Research article Special Issues

Positive solutions to a semipositone superlinear elastic beam equation

  • Received: 11 October 2020 Accepted: 04 January 2021 Published: 07 February 2021
  • MSC : 34K10, 37C25

  • A semipositone fourth-order two-point boundary value problem is considered. In mechanics, the problem describes the deflection of an elastic beam rigidly fastened on the left and simply supported on the right. Under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, the existence of nontrivial solutions and positive solutions to this boundary value problem is obtained. The main results are obtained by using the topological method and the fixed point theory of superlinear operators.

    Citation: Haixia Lu, Li Sun. Positive solutions to a semipositone superlinear elastic beam equation[J]. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250

    Related Papers:

    [1] Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948
    [2] Suxia Wang, Tiehong Zhao . New refinements of Becker-Stark inequality. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960
    [3] Zhenhua Su, Zikai Tang, Hanyuan Deng . Higher-order Randić index and isomorphism of double starlike trees. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596
    [4] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [5] Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418
    [6] Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
    [7] Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492
    [8] Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646
    [9] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [10] Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438
  • A semipositone fourth-order two-point boundary value problem is considered. In mechanics, the problem describes the deflection of an elastic beam rigidly fastened on the left and simply supported on the right. Under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, the existence of nontrivial solutions and positive solutions to this boundary value problem is obtained. The main results are obtained by using the topological method and the fixed point theory of superlinear operators.



    In [18] Ramanujan showed a total of 17 series for 1/π but he did not indicate how he arrived at these series. The Borwein brothers [5] gave rigorous proofs of Ramanujan's series for the first time and also obtained many new series for 1/π. Till now, many new Ramanujan's-type series for 1/π have been published, (see, for example, [4,6,8]). Chu [7], Liu [15,16] and Wei et al. [21,22] gave many π-formula with free parameters by means of gamma functions and hypergeometric series. Guillera [10] proved a kind of bilateral semi-terminating series related to Ramanujan-like series for negative powers of π. Moreover, Guillera and Zudilin [11] outlined an elementary method for proving numerical hypergeometric identities, in particular, Ramanujan-type identities for 1/π. Recently, q-analogues of Ramanujan-type series for 1/π have caught the interests of many authors (see, for example, [9,12,13,14,20,21]).

    Although various definitions for gamma functions are used in the literature, we adopt the following definition [23, p.76]

    1Γ(z)=zeγzn=1(1+zn)ezn

    where γ is the Euler constant defined as

    γ=limn(1+12++1nlogn).

    It is easy to verify that Γ(1)=1,Γ(12)=π and Γ(z+1)=zΓ(z). It follows that for every positive integer n, Γ(n)=(n1)!.

    For any complex α, we define the general rising shifted factorial by

    (z)α=Γ(z+α)/Γ(z). (1.1)

    Obviously, (z)0=1. For every positive integer n, we have

    (z)n=Γ(z+n)/Γ(z)=z(z+1)(z+n1)

    and

    (z)n=Γ(zn)/Γ(z)=1(z1)(z2)(zn).

    For convenience, we use the following compact notations

    (a1,a2,,am)n=(a1)n(a2)n(am)n

    and

    (a)(n1,n2,,nm)=(a)n1(a)n2(a)nm.

    Following [1,3], the hypergeometric series is defined by

    r+1Fs[a0,a1,,arb1,,bs;z]=k=0(a0,a1,,ar)k(b1,,bs)kzkk!,

    where ai,bj(i=0,1,,r,j=1,2,,s) are complex numbers such that no zero factors appear in the denominators of the summand on the right hand side.

    We let Fp:r;uq:s;v (p,q,r,s,u,vN0={0,1,2,}) denote a general (Kampé de Fériet's) double hypergeometric function defined by (see [2,19])

    Fp:r;uq:s;v[α1,,αp:a1,,ar;c1,,cu;β1,,βq:b1,,bs;d1,,dv;x,y]=m,n=0(α1,,αp)m+n(a1,,ar)m(c1,,cu)n(β1,,βq)m+n(b1,,bs)m(d1,,dv)nxmm!ynn!,

    where, for convergence of the double hypergeometric series,

    p+rq+s+1andp+uq+v+1,

    with equality only when |x| and |y| are appropriately constrained (see, for details, [19,Eq 1.3(29),p.27]).

    There exist numerous identities for such series. For example, we have

    Theorem 1.1 (See [17,(30)] ) If Re(ed)>0 and Re(d+eabc)>0, then

    F0:3;31:1;1[:a,b,c;da,db,dc;d:e;d+eabc;1,1]=Γ(e)Γ(e+dabc)Γ(ed)Γ(ea)Γ(eb)Γ(ec).

    In [15], Liu used the general rising shifted factorial and the Gauss summation formula to prove the following four-parameter series expansions formula, which implies infinitely many Ramanujan type series for 1/π and π.

    Theorem 1.2 For any complex α and Re(cab)>0, we have

    n=0(α)a+n(1α)b+nn!Γ(c+n+1)=(α)a(1α)bΓ(cab)(α)cb(1α)casinπαπ.

    Motivated by Liu's work, in this paper we derive the following result from Theorem 1.1 which enables us to give many double series expansions for 1/π and  π. To the best of our knowledge, most of the results in this paper have not previously appeared.

    Theorem 1.3 If dN0,Re(ed+σδ)>0 and Re(d+eabc+δ+σαβγ)>0, then

    m,n=0(α)a+m(β)b+m(γ)c+m(δα)da+n(δβ)db+n(δγ)dc+nm!n!(δ+d)m+n(σ)e+m(δ+σαβγ)d+eabc+n=(α)a(β)b(γ)c(δα)da(δβ)db(δγ)dc(σδ)ed(σα)ea(σβ)eb(σγ)ecΓ(σ)Γ(σδ)Γ(δ+σαβγ)Γ(σα)Γ(σβ)Γ(σγ).

    Several examples of such formulae are

    m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π,
    m,n=0(12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π,

    and

    m,n=0(23)2m(13)3nm!n!(n+1)!(23m)(13)m+n=3π3.

    The remainder of the paper is organized as follows. In section 2 we give the proof of Theorem 1.3. Sections 3 and 4 are devoted to the double series expansions for 1/π and π, respectively.

    First of all, by making use of (1.1), Theorem 1.3 can be restated as follows:

    m,n=0Γ(a+m)Γ(b+m)Γ(c+m)Γ(da+n)Γ(db+n)Γ(dc+n)m!n!Γ(d+m+n)Γ(e+m)Γ(d+eabc+n)=Γ(a)Γ(b)Γ(c)Γ(da)Γ(db)Γ(dc)Γ(ed)Γ(d)Γ(ea)Γ(eb)Γ(ec). (2.1)

    From (1.1) it is easy to see that

    Γ(a+α+m)=(α)a+mΓ(α), Γ(b+β+m)=(β)b+mΓ(β), Γ(c+γ+m)=(γ)c+mΓ(γ),Γ(da+δα+n)=(δα)da+nΓ(δα), Γ(db+δβ+n)=(δβ)db+nΓ(δβ),Γ(dc+δγ+n)=(δγ)dc+nΓ(δγ), Γ(d+δ+m+n)=(δ)d+m+nΓ(δ)Γ(e+m+σ)=(σ)e+mΓ(σ), Γ(a+α)=(α)aΓ(α), Γ(b+β)=(β)bΓ(β), Γ(c+γ)=(γ)cΓ(γ),Γ(da+δα)=(δα)daΓ(δα), Γ(db+δβ)=(δβ)dbΓ(δβ),Γ(dc+δγ)=(δγ)dcΓ(δγ), Γ(ed+σδ)=(σδ)edΓ(σδ),Γ(d+δ)=(δ)dΓ(δ),Γ(ea+σα)=(σα)eaΓ(σα),Γ(eb+σβ)=(σβ)ebΓ(σβ), Γ(ec+σγ)=(σγ)ecΓ(σγ),Γ(d+eabc+δ+σαβγ)=(δ+σαβγ)d+eabcΓ(δ+σαβγ).

    and we realize that (δ)d+m+n=(δ)d(δ+d)m+n when dN0. Replacing(a,b,c,d,e) by (a+α,b+β,c+γ,d+δ,e+σ) in (2.1) and substituting above identities into the resulting equation, we get the desired result.

    In this section we will use Theorem 1.3 to prove the following double series expansion formula for 1/π.

    Theorem 3.1 If dN0,Re(ed+1)>0 and Re(d+eabc+32)>0, then

    m,n=0(12)(a+m,b+m,c+m,da+n,db+n,dc+n)m!n!(d+1)m+n(2)e+m(32)d+eabc+n=(12)(a,b,c,da,db,dc)(1)ed(32)(ea,eb,ec)4π.

    Proof. Let (α,β,γ,δ,σ)=(12,12,12,1,2) in Theorem 1.3. We find that

    m,n=0(12)(a+m,b+m,c+m,da+n,db+n,dc+n)m!n!(d+1)m+n(2)e+m(32)d+eabc+n=(12)(a,b,c,da,db,dc)(1)ed(32)(ea,eb,ec)Γ(2)Γ(1)Γ(32)Γ3(32). (3.1)

    Substituting Γ(32)=π2 into (3.1) we obtain the result immediately. Putting (a,b,c)=(0,0,0) in Theorem 3.1 we get the following general double summation formula for 1/π with two free parameters.

    Corollary 3.2 If dN0,Re(ed+1)>0 and Re(d+e+32)>0, then

    m,n=0(12)3(m,d+n)m!n!(d+1)m+n(2)e+m(32)d+e+n=4(12)3d(1)edπ(32)3e.

    Setting d=0 and e=kN0 in Corallary 3.2 we have the following result.

    Proposition 3.3 Let k be a nonnegative integer. Then

    m,n=0(12)3(m,n)m!n!(m+n)!(m+k+1)!(32+k)n=4k!π(32)2k.

    Example 3.1 (k=0 in Proposition 3.3).

    m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π.

    If d=e=kN0 in Corollary 3.2 we achieve

    Proposition 3.4 Let k be a nonnegative integer. Then

    m,n=0(12)3(m,n+k)m!n!(k+1)m+n(m+k+1)!(32)n+2k=4π(2k+1)3.

    If we put k=0 into Proposition 3.4, then we can also get Example 3.1.

    In this section we will prove the following theorem, which allows us to derive infinitely double series expansions for π.

    Theorem 4.1 If dN0,Re(edσ+1)>0 and Re(d+eabc+2)>0, then

    m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)πsinσπ.

    Proof. Let (α,β,γ,δ)=(σ1,σ1,σ1,2σ1) in Theorem 1.3. We obtain that

    m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)Γ(σ)Γ(1σ)Γ(2)Γ3(1). (4.1)

    Combining Γ(σ)Γ(1σ)=πsinσπ with (4.1) we get the desired result immediately. Putting a=b=c=0 in Theorem 4.1 we obtain the following equation.

    Corollary 4.2 If dN0,Re(edσ+1)>0 and Re(d+e+2)>0, then

    m,n=0(σ1)3m(σ)3d+nm!n!(2σ+d1)m+n(σ)e+m(2)d+e+n=(σ)3d(1σ)ed(1)3eπsinσπ.

    Letting σ=12 in Corollary 4.2, we get the following proposition.

    Proposition 4.3 If dN0,Re(ed+12)>0 and Re(d+e+2)>0, then

    m,n=0(12)3m(12)3d+nm!n!(d)m+n(12)e+m(2)d+e+n=(12)3d(12)ed(1)3eπ.

    When we set d=1 and e=kN={1,2,3} in Proposition 4.3 we obtain

    Proposition 4.4 If k is a positive integer, then

    m,n=0(12)3m(32)3nm!n!(m+n)!(n+k+2)!(12)m+k=π(12)k1(k!)3.

    Example 4.1 (k=1 in Proposition 4.4).

    m,n=0(12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π.

    Putting σ=13 in Corollary 4.2, we get the following proposition.

    Proposition 4.5 If dN0,Re(ed+23)>0 and Re(d+e+2)>0, then

    m,n=0(23)3m(13)3d+nm!n!(d13)m+n(13)e+m(2)d+e+n=23π(13)3d(23)ed3(1)3e.

    When we set d=0 and e=kN0 in Proposition 4.5 we obtain

    Proposition 4.6 If k is a nonnegative integer, then

    m,n=0(23)3m(13)3nm!n!(13)m+n(13)m+k(n+k+1)!=23π(23)k3k!3.

    Example 4.2 (k=0 in Proposition 4.6).

    m,n=0(23)2m(13)3nm!n!(n+1)!(23m)(13)m+n=3π3.

    Setting d=e=kN0 in Proposition 4.5, we get

    Proposition 4.7 If k is a nonnegative integer, then

    m,n=0(23)3m(13+k)3nm!n!(n+2k+1)!(k13)m+n(13)m+k=23π3k!3.

    Therefore, Example 4.2 can also be deduced by fixing k=0 in the above equation.

    Example 4.3 (k=1 in Proposition 4.7).

    m,n=0(23)3m(43)3nm!n!(n+3)!(23)m+n(43)m=23π9.

    Double series expansions for 1/π and π with several free parameters are established and many interesting formulas are obtained. A point that should be stressed is that there is an important connection between the summation formulas for double hypergeometric functions and double series expansions for the powers of π.

    The author was partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant 19KJB110006).

    The author declares that there is no conflict of interest in this paper.



    [1] R. P. Agarwal, Y. M. Chow, Iterative method for fourth order boundary value problem, J. Comput. Appl. Math., 10 (1984), 203–217. doi: 10.1016/0377-0427(84)90058-X
    [2] Z. B. Bai, H. Y. Wang, On positive solutions of some nonlinear four-order beam equations, J. Math. Anal. Appl., 270 (2002), 357–368. doi: 10.1016/S0022-247X(02)00071-9
    [3] Z. B. Bai, The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal.-Theor.,, 67 (2007), 1704–1709.
    [4] G. Bonanno, B. D. Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166–1176. doi: 10.1016/j.jmaa.2008.01.049
    [5] G. Bonanno, B. D. Bella, D. O'Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl., 62 (2011), 1862–1869. doi: 10.1016/j.camwa.2011.06.029
    [6] R. Graef, B. Yang, Positive solutions of a nonlinear fourth order boundary value problem, Communications on Applied Nonlinear Analysis, 14 (2007), 61–73.
    [7] C. P. Gupta, Existence and uniqueness results for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289–304. doi: 10.1080/00036818808839715
    [8] P. Korman, Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems, P. Roy. Soc. Edinb. A, 134 (2004), 179–190. doi: 10.1017/S0308210500003140
    [9] B. D. Lou, Positive solutions for nonlinear elastic beam models, International Journal of Mathematics and Mathematical Sciences, 27 (2001), 365–375. doi: 10.1155/S0161171201004203
    [10] R. Y. Ma, L. Xu, Existence of positive solutions of a nonlinear fourth-order boundary value problem, Appl. Math. Lett., 23 (2010), 537–543. doi: 10.1016/j.aml.2010.01.007
    [11] Q. L. Yao, Positive solutions for eigenvalue problems of four-order elastic beam equations, Appl. Math. Lett., 17 (2004), 237–243. doi: 10.1016/S0893-9659(04)90037-7
    [12] Q. L. Yao, Existence of n solutions and/or positive solutions to a semipositone elastic beam equation, Nonlinear Anal.-Theor., 66 (2007), 138–150. doi: 10.1016/j.na.2005.11.016
    [13] Q. L. Yao, positive solutions of nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right, Nonlinear Anal.-Theor., 69 (2008), 1570–1580. doi: 10.1016/j.na.2007.07.002
    [14] C. B. Zhai, R. P. Song, Q. Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem, Comput. Math. Appl., 62 (2011), 2639–2647. doi: 10.1016/j.camwa.2011.08.003
    [15] X. P. Zhang, Existence and iteration of monotone positive solutions for an elastic beam equation with a corner, Nonlinear Anal.-Real, 10 (2009), 2097–2103. doi: 10.1016/j.nonrwa.2008.03.017
    [16] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin-Heidelberg-Newyork, 1985.
    [17] D. J. Guo, V. Lakshmikanthan, Nonlinear Problems in Abstract Cones, Academic press, San Diego, 1988.
    [18] D. J. Guo, Nonlinear Functional Analysis, second edn., Shandong Science and Technology Press, Jinan, 2001 (in Chinese).
    [19] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. doi: 10.1137/1018114
    [20] G. W. Zhang, J. X. Sun, Positive solutions of m-point boundary value problems, J. Math. Anal. Appl., 291 (2004), 406–418. doi: 10.1016/j.jmaa.2003.11.034
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2677) PDF downloads(252) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog