h ∈ X

|T (x + h) − T (x) − dTx(h)| = o(h) as h→ 0.

Theorem 7. Let λ(ω) be an eigenvalue of the BVP (2.2), (2.5) and (2.6) with ω ∈ Ω, and let u = u(·, ω)
be a normalized eigenfunction for λ(ω), then λ is differentiable with respect to the parameters in ω.
Namely that λ is continuously differentiable with respect to each variable α, β for the separated BC
(2.7); continuously differentiable with respect to each variable θ,K for the coupled BCs (2.8) and
(2.10), and more precisely, the derivative formulas of λ are given as follows:

1. Fix all parameters of ω except α and let λ = λ(α) and u = u(·, α) denote the eigenvalue and the
corresponding real normalized eigenfunction. Then λ is differentiable and

λ′(α) = −2
{
u[0](a)u[2](a) + u[1](a)u[3](a)

}
.

2. Fix all parameters of ω except β and let λ = λ(β) and u = u(·, β) denote the eigenvalue and the
corresponding real normalized eigenfunction. Then λ is differentiable and

λ′(β) = 2
{
u[0](b)u[2](b) + u[1](b)u[3](b)

}
.

AIMS Mathematics Volume 7, Issue 5, 7294–7317.
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3. Fix all parameters of ω except θ and let λ = λ(θ) and u = u(·, θ) denote the eigenvalue and the
corresponding normalized eigenfunction. Then λ is differentiable at θ for any θ satisfying −π < θ < 0
or 0 < θ < π and

λ′(θ) = −2Im[u[0]ū[3] + u[2]ū[1]](b) = −2Im[u[0]ū[3] + u[2]ū[1]](a).

4. Fix all parameters of ω except K and let λ = λ(K) and u = u(·,K) denote the eigenvalue and
the corresponding normalized eigenfunction. Assume K satisfies (2.9) and for all H is chosen so that
K + H satisfies (2.9). Then λ is differentiable within S L4(R) and its Frechet derivative is given by:

dλK(H) = (ū[3],−ū[2], ū[1],−ū[0])(b)HK−1


u[0]

u[1]

u[2]

u[3]

 (b)

= (ū[3],−ū[2], ū[1],−ū[0])(a)H(K + H)−1


u[0]

u[1]

u[2]

u[3]

 (a),

where H ∈ M4,4(R) such that K + H ∈ S L4(R).

Proof. We first prove part 2, and part 1 can be proved similarly.
We fix all data except β, let u = u(·, β) and v = u(·, β+ε) denotes the real normalized eigenfunctions

of µ = λ(β) and ν = λ(β + ε), respectively. From BC (2.7) we have [u, v](a) = 0, and thus

(λ(β) − λ(β + ε))
∫ b

a
uvw

= [u, v](b) − [u, v](a)
= [u[0]v[3] − u[3]v[0] − u[1]v[2] + u[2]v[1]](b)
= tan βu[1](b)v[3](b) − tan(β + ε)u[3](b)v[1](b) − tan(β + ε)u[1](b)v[3](b) + tan βu[3](b)v[1](b)

=
[
tan β − tan(β + ε)

] [
u[1]v[3] + u[3]v[1]

]
(b).

(4.1)

Dividing both sides of (4.1) by ε and taking the limit as ε→ 0, then by Theorem 6 we can get

−λ′(β) = − sec2 βu[1](b)u[3](b) − sec2 βu[3](b)u[1](b)

= − tan2 βu[1](b)u[3](b) − u[1](b)u[3](b) −
[
tan2 βu[3](b)u[1](b) + u[3](b)u[1](b)

]
= −2

{
u[0](b)u[2](b) + u[1](b)u[3](b)

}
.

Next we prove part 3. For any increment ε, let the eigenvalues be λ(θ) and λ(θ + ε), and
their corresponding normalized eigenfunctions are u = u(·, θ), v = u(·, θ + ε), respectively. Let
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U =
(
u[0], u[1], u[2], u[3]

)T
and V =

(
v[0], v[1], v[2], v[3]

)T
, then we have

[λ(θ) − λ(θ + ε)]
∫ b

a
uv̄w

= [u[0]v̄[3] − u[3]v̄[0] − u[1]v̄[2] + u[2]v̄[1]]b
a

= V∗(b)EU(b) − V∗(a)EU(a)
= eiθV∗(b)EKU(a) − ei(θ+ε)V∗(b)(K∗)−1EU(a)
= eiθV∗(b)EKU(a) − ei(θ+ε)V∗(b)EKU(a)
= eiθ(1 − eiε)V∗(b)EKU(a).

Dividing both sides of the above equation by ε and taking the limit as ε → 0, then by Theorem 6 we
obtain

−λ′(θ) = −ieiθU∗(b)EKU(a)
= −iU∗(b)EU(b)

= −i
(
ū[3],−ū[2], ū[1],−ū[0]

)
(b)


u[0]

u[1]

u[2]

u[3]

 (b)

= −i[u[0]u[3]
− u[3]u[0]

− u[1]u[2]
+ u[2]u[1]](b)

= 2Im
[
u[0]u[3]

+ u[2]u[1]
]

(b).

Similarly, we can get

−λ′(θ) = 2Im
[
u[0]u[3]

+ u[2]u[1]
]

(a).

Finally we prove part 4. For any increment H, let the eigenvalues be λ(K) and λ(K + H), and their
corresponding normalized eigenfunctions are u = u(·,K), v = u(·,K + H), then ones have

[λ(K) − λ(K + H)]
∫ b

a
uv̄w

=[u[0]v[3]
− u[3]v[0]

− u[1]v[2]
+ u[2]v[1]]b

a

=V∗(b)EU(b) − V∗(a)EU(a)
=eiθV∗(b)EKU(a) − eiθV∗(b)E(K + H)U(a)
= − eiθV∗(b)EHU(a).

Let H → 0, then by the definition of Frechet derivative, we arrive at

dλK(H) = eiθU∗(b)EHU(a)
= U∗(b)EHK−1U(b)

= (ū[3],−ū[2], ū[1],−ū[0])(b)HK−1


u[0]

u[1]

u[2]

u[3]

 (b).

AIMS Mathematics Volume 7, Issue 5, 7294–7317.



7305

Similarly, we can get

dλK(H) = eiθe−iθU∗(a)EH(K + H)∗U(a)
= U∗(a)EH(K + H)−1U(a)

= (ū[3],−ū[2], ū[1],−ū[0])(a)H(K + H)−1


u[0]

u[1]

u[2]

u[3]

 (a).

�

Because there are too many coefficient functions in the original equation (2.1), it is difficult to solve
the differential expressions of the coefficient functions. For conveniences, here we set s1 = s2 = 0, at
this time the equation (2.1) can be simplified to{[

q2(y(2))
](1)
− q1(y(1) + s4y) + s3y

}(1)
− s3y(1) + q1s4(y(1) + s4y) + q0y = λwy. (4.2)

The following theorem will be given under this vanishing condition.

Theorem 8. Let s1 = s2 = 0, λ(ω) be an eigenvalue for the BVP (2.2), (2.5) and (2.6) with ω ∈ Ω,
and u = u(·, ω) be a normalized eigenfunction for λ(ω). Then λ is differentiable with respect to the
coefficient functions in ω and more precisely, the derivative formulas of λ are given as follows:

1. Fix all parameters of ω except q2. Then

dλ 1
q2

(h) = −

∫ b

a
|u[2]|2h, h ∈ L(J,R).

2. Fix all parameters of ω except q1. Then

dλq1(h) =

∫ b

a
|u[1]|2h +

∫ b

a
s2

4|u
[0]|2h − 2

∫ b

a
s4Re(u[0]ū[1])h, h ∈ L(J,R).

Particularly, if u = u(·, ω) is the real normalized eigenfunction for λ(ω), then

dλq1(h) =

∫ b

a
(u[1] − s4u[0])2h, h ∈ L(J,R).

3. Fix all parameters of ω except q0. Then

dλq0(h) =

∫ b

a
|u[0]|2h, h ∈ L(J,R).

4. Fix all parameters of ω except s3. Then

dλs3(h) = 2
∫ b

a
Re(ū[1]u[0])h, h ∈ L(J,R).
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5. Fix all parameters of ω except s4. Then

dλs4(h) = 2
∫ b

a
q1

[
s4|u[0]|2 − Re(ū[1]u[0])

]
h, h ∈ L(J,R).

6. Fix all parameters of ω except w. Then

dλw(h) = −λ

∫ b

a
|u[0]|2h, h ∈ L(J,R).

Proof. To prove part 1. Let us fix all data except q2 and let u = u(·, 1
q2

) and v = u(·, 1
q2

+ h), then direct
computation yields that[

λ(
1
q2

+ h) − λ(
1
q2

)
]

(u, v)

=

[
λ(

1
q2

+ h) − λ(
1
q2

)
] ∫ b

a
uv̄w

=λ(
1
q2

+ h)
∫ b

a
uv̄w − λ(

1
q2

)
∫ b

a
uv̄w

=

∫ b

a

[
−(v̄[3])′ − (q1s4 − s3)v̄[1] + (q1s2

4 + q0)v̄[0]
]

u[0]

−

∫ b

a

[
−(u[3])′ − (q1s4 − s3)u[1] + (q1s2

4 + q0)u[0]
]

v̄[0]

=
[
−u[0]v̄[3] + u[3]v̄[0]

]b

a
+

∫ b

a
v̄[3](u[0])′ −

∫ b

a
u[3](v̄[0])′ −

∫ b

a
(q1s4 − s3)v̄[1]u[0]

+

∫ b

a
(q1s2

4 + q0)v̄[0]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

=
[
−u[0]v̄[3] + u[3]v̄[0]

]b

a
−

∫ b

a

[
−(v̄[2])′ + q1(v̄[1] + s4v̄) − s3v̄

]
u[1]

+

∫ b

a

[
−(u[2])′ + q1(u[1] + s4u) − s3u

]
v̄[1] −

∫ b

a
(q1s4 − s3)v̄[1]u[0]

+

∫ b

a
(q1s2

4 + q0)v̄[0]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

=
[
−u[0]v̄[3] + u[3]v̄[0] + u[1]v̄[2] − u[2]v̄[1]

]b

a
−

∫ b

a
v̄[2](u[1])′ +

∫ b

a
u[2](v̄[1])′

+

∫ b

a
q1v̄[1]u[1] −

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
q1v̄[1]u[1] +

∫ b

a
(q1s4 − s3)v̄[1]u[0]

−

∫ b

a
(q1s4 − s3)v̄[1]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0].

For all self-adjoint BCs, one obtains[
−u[0]v̄[3] + u[3]v̄[0] + u[1]v̄[2] − u[2]v̄[1]

]b

a
= 0,
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combining the above equations, one has[
λ(

1
q2

+ h) − λ(
1
q2

)
]

(u, v) = −

∫ b

a
v̄[2](u[1])′ +

∫ b

a
u[2](v̄[1])′.

As s1 = s2 = 0, y[2] = q2y(2), hence[
λ(

1
q2

+ h) − λ(
1
q2

)
]

(u, v)

= −

∫ b

a
v̄[2](u[1])′ +

∫ b

a
u[2](v̄[1])′

= −

∫ b

a
v̄[2](−

1
q2

)u[2] +

∫ b

a
u[2]

[
−(

1
q2

+ h)
]

v̄[2]

= −

∫ b

a
u[2]v̄[2]h,

let h→ 0, then the desired result can be obtained by Theorem 6.
Now we prove part 2. Fix all data except q1 and let u = u(·, q1) and v = u(·, q1 + h), then direct

computation yields that[
λ(q1 + h) − λ(q1)

]
(u, v)

=
[
λ(q1 + h) − λ(q1)

] ∫ b

a
uv̄w

=λ(q1 + h)
∫ b

a
uv̄w − λ(q1)

∫ b

a
uv̄w

=

∫ b

a

{
−(v̄[3])′ −

[
(q1 + h)s4 − s3

]
v̄[1] +

[
(q1 + h)s2

4 + q0

]
v̄[0]

}
u[0]

−

∫ b

a

{
−(u[3])′ − (q1s4 − s3)u[1] + (q1s2

4 + q0)u[0]
}

v̄[0]

=
[
−u[0]v̄[3] + u[3]v̄[0] + u[1]v̄[2] − u[2]v̄[1]

]b

a
−

∫ b

a
v̄[2](u[1])′ +

∫ b

a
u[2](v̄[1])′

−

∫ b

a

[
(q1 + h)s4 − s3

]
v̄[1]u[0] +

∫ b

a

[
(q1 + h)s2

4 + q0

]
v̄[0]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0]

−

∫ b

a
(q1s2

4 + q0)v̄[0]u[0] +

∫ b

a
(q1 + h)v̄[1]u[1] −

∫ b

a

[
(q1 + h)s4 − s3

]
u[1]v̄[0]

−

∫ b

a
q1v̄[1]u[1] +

∫ b

a
(q1s4 − s3)v̄[1]u[0]

=

∫ b

a
v̄[1]u[1]h +

∫ b

a
s2

4v̄[0]u[0]h −
∫ b

a
s4v̄[1]u[0]h −

∫ b

a
s4v̄[0]u[1]h.

Let h→ 0 in L(J,R), then by Theorem 6, we arrive at

dλq1(h) =

∫ b

a
|u[1]|2h +

∫ b

a
s2

4|u
[0]|2h − 2

∫ b

a
s4Re(u[0]ū[1])h, h ∈ L(J,R).
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While u = u(·, ω) is the real normalized eigenfunction, then the above equation will take the form

dλq1(h) =

∫ b

a
(u[1] − s4u[0])2h, h ∈ L(J,R).

Next we prove part 3. Fix all data except q0 and let u = u(·, q0) and v = u(·, q0 + h), then direct
computation yields that [

λ(q0 + h) − λ(q0)
]
(u, v)

=λ(q0 + h)
∫ b

a
uv̄w − λ(q0)

∫ b

a
uv̄w

=

∫ b

a

{
−(v̄[3])′ −

[
q1s4 − s3

]
v̄[1] +

[
q1s2

4 + (q0 + h)
]

v̄[0]
}

u[0]

−

∫ b

a

{
−(u[3])′ − (q1s4 − s3)u[1] + (q1s2

4 + q0)u[0]
}

v̄[0]

=

∫ b

a

[
(q1 + h)s2

4 + q0

]
v̄[0]u[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

=

∫ b

a
v̄[0]u[0]h,

let h→ 0, then by Theorem 6, we arrive at

dλq0(h) =

∫ b

a
|u[0]|2h, h ∈ L(J,R).

At last let us prove part 5. We fix all data except s4 and let u = u(·, s4) and v = u(·, s4 + h), then
direct computation yields that

[λ(s4 + h) − λ(s4)] (u, v)

=λ(s4 + h)
∫ b

a
uv̄w − λ(s4)

∫ b

a
uv̄w

=

∫ b

a

{
−(v̄[3])′ −

[
q1(s4 + h) − s3

]
v̄[1] +

[
q1(s4 + h)2 + q0

]
v̄[0]

}
u[0]

−

∫ b

a

{
−(u[3])′ − (q1s4 − s3)u[1] + (q1s2

4 + q0)u[0]
}

v̄[0]

=
[
−u[0]v̄[3] + u[3]v̄[0]

]b

a
+

∫ b

a
v̄[3](u[0])′ −

∫ b

a
u[3](v̄[0])′ −

∫ b

a

[
q1(s4 + h) − s3

]
v̄[1]u[0]

+

∫ b

a

[
q1(s4 + h)2 + q0

]
v̄[0]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

=
[
−u[0]v̄[3] + u[3]v̄[0]

]b

a
−

∫ b

a

[
−(v̄[2])′ + q1(v̄[1] + (s4 + h)v̄) − s3v̄

]
u[1]

+

∫ b

a

[
−(u[2])′ + q1(u[1] + s4u) − s3u

]
v̄[1] −

∫ b

a

[
q1(s4 + h) − s3

]
v̄[1]u[0]
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+

∫ b

a

[
q1(s4 + h)2 + q0

]
v̄[0]u[0] +

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

= −

∫ b

a
(q1(s4 + h) − s3)u[1]v̄[0] +

∫ b

a
(q1s4 − s3)v̄[1]u[0]

−

∫ b

a

[
q1(s4 + h) − s3

]
v̄[1]u[0] +

∫ b

a

[
q1(s4 + h)2 + q0

]
v̄[0]u[0]

+

∫ b

a
(q1s4 − s3)u[1]v̄[0] −

∫ b

a
(q1s2

4 + q0)v̄[0]u[0]

=

∫ b

a
q1(2hs4 + h2)v̄[0]u[0] −

∫ b

a
q1hv̄[1]u[0] −

∫ b

a
q1hv̄[0]u[1],

let h→ 0, still by Theorem 6, ones have

dλs4(h) = 2
∫ b

a
q1

[
s4|u[0]|2 − Re(ū[1]u[0])

]
h, h ∈ L(J,R).

Using the similar method, we can obtain part 4 and part 6. �

Lemma 4. [16] Assume the function f ∈ Lloc(a, b′), then

lim
h→0

1
h

∫ t+h

t
f = f (t) a.e. b ∈ (a, b′). (4.3)

Theorem 9. Let the BVP be given as (2.2), (2.5) and (2.6) on [a,b]. Fix the BCs and the endpoint a.
Let λ = λ(b) for b ∈ (a, b′), then

• 1. λ(b) is a continuous function of b for b ∈ (a, b′).
• 2. If λ(b) is simple for some b ∈ (a, b′), then λ(b) is simple for every b ∈ (a, b′).
• 3. There exists a normalized eigenfunction u(·, b) of λ(b) for b ∈ (a, b′) such that u[ j](·, b)

(j=0,1,2,3) are uniformly convergent in b on any compact subinterval of (a, b′), i.e.,

u[ j](·, b + h)→ u[ j](·, b), j = 0, 1, 2, 3 as h→ 0,

and this convergence is uniform on any compact subinterval of (a, b′).

Proof. The proof is given for classical second-order Sturm–Liouville case in [16], it can extend readily
to our case, only to note that here is the fourth-order case and the quasi-derivatives are different. �

Theorem 10. Let (2.4) hold, consider the BVP (2.2), (2.7) with 0 ≤ α < π and β = π. Fix all
components of ω except b and let λ = λ(b) and u = u(·, b) be the eigenvalue and the corresponding
real normalized eigenfunction. Then λ is differentiable and

λ′(b) = 2u[1](b, b)u[3](b, b) + q1(b)(u[1](b, b))2 a.e. b ∈ (a, b′). (4.4)

Proof. For small h, we choose µ = λ(b), ν = λ(b + h) and u = u(·, b), v = u(·, b + h), from Lemma 1
and the BCs (2.7), noting that [u, v](a) = 0, u[0](b, b) = 0, u[2](b, b) = 0, we have

[λ(b) − λ(b + h)]
∫ b

a
u(r, b)u(r, b + h)w(r)dr = [u, v]b

a

= [u[0]v[3] − u[3]v[0] − u[1]v[2] + u[2]v[1]](b)
= −u[3](b, b)u[0](b, b + h) − u[1](b, b)u[2](b, b + h).

(4.5)
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On the one hand

u[0](b, b + h) = u[0](b, b + h) − u[0](b + h, b + h)

= −

∫ b+h

b
u′(r, b + h)dr

=

∫ b+h

b
u[1](r, b + h)dr

=

∫ b+h

b
u[1](r, b)dr +

∫ b+h

b
[u[1](r, b + h) − u[1](r, b)]dr,

and by Lemma 4

lim
h−→0

u[0](b, b + h)
h

= u[1](b, b). (4.6)

On the other hand

u[2](b, b + h)
=u[2](b, b + h) − u[2](b + h, b + h)

= −

∫ b+h

b
(u[2])′(r, b + h)dr

= −

∫ b+h

b

[
−u[3](r, b + h) − s1(r)u[2](r, b + h) − q1(r)u[1](r, b + h)

]
dr

−

∫ b+h

b
−

[
(q2s1s2 − q1s4 + s3)(r)u[0](r, b + h)

]
dr

=

∫ b+h

b
u[3](r, b)dr +

∫ b+h

b
[u[3](r, b + h) − u[3](r, b)]dr

+

∫ b+h

b
s1(r)u[2](r, b)dr +

∫ b+h

b
s1(r)[u[2](r, b + h) − u[2](r, b)]dr

+

∫ b+h

b
q1(r)u[1](r, b)dr +

∫ b+h

b
q1(r)[u[1](r, b + h) − u[1](r, b)]dr

+

∫ b+h

b
(q2s1s2 − q1s4 + s3)(r)u[0](r, b)dr

−

∫ b+h

b
(q2s1s2 − q1s4 + s3)(r)[u[0](r, b) − u[0](r, b + h)]dr,

and by Lemma 4

lim
h−→0

u[2](b, b + h)
h

= u[3](b, b) + q1(b)u[1](b, b). (4.7)

Observe that ∫ b

a
u(r, b)u(r, b + h)w(r)dr →

∫ b

a
u2(r, b)w(r)dr = 1, as h→ 0, (4.8)

then putting (4.6)–(4.8) into (4.5) and noting that h→ 0, we arrive at (4.4). �
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Theorem 11. Let (2.4) hold, consider the BVP (2.2), (2.7) with 0 ≤ α < π and β = π
2 . Fix all

components of ω except b and let λ = λ(b) and u = u(·, b) be the eigenvalue and the corresponding
real normalized eigenfunction. Then λ is differentiable and

λ′(b) = (q2s2
2 + q1s2

4 + q0 − λw)(b)(u[0](b, b))2 −
1

q2(b)
(u[2](b, b))2 a.e. b ∈ (a, b′). (4.9)

Proof. For small h, we choose µ = λ(b), ν = λ(b + h) and u = u(·, b), v = u(·, b + h), from Lemma 1
and the BCs (2.7), noting that [u, v](a) = 0, u[1](b, b) = 0, u[3](b, b) = 0, we have

[λ(b) − λ(b + h)]
∫ b

a
u(r, b)u(r, b + h)w(r)dr = [u, v]b

a

= [u[0]v[3] − u[3]v[0] − u[1]v[2] + u[2]v[1]](b)
= u[0](b, b)u[3](b, b + h) + u[2](b, b)u[1](b, b + h).

(4.10)

Since

u[1](b, b + h)
=u[1](b, b + h) − u[1](b + h, b + h)

= −

∫ b+h

b
(u[1])′(r, b + h)dr

= −

∫ b+h

b
−u(2)(r, b + h)dr

= −

∫ b+h

b
−

[
1

q2(r)
u[2](r, b + h) + s1(r)u[1](r, b + h) + s2(r)u[0](r, b + h)

]
dr

=

∫ b+h

b

1
q2(r)

u[2](r, b)dr +

∫ b+h

b

1
q2(r)

[u[2](r, b + h) − u[2](r, b)]dr

+

∫ b+h

b
s2(r)u[0](r, b)dr −

∫ b+h

b
s2(r)[u[0](r, b) − u[0](r, b + h)]dr,

and by Lemma 4 we have

lim
h−→0

u[1](b, b + h)
h

=
1

q2(b)
u[2](b, b) + s2(b)u[0](b, b). (4.11)
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Similarly

u[3](b, b + h)
=u[3](b, b + h) − u[3](b + h, b + h)

= −

∫ b+h

b
(u[3])′(r, b + h)dr

= −

∫ b+h

b

[
s2(r)u[2](r, b + h) − (q2s1s2 − s3 + q1s4)(r)u[1](r, b + h)

]
dr

−

∫ b+h

b

[
(q2s2

2 + q1s2
4 + q0 − λw)(r)u[0](r, b + h)

]
dr

= −

∫ b+h

b
s2(r)u[2](r, b)dr +

∫ b+h

b
s2(r)[u[2](r, b) − u[2](r, b + h)]dr

−

∫ b+h

b
(q2s2

2 + q1s2
4 + q0 − λw)(r)u[0](r, b)dr

−

∫ b+h

b
(q2s2

2 + q1s2
4 + q0 − λw)(r)[u[0](r, b + h) − u[0](r, b)]dr,

and by Lemma 4 we have

lim
h−→0

u[3](b, b + h)
h

= −s2(b)u[2](b, b) − (q2s2
2 + q1s2

4 + q0 − λw)(b)u[0](b, b). (4.12)

Observe that ∫ b

a
u(r, b)u(r, b + h)w(r)dr →

∫ b

a
u2(r, b)w(r)dr = 1, as h→ 0, (4.13)

then putting (4.11)–(4.13) into (4.10) and noting that h→ 0, we arrive at (4.9). �

Theorem 12. Let (2.4) hold, consider the BVP (2.2), (2.7) with 0 ≤ α < π and 0 < β ≤ π.
(1) Fix all components of ω except a and let λ = λ(a) and u = u(·, a) be the eigenvalue and the

corresponding real normalized eigenfunction. Then λ is differentiable and

λ′(a) = − (q2s2
2 + q1s2

4 + q0 − λw)(a)(u[0](a, a))2 − q1(a)(u[1](a, a))2 +
1

q2(a)
(u[2](a, a))2

− 2u[1](a, a)u[3](a, a) a.e. a ∈ (a′, b).
(4.14)

(2) Fix all components of ω except b and let λ = λ(b) and u = u(·, b) be the eigenvalue and the
corresponding real normalized eigenfunction. Then λ is differentiable and

λ′(b) =(q2s2
2 + q1s2

4 + q0 − λw)(b)(u[0](b, b))2 + q1(b)(u[1](b, b))2 −
1

q2(b)
(u[2](b, b))2

+ 2u[1](b, b)u[3](b, b) a.e. b ∈ (a, b′).
(4.15)

Proof. Here we prove (2), and (1) can be proved similarly. For small h, we choose µ = λ(b), ν = λ(b+h)
and u = u(·, b), v = u(·, b+h), respectively. From Lemma 1 and the BCs (2.7), noting that [u, v](a) = 0,
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we have

[λ(b) − λ(b + h)]
∫ b

a
u(r, b)u(r, b + h)w(r)dr

=[u, v]b
a = [u[0]v[3] − u[3]v[0] − u[1]v[2] + u[2]v[1]](b)

=u[0](b, b)u[3](b, b + h) − u[3](b, b)u[0](b, b + h)
− u[1](b, b)u[2](b, b + h) + u[2](b, b)u[1](b, b + h).

(4.16)

Now dividing both sides of (4.16) by h, and taking the limit as h → 0. By putting (4.6), (4.7), (4.11)
and (4.12) into (4.16), and using the continuity of λ at b, the uniform convergence of u(·, b + h) to
u(·, b), then by Theorem 9 we can obtain (4.15). �

Theorem 13. Let (2.4) hold, consider the BVP (2.2), (2.10) with −π < θ ≤ π.
(1) Fix all components of ω except a and let λ = λ(a) and u = u(·, a). Then λ is differentiable and

λ′(a) = − (q2s2
2 + q1s2

4 + q0 − λw)(a)|u[0](a, a)|2 − q1(a)|u[1](a, a)|2 +
1

q2(a)
|u[2](a, a)|2

− 2Re[u[1](a, a)ū[3](a, a)] a.e. a ∈ (a′, b).
(4.17)

(2) Fix all components of ω except b and let λ = λ(b) and u = u(·, b). Then λ is differentiable and

λ′(b) =(q2s2
2 + q1s2

4 + q0 − λw)(b)|u[0](b, b)|2 + q1(b)|u[1](b, b)|2 −
1

q2(b)
|u[2](b, b)|2

+ 2Re[u[1](b, b)ū[3](b, b)] a.e. b ∈ (a, b′).
(4.18)

Proof. Here we prove (2), and (1) can be proved similarly.
For small h, we choose µ = λ(b), ν = λ(b + h) and u = u(·, b), v = u(·, b + h), from Lemma 1 we

have

[λ(b) − λ(b + h)]
∫ b

a
uv̄w

= [u[0]v̄[3] − u[3]v̄[0] − u[1]v̄[2] + u[2]v̄[1]]b
a

= V∗(b)EU(b) − V∗(a)EU(a)
= V∗(b)EU(b) − V∗(b + h)eiθ(K−1)∗Ee−iθK−1U(b)
= V∗(b)EU(b) − V∗(b + h)EU(b)

=
(
v̄[3],−v̄[2], v̄[1],−v̄[0]

)
(b)


u[0]

u[1]

u[2]

u[3]

 (b) −
(
v̄[3],−v̄[2], v̄[1],−v̄[0]

)
(b + h)


u[0]

u[1]

u[2]

u[3]

 (b)

=
[(

v̄[3],−v̄[2], v̄[1],−v̄[0]
)

(b) −
(
v̄[3],−v̄[2], v̄[1],−v̄[0]

)
(b + h)

] 
u[0]

u[1]

u[2]

u[3]

 (b).

(4.19)

Now dividing both sides of (4.19) by h, and taking the limit as h → 0. By putting (4.6), (4.7), (4.11)
and (4.12) into (4.19), and using the continuity of λ at b, and the uniform convergence of u(·, b + h) to
u(·, b), then by Theorem 9 we can obtain (4.18). �
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Remark 2. Theorems 10, 11, 12 list the derivative formulaes of eigenvalues with respect to the end-
points for the separated self-adjoint BCs, respectively. Theorem 13 is for complex coupled self-adjoint
BCs. For conveniences, in Theorems 10, 11, 12 we choose the real normalized eigenfunctions, while
in Theorem 13 we choose the complex normalized eigenfunctions. The conclusions in Theorem 13 are
also applicable when the BCs are real coupled self-adjoint case.

5. Concluding Remarks

In the present paper we consider the fourth-order boundary value problems with distributional po-
tentials. Beside the basic eigenvalue properties of the considered problem, the dependence of eigen-
values of the following fourth-order differential equation{[

q2(y(2) − s1y(1) − s2y)
](1)

+ q2s1(y(2) − s1y(1)) − q1(y(1) + s4y) + s3y
}(1)

+ q2s2y(2) − s3y(1) + q1s4(y(1) + s4y) + q0y = λwy,
(5.1)

defined on the interval J ⊂ J′ = (a′, b′) are investigated. This is the general fourth-order differential
equation with distributional potentials. For equation (5.1), in [29] the authors investigated the defi-
ciency index theory of the operator generated by (5.1). As s j ≡ 0, 1 ≤ j ≤ 4, and q1 = 0, equation (5.1)
will reduce to

(q2y(2))(2) + q0y = λwy, (5.2)

it is the classical fourth-order Sturm–Liouville equation and the corresponding results of eigenvalue
dependence are given in [26]. Compared to [26], the results in this paper are more general. Due to
the appearance of the distributional potential functions, the equation becomes more complex, so we
adopt new quasi-derivatives to express it. Besides the self-adjointness and some eigenvalue properties
of the fourth-order BVPs with distributional potentials, the derivative formulas of several distributional
potential functions are given.

To our best knowledge, for higher order boundary value problems with distributional potentials, the
corresponding results have not been studied yet. Here, for conveniences, we get the derivative formulas
of the coefficient functions under the vanishing conditions s1 = s2 = 0. In fact, if s1 , 0, s2 , 0 the
corresponding derivative formulas still exist. However, due to the complexity we will not consider here
and left them to the readers who are interested in.

The eigenvalue problems and eigenvalue dependence problems of differential operators play the
important role in mathematics and other fields of sciences. Such problems can be viewed as the theo-
retical basis of the ordinary differential equations, and give the effective way for numerical computation
of eigenvalues of a differential operator. The results here are more general than the previously known
results.
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