This article investigates the existence and uniqueness (EU) of positive solutions to the tripled system of multi-point boundary value problems (M-PBVPs) for fractional order differential equations (FODEs). The topological degree theory technique is employed to derive sufficient requirements for the (EU) of positive solutions to the proposed system. To justify the efficiency and validity of our study, an illustrative example is considered.
Citation: Hasanen A. Hammad, Hassen Aydi, Mohra Zayed. Involvement of the topological degree theory for solving a tripled system of multi-point boundary value problems[J]. AIMS Mathematics, 2023, 8(1): 2257-2271. doi: 10.3934/math.2023117
This article investigates the existence and uniqueness (EU) of positive solutions to the tripled system of multi-point boundary value problems (M-PBVPs) for fractional order differential equations (FODEs). The topological degree theory technique is employed to derive sufficient requirements for the (EU) of positive solutions to the proposed system. To justify the efficiency and validity of our study, an illustrative example is considered.
[1] | R. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10 |
[2] | S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: Theory and applications, 1993. |
[3] | H. M. Ozaktas, M. A. Kutay, Z. Zalevsky, The fractional Fourier transform with applications in optics and signal processing, John Wiley & Sons, 2001. |
[4] | A. Erdelyi, On fractional integration and its application on the theory of Hankel transforms, Q. J. Math., 1 (1940), 293–303. |
[5] | H. A. Hammad, P. Agarwal, L. G. J. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 2012. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012 |
[6] | S. F. Lacroix, Traité du calcul différentiel et du calcul integral Tome 3, Paris: Courtier, 1819. |
[7] | J. B. J. Fourier, Théorie analytique de la chaleur, chez firmin didot, Paris, 1822. |
[8] | J. Liouville, Mémoire sur l'integration de l'equation $(mx^2+nx +p)\frac{d^2y}{dx^2} + (qx+r) \frac{{dy}}{{dx}} + sy = 0$ à l'aide des différentielles à indices quelconques, J. d'Ecole Polytech., 13 (1832), 163–186. |
[9] | B. Riemann, Versuch einer allgemeinen auffassung der integration und differentiation, Gesammelte Werke, 1876. |
[10] | N. Ya Sonin, On differentiation with arbitrary index, Moscow Matezn. Sbornik, 6 (1869), 1–38. |
[11] | M. Caputo, Elasticita e dissipazione, Zanichelli, 1969. |
[12] | K. B. Oldham, J. Spainer, The fractional calculus, 1974. |
[13] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equation, Wiley, 1993. |
[14] | H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[15] | R. P. Agarwal, V. Lakshmikantan, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. Theor., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029 |
[16] | H. Weitzner, G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci., 8 (2003), 273–281. https://doi.org/10.1016/S1007-5704(03)00049-2 doi: 10.1016/S1007-5704(03)00049-2 |
[17] | B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), 494720. https://doi.org/10.1155/2009/494720 doi: 10.1155/2009/494720 |
[18] | M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional equation, Bound. Value ProbL., 2009 (2009), 324561. https://doi.org/10.1155/2009/324561 |
[19] | H. A. Hammad, M. D. la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via $F_{\varpi _{e}}$-Suzuki contractions in modified $\varpi _{e}$-metric-like spaces, J. Funct. Space., 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586 |
[20] | H. A. Hammad, M. D. la Sen, Fixed-point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063 |
[21] | Z. Bai, H. Lu, Positive solutions for boundary value problem of a nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |
[22] | M. K. Kwong, On Krasnoselskii's cone fixed point theorem, Fixed Point Theory Appl., 2008 (2018), 164537. https://doi.org/10.1155/2008/164537 doi: 10.1155/2008/164537 |
[23] | H. A. Hammad, M. D. la Sen, Tripled fixed point techniques for solving system of tripled-fractional differential equations, AIMS Math., 6 (2021), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141 |
[24] | B. Ahmad, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Method. Nonl. An., 35 (2010), 295–304. |
[25] | T. Chen, W. Liu, Z. Hu, A boundary value problem for fractional differential equation with $p$-Laplacian operator at resonance, Nonlinear Anal. Theor., 75 (2012), 3210–3217. https://doi.org/10.1016/j.na.2011.12.020 doi: 10.1016/j.na.2011.12.020 |
[26] | X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309–314. https://doi.org/10.22436/jnsa.008.04.03 doi: 10.22436/jnsa.008.04.03 |
[27] | J. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Func. Anal. Opt., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069 |
[28] | A. Yang, W. Ge, Positive solutions of multi-point boundary value problems of nonlinear fractional differential equation at resonance, J. Korean Soc. Math. Ed., 16 (2009), 213–225. |
[29] | K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fract., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008 |
[30] | H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388 |
[31] | I. Podlubny, Fractional differential equations, 1999. |
[32] | E. Zeidler, Nonlinear functional analysis an its applications, Springer-Verlag, 1986. |
[33] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. |
[34] | F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75 (2006), 233–240. |
[35] | X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309–314. https://doi.org/10.22436/jnsa.008.04.03 doi: 10.22436/jnsa.008.04.03 |
[36] | K. Deimling, Nonlinear functional analysis, Springer Berlin Heidelberg, 1985. |