In this paper, we first define the generalized (F, $ \varphi $, $ \alpha - \psi $)-contraction mappings. In the following, we consider the conditions in which these mappings have a $ \varphi $-fixed point and also we present examples and applications of these mappings in partial metric space and integral equations.
Citation: Maryam Shams, Sara Zamani, Shahnaz Jafari, Manuel De La Sen. Existence of $ \varphi $-fixed point for generalized contractive mappings[J]. AIMS Mathematics, 2021, 6(7): 7017-7033. doi: 10.3934/math.2021411
In this paper, we first define the generalized (F, $ \varphi $, $ \alpha - \psi $)-contraction mappings. In the following, we consider the conditions in which these mappings have a $ \varphi $-fixed point and also we present examples and applications of these mappings in partial metric space and integral equations.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[2] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $ \alpha-\psi $-contractive type mappings, Nonlinear Analy.: Theor., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014 |
[3] | H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. doi: 10.1016/j.topol.2012.06.012 |
[4] | M. S. Adamo, C. Vetro, Fixed point and homotopy results for mixed multi-valued mappings in 0-complete partial metric spaces, Nonlinear Anal.: Model., 20 (2015), 159–174. doi: 10.15388/NA.2015.2.1 |
[5] | H. Aydi, M. Jellali, E. Karapınar, On fixed point results for alpha-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal.: Model., 21 (2016), 40–56. |
[6] | M. Jleli, B. Samet, C. Vetro, Fixed point theory in partial metric spaces via $ \varphi $-fixed point's concept in metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. doi: 10.1186/1029-242X-2014-1 |
[7] | M. Asadi, Discontinuity of control function in the $ (F, \varphi, \theta) $-contraction in metric spaces, Filomat, 31 (2017), 5427–5433. doi: 10.2298/FIL1717427A |
[8] | E. Karapinar, D. O'Regan, B. Samet, On the existence of fixed points that belong to the zero set of a certain function, Fixed Point Theory Appl., 2015 (2015), 1–14. doi: 10.1186/1687-1812-2015-1 |
[9] | M. Imdad, A. R. Khan, H. N. Saleh, W. M. Alfaqih, Some $ \varphi $-fixed point results for $ (F, \varphi, \alpha-\psi)$-contractive type mappings with applications, Mathematics, 7 (2019), 122. doi: 10.3390/math7020122 |
[10] | S. G. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. |
[11] | X. Ge, S. Lin, Completions of partial metric spaces, Topol. Appl., 182 (2015), 16–23. doi: 10.1016/j.topol.2014.12.013 |
[12] | X. Ge, S. Lin, Contractions of Nadler type on partial tvs-cone metric spaces, Colloq. Math-Warsaw, 138 (2015), 149–163. doi: 10.4064/cm138-2-1 |
[13] | X. Ge, S. Yang, Some fixed point results on generalized metric spaces, AIMS Mathematics, 6 (2021), 1769–1780. doi: 10.3934/Math.2021106 |