The present article is a continuation of the work done by Aral and Erbay [
Citation: Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar. Approximation properties of generalized Baskakov operators[J]. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410
The present article is a continuation of the work done by Aral and Erbay [
[1] | A. Aral, H. Erbay, Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119-131. |
[2] | F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin, Germany, 1994. |
[3] | T. Acar, A. Kajla, Blending type Bezier summation- integral type operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2018), 195-208. |
[4] | T. Acar, A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math., 73 (2018). |
[5] | T. Acar, A. M. Acu, N. Manav, Approximation of functions by genuine Bernstein- Durrmeyer type operators, J. Math. Inequal., 12 (2018), 975-987. |
[6] | C. Badea, I. Badea, C. Cottin, H. H. Gonska, Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95-108. |
[7] | C. Badea, C. Cottin, Korovkin-type theorems for generalised Boolean sum operators, In: Approximation Theory (Kecskemt Hungary), Colloquia Mathematica Societatis Janos Bolyai, 58 (1990), 51-67. |
[8] | D. Bǎrbosu, On the remainder term of some bivariate approximation formulas based on linear and positive operators, Constr. Math. Anal., 1 (2018), 73-87. |
[9] | D. Bǎrbosu, C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on q-integers, Appl. Math. Comput., 259 (2015), 80-87. |
[10] | K. Bögel, Mehrdimensionale differentiation, Von functionen mehrerer Veränderlichen, J. Reine Angew. Math., 170 (1934), 197-217. |
[11] | K. Bögel, Mehrdimensionale differentiation, integration and beschränkte variation, J. Reine Angew. Math., 173 (1935), 5-30. |
[12] | K. Bögel, Über die mehrdimensionale differentiation, Jahresber. Dtsch. Math. Ver., 65 (1962), 45-71. |
[13] | P. L. Butzer, H. Berens, Semi-groups of Operators and Approximation, Berlin Heidelberg-New York, Springer-Verlag, 1967. |
[14] | X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261. doi: 10.1016/j.jmaa.2016.12.075 |
[15] | R. A. Devore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., Berlin, 1993. |
[16] | Z. Ditzian, V. Totik, Moduli of Smoothness, Volume 9, Springer-Verlag, New York, 1987. |
[17] | E. Dobrescu, I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timiş., Ser. Sti. Mat. Fiz., 4 (1996), 85-90. |
[18] | V. Gupta, T. M. Rassias, P. N. Agrawal, A. M. Acu, Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, 2018. |
[19] | H. G. I. Ilarslan, T. Acar, Approximation by bivariate (p, q)- Baskakov- Kantorovich operators, Georgian Math. J., 25 (2018), 397-407. doi: 10.1515/gmj-2016-0057 |
[20] | A. Kajla, T. Acar, Blending type approximation by generalized Bernstein- Durrmeyer operators, Miskolc Math. Notes, 19 (2018), 319-326. doi: 10.18514/MMN.2018.2216 |
[21] | A. Kajla, T. Acar, Modified $\alpha-$ Bernstein operators with better approximation properties, Ann. Funct. Anal., 10 (2019), 570-582. doi: 10.1215/20088752-2019-0015 |
[22] | A. Kajla, T. Acar, Bezier- Bernstein- Durrmeyer type operators, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Matemáticas, RACSAM, 114 (2020), 31. |
[23] | B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53-63. |
[24] | S. A. Mohiuddin, T. Acar, A. Alotaibi, Construction of new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749-7759. doi: 10.1002/mma.4559 |
[25] | M. A. Özarslan, H. Aktu$\breve{g}$lu, Local approximation properties for certain King type operator, Filomat 27 (2013), 173-181. |