Processing math: 34%
Research article

Approximation properties of generalized Baskakov operators

  • Received: 20 January 2021 Accepted: 08 April 2021 Published: 26 April 2021
  • MSC : 41A25, 41A36

  • The present article is a continuation of the work done by Aral and Erbay [1]. We discuss the rate of convergence of the generalized Baskakov operators considered in the above paper with the aid of the second order modulus of continuity and the unified Ditzian Totik modulus of smoothness. A bivariate case of these operators is also defined and the degree of approximation by means of the partial and total moduli of continuity and the Peetre's K-functional is studied. A Voronovskaya type asymptotic result is also established. Further, we construct the associated Generalized Boolean Sum (GBS) operators and investigate the order of convergence with the help of mixed modulus of smoothness for the Bögel continuous and Bögel differentiable functions. Some numerical results to illustrate the convergence of the above generalized Baskakov operators and its comparison with the GBS operators are also given using Matlab algorithm.

    Citation: Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar. Approximation properties of generalized Baskakov operators[J]. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410

    Related Papers:

    [1] Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
    [2] Mustafa Kara . Approximation properties of the new type generalized Bernstein-Kantorovich operators. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212
    [3] Bo-Yong Lian, Qing-Bo Cai . Approximation properties of Stancu type Szász-Mirakjan operators. AIMS Mathematics, 2023, 8(9): 21769-21780. doi: 10.3934/math.20231110
    [4] Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367
    [5] Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217
    [6] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [7] B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044
    [8] Ruifeng Wu . Bivariate multiquadric quasi-interpolation operators of Lidstone type. AIMS Mathematics, 2023, 8(9): 20914-20932. doi: 10.3934/math.20231065
    [9] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [10] Ruifeng Wu . A kind of even order Bernoulli-type operator with bivariate Shepard. AIMS Mathematics, 2023, 8(7): 15299-15316. doi: 10.3934/math.2023782
  • The present article is a continuation of the work done by Aral and Erbay [1]. We discuss the rate of convergence of the generalized Baskakov operators considered in the above paper with the aid of the second order modulus of continuity and the unified Ditzian Totik modulus of smoothness. A bivariate case of these operators is also defined and the degree of approximation by means of the partial and total moduli of continuity and the Peetre's K-functional is studied. A Voronovskaya type asymptotic result is also established. Further, we construct the associated Generalized Boolean Sum (GBS) operators and investigate the order of convergence with the help of mixed modulus of smoothness for the Bögel continuous and Bögel differentiable functions. Some numerical results to illustrate the convergence of the above generalized Baskakov operators and its comparison with the GBS operators are also given using Matlab algorithm.



    Chen et al. [14] introduced a generalization of Bernstein polynomials by means of a parameter α, where 0α1, and studied some approximation properties. Subsequently, the modifications and the generalizations of the operators introduced in [14] were extensively studied in many papers [3,4,5,8,19,20,21,22,24]. Inspired by these studies, Aral and Erbay [1] proposed α Baskakov operators as follows:

    For γ>0 and φCγ(S):={φC(S):|φ(r)|M(1+rγ),forsomeM>0}, where S:=[0,), the parametric generalization of Baskakov operators is given by

    Jm,α(φ;x)=j=0φ(jm)P(α)m,j(x), (1.1)

    where m1,xS and

    P(α)m,j(x)=xj1(1+x)m+j1{αx1+x(m+j1j)(1α)(1+x)(m+j3j2)+(1α)x(m+j1j)},

    with (m32)=(m21)=0. The authors [1] studied some approximation theorems in weighted spaces and a Voronovskaya type asymptotic theorem. Further, they established a representation of these operators in terms of the divided differences.

    We observe that for α=1, the operators (1.1) reduce to the classical Baskakov operators.

    The purpose of the present paper is to investigate the degree of approximation for the operators given by (1.1) by means of the Peetre's K-functional and the Ditzian Totik modulus of smoothness. Also, we construct a bivariate case of these operators and determine the order of convergence by means of the moduli of continuity and the Peetre's K-functional. The Voronovskaya type asymptotic theorem is also established. Further, we propose the associated GBS operators and consider their rate of convergence with the aid of the mixed modulus of smoothness. We also add some numerical examples to validate the theoretical findings and compare the convergence of the operators (1.1) with the corresponding GBS operators.

    Lemma 1. [1] For mN, the αBaskakov operators Jm,α(;x) verify the following identities:

    (a) Jm,α(1;x)=1;

    (b) Jm,α(r;x)=x+x(α1)2m;

    (c) Jm,α(r2;x)=x2+x2(4α3)1m+x(m+4α4)1m2.

    By a simple computation, it follows that

    (d) Jm,α(r3;x)=x3+x3(6mα3m+6α4)1m2+x2(18α+3m15)1m2+x(8α+m8)1m3;

    (e) Jm,α(r4;x)=x4+{(8α2)m2+x4(24α13)m+(16α10)}1m3+x3{6m2+(48α30)m+(48α36)}1m3+x2{(4α+3)m+60α53}1m3+x(16α+m16)1m4.

    Consequently, we obtain the following result:

    Lemma 2. [1] The operators Jm,α(;x) given by (1.1) satisfy the following equalities:

    (a) Jm,α((rx);x)=2m(α1)x;

    (b) Jm,α((rx)2;x)=1m(1+x)x+4m2(α1)x;

    (c) Jm,α((rx)4;x)=3m2(1+x)2x21m3(10x4+36x2+25x1)x+1m3α(16x2+48x+32)+1m416(α1)x.

    Remark 1. For the operators Jm,α(;x) defined by (1.1), we have

    (a) limmmJm,α((rx);x)=2(α1)x;

    (b) limmmJm,α((rx)2;x)=(1+x)x;

    (c)limmm2Jm,α((rx)4;x)=3x2(1+x)2.

    Remark 2. From Lemma 2, it follows that for every xS and mN,

    Jm,α((rx)2;x)x(1+x)m.

    Further, for each xS and sufficiently large m,

    Jm,α((rx)4;x)Cm{x2(1+x)2+1m},

    where C is a positive constant independent of m.

    Let C2(S) be the subspace of Cγ(S), for γ=2, defined as follows:

    C2(S)={fC2(S):limxf(x)1+x2existsandisfinite}.

    Theorem 1. Let φC2(S). Then limmJm,α(φ;x)=φ(x), uniformly on each compact subset of S.

    Proof. From Lemma 1, limmJm,α(ri;x)=xi,i=0,1,2, uniformly on each compact subset of S. Applying the Korovkin type theorem ([2], Thm. 4.1.4 (vi), p.199), the required result is immediate. Let CB(S) be the space of all real valued bounded continuous functions φ on S, endowed with the norm

    φ=supxS|φ(x)|.

    For φ¯CB(S):={φCB(S):φisuniformlycontinuousonS}, the usual modulus of continuity of φ is defined as

    ω(φ,η)=sup0<|h|ηsupx,x+hS|φ(x+h)φ(x)|

    and the Peetre's K-functional is defined by

    K(φ;η)=inffC2B(S){φf+ηf},η>0,

    where C2B(S)={fCB(S):f,fCB(S)}. For each φ¯CB(S), by [15] there exists an absolute constant M such that

    K(φ,η)Mω2(φ,η),η>0 (3.1)

    where ω2(φ,η)=sup0<|h|ηsupx,x+2hS|φ(x+2h)2φ(x+h)+φ(x)| is the second-order modulus of continuity of φ on S.

    Theorem 2. Let φ¯CB(S). Then for every xS, the following inequality holds:

    |Jm,α(φ;x)φ(x)|Mω2(φ,βm,α(x)2)+ω(φ,2xm(1α)),

    where M is an absolute positive constant and

    βm,α(x)=12m{x(1+x)+4x2m(α1)2}.

    Proof. First, we define an auxiliary operator

    Lm,α(φ;x)=Jm,α(φ;x)+φ(x)φ(x(1+2m(α1))). (3.2)

    Applying Lemma 1, it is seen that

    Lm,α(1;x)=1andLm,α((rx);x)=0. (3.3)

    Let fC2B(S). From Taylor's formula, we may write

    f(r)=f(x)+(rx)f(x)+rx(ru)f(u)du.

    Applying the operators Lm,α(;x) on the above equation and using (3.3), we get

    Lm,α(f(r);x)=Ln,α(f(x);x)+f(x)Lm,α((rx);x)+Lm,α(rx(ru)h(u)du;x)

    or,

    Lm,α(f;x)f(x)=Jm,α(rx(ru)f(u)du;x)x(1+2m(α1))x{x(1+2m(α1))u}f(u)du,

    which implies that

    |Lm,α(f;x)f(x)|Jm,α(|rx(ru)f(u)du|;x)+|x(1+2m(α1))x{x(1+2m(α1))u}f(u)du|.

    Now, using the fact that

    |rx(ru)f(u)du|f2(rx)2, (3.4)

    from Remark 2, it follows that

    Jm,α(|rx(ru)f(u)du|;x)f2Jm,α((rx)2;x)f2mx(1+x),

    and

    |x(1+2m(α1))x{x(1+2m(α1))u}f(u)du|f2(x(1+2m(α1))x)2=2fm2x2(α1)2.

    Hence,

    |Lm,α(f;x)f(x)|f2{x(1+x)m+4x2m2(α1)2}. (3.5)

    From (3.2), for every φ¯CB(S) we have

    |Ln,α(φ;x)|3φ. (3.6)

    Hence from (3.2), (3.5) and (3.6), for φ¯CB(S) and any fC2B(S), we obtain

    |Jm,α(φ;x)φ(x)||Lm,α(φ;x)φ(x)+φ(x(1+2m(α1)))φ(x)||Lm,α(φf;x)|+|Lm,ρ(f;x)f(x)|+|f(x)φ(x)|+|φ(x(1+2m(α1)))φ(x)|4φf+f2[x(1+x)m+4x2m2(α1)2]+ω(φ;2xm(1α))4φf+fβm,α(x)+ω(φ;2xm(1α)).

    Now, taking the infimum on the right hand side over all fC2B(S), we get

    |Jm,α(φ;x)φ(x)|4K(φ;βm,α(x)4)+ω(φ,2xm(1α)).

    Hence, in view of (3.1), we obtain

    |Jm,α(φ;x)φ(x)|Mω2(φ,βm,α(x)2)+ω(φ,2xm(1α)),

    which completes the proof.

    Lipschitz type space: For μ(0,2], we consider the following Lipschitz type space [25]:

    Lip(0,2]M(μ)={φC(S):|φ(r)φ(x)|M|rx|μ(r+x)μ2,rS,x>0},

    where M is any positive constant depending only on φ.

    Theorem 3. For 0<μ2, let φLip(0,2]M(μ). Then for all x(0,), we have

    |Jm,α(φ;x)φ(x)|M(1+xm)μ2,

    where M is any positive constant depending only on φ.

    Proof. First, we prove the theorem for the case μ=2. Then, for fLip(0,2]M(μ), we have

    |Jm,α(φ;x)φ(x)|j=0P(α)m,j(x)|φ(jm)φ(x)|Mj=0P(α)m,j(x)(jmx)2(jm+x).

    Using the fact that 1jm+x1x,j=0,1,2,... and Remark 2, we have

    |Jm,α(φ;x)φ(x)|Mxj=0P(α)m,j(x)(jmx)2=MxJm,α((rx)2;x)Mxx(1+x)m=M(1+xm).

    Now, let us prove the theorem for the case 0<μ<2. Applying the Hölder inequality

    with (p,q)=(2μ,22μ), in view of Lemma 1, we find that

    |Jm,α(φ;x)φ(x)|j=0P(α)m,j(x)|φ(jm)φ(x)|{j=0P(α)m,j(x)|φ(jm)φ(x)|2μ}μ2{j=0P(α)m,j(x)}2μ2M{j=0P(α)m,j(x)(jmx)2(jm+x)}μ2Mxμ2{j=0P(α)m,j(x)(jmx)2}μ2=Mxμ2{Jm,α((rx)2;x)}μ/2M(1+xm)μ2,

    which leads us to the desired result.

    Next, we study a local direct estimate for the operators defined in (1.1) by applying the Lipschitz-type maximal function of order ξ, given by Lenze [23] as

    ˜ωξ(φ,x)=suprx,rS|φ(r)φ(x)||rx|ξ,xSandξ(0,1]. (3.7)

    Theorem 4. Let φ¯CB(S) and 0<ξ1. Then, for all xS, we have

    |Jm,α(φ;x)φ(x)|˜ωξ(φ,x)(x(1+x)m)ξ2.

    Proof. In view of (3.7), we have

    |φ(r)φ(x)|˜ωξ(φ,x)|rx|ξ

    and hence

    |Jm,α(φ;x)φ(x)|Jm,α(|φ(r)φ(x)|;x)˜ωξ(φ,x)Jm,α(|rx|ξ;x).

    Now, applying the Hölder's inequality with p=2ξ and q=22ξ, in view of Lemma 1 and Remark 2, we obtain

    |Jm,α(φ;x)φ(x)|˜ωξ(φ,x){Jm,α((rx)2;x}ξ2˜ωξ(φ,x)(x(1+x)m)ξ2.

    Thus, the proof is completed.

    Let ϕ(x)=x(1+x) and φ¯CB(S), then for any δ>0, the unified Ditzian-Totik modulus ωϕτ(φ,δ),0τ1 is defined as

    ωϕτ(φ,δ)=sup0<hδsupx±hϕτ(x)2S|φ(x+hϕτ(x)2)φ(xhϕτ(x)2)|,

    and the appropriate Kfunctional is given by

    Kϕτ(φ,δ)=inffWτ{φf+δϕτf},

    where Wτ={f:fACloc(S),ϕτf<} and ACloc(S) denotes the space of locally absolutely continuous functions on S.

    From [16], it is known that ωϕτ(φ,δ)Kϕτ(φ,δ), i.e. there exists a constant M>0 such that

    M1ωϕτ(φ,δ)Kϕτ(φ,δ)Mωϕτ(φ,δ). (3.8)

    Theorem 5. Let φ¯CB(S). Then for each xS and sufficiently large m, there holds the inequality

    |Jm,α(φ;x)φ(x)|M4ωϕτ(φ,ϕ1τ(x)m),

    where M4 is some constant independent of φ and m.

    Proof. From the definition of Kϕτ(φ,δ), for a fixed τ,m and xS we can choose f=fm,x,τWτ such that

    φf+ϕ1τ(x)mϕτf2Kϕτ(φ,ϕ1τ(x)m).

    From the representation

    f(r)=f(x)+rxf(u)du,

    it follows that

    |Jm,α(f;x)f(x)|Jm,α(|rxf(u)du|;x).

    Now, applying the Hölder's inequality

    |rxf(u)du|ϕτf|rx1ϕτ(u)du|ϕτf|rx|1τ|rx1ϕ(u)du|τ.

    But,

    |rxduϕ(u)||rxduu|(11+x+11+r)and|rxduu|2|rx|x,

    hence using the inequality |a+b|s|a|s+|b|s,0s1, we have

    |rxduϕ(u)|τ2τ|rx|τxτ2(11+x+11+r)τ2τ|rx|τxτ2((1+x)τ2+(1+r)τ2).

    Thus,

    |Jm,α(f;x)f(x)|2τxτ2(1+x)τ2ϕτfJm,α(|rx|;x)+2τϕτfxτ2Jm,α(|rx|(1+r)τ2;x).

    Applying Cauchy-Schwarz inequality, Lemma 1 and Remark 2, we get

    Jm,α(|rx|;x){Jm,α((rx)2;x)}12ϕ(x)m.

    Now, since Jm,α(φ;x)φ(x), as m, for sufficiently large m, we have

    Jm,α(|rx|(1+r)τ2;x){Jm,α((rx)2;x)}12{Jm,α((1+r)τ;x)}12M1ϕ(x)m(1+x)τ2,

    for some constant M1>0. Hence,

    |Jm,α(f;x)f(x)|2τϕτfϕτ(x)ϕ(x)m+2τϕτfxτ2M1mϕ(x)(1+x)τ2=M2ϕτfϕ1τ(x)m,

    where M2=2τ(1+M1).

    Thus for φ¯CB(S) and any fWτ, we get

    |Jm,α(φ;x)φ(x)||Jm,α(φf;x)|+|Jm,α(f;x)f(x)|+|f(x)φ(x)|2φf+M2ϕτfϕ1τ(x)m.

    Now, taking the infimum on the right hand side of the above inequality over all fWτ and using the relation (3.8), we have

    |Jm,α(φ;x)φ(x)|M3Kϕτ(φ;ϕ1τ(x)m)M4ωϕτ(φ,ϕ1τ(x)m).

    This completes the proof.

    Now, we present some numerical results to show the convergence of Jm,α(φ;x) to φ(x) with different values of α by using Matlab.

    Example 1. Let φ(x)=(x12)(x14)(x16), m=15,30 and α{0.1,0.4,0.7,0.9,1}.

    Denote Eαm(φ;x)=|Jm,α(φ;x)φ(x)|, the error function of approximation by Jm,α(φ;x) operators. The convergence of the operators Jm,α(φ;x) to the function φ with different values of α on the interval [0,1] and m=15,30 is illustrated in Figures 1 and 3. We can see from Figures 1 and 3 that for α=0.1, the operator Jm,α(φ;x) gives the best approximation to the function φ in comparison with the other values of α. Further, the Tables 1 and 2 and the Figures 2 and 4 clearly show that the error in the approximation Eαm(φ;x) for α=0.1 is the smallest in comparison with the error corresponding to the other values of α. From the Tables 1 and 2, we also observe that the error becomes smaller as the value of m increases from 15 to 30, for all values of α.

    Figure 1.  Approximation process J15,α(φ;x).
    Figure 2.  Error of approximation Eα15(φ;x).
    Figure 3.  Approximation process J30,α(φ;x).
    Table 1.  Error of approximation Eα15 for α=0.1,0.4,0.7,0.9 and 1.
    x E0.115 E0.415 E0.715 E0.915 E115
    0.4 0.0071 0.0097 0.0123 0.0140 0.0149
    0.5 0.0160 0.0225 0.0291 0.0334 0.0356
    0.7 0.0351 0.0587 0.0824 0.0982 0.1061
    0.9 0.0488 0.1071 0.1655 0.2044 0.2239
    1 0.0510 0.1352 0.2194 0.2755 0.3036

     | Show Table
    DownLoad: CSV
    Table 2.  Error of approximation Eα30 for α=0.1,0.4,0.7,0.9 and 1.
    x E0.130 E0.430 E0.730 E0.930 E130
    0.4 0.0045 0.0051 0.0057 0.0061 0.0063
    0.5 0.0101 0.0121 0.0141 0.0155 0.0161
    0.7 0.0232 0.0321 0.0410 0.0469 0.0499
    0.9 0.0354 0.0591 0.0829 0.0987 0.1066
    1 0.0399 0.0750 0.1101 0.1334 0.1451

     | Show Table
    DownLoad: CSV
    Figure 4.  Error of approximation Eα30(φ;x).

    For γ1,γ2>0 and φCγ1,γ2(S2):={φC(S2):|φ(r1,r2)|M(1+rγ11)(1+rγ22),(r1,r2)S2}, where S2:=S×S and M is some positive constant dependent on φ, we introduce a bivariate extension of the operators Jm,α(;x) defined by (1.1) as follows:

    Jm1,m2,α1,α2(φ;x1,x2)=j1=0j2=0φ(j1m1,j2m2)P(α1,α2)m1,m2,j1,j2(x1,x2), (4.1)

    where m1,m2N,(x1,x2)S2 and P(α1,α2)m1,m2,j1,j2(x1,x2)=P(α1)m1,j1(x1)P(α2)m2,j2(x2),

    P(α1)m1,j1(x1)=xj111(1+x1)m1+j11{α1x11+x1(m1+j11j1)(1α1)(1+x1)(m1+j13j12)+(1α1)x1(m1+j11j1)},P(α2)m2,j2(x2)=xj212(1+x2)m2+j21{α2x21+x2(m2+j21j2)(1α2)(1+x2)(m2+j23j22)+(1α2)x2(m2+j21j2)},

    with (m132)=(m121)=0 and (m232)=(m221)=0.

    Let

    ei1i2(r1,r2)=ri11ri22,;i1,i2{0,1,2,3,4}withi1+i24.

    As a consequence of Lemma 1 and the definition (4.1), we easily obtain:

    Lemma 3. For m1,m2N, the bivariate operators Jm1,m2,α1,α2(;x1,x2) verify the following identities:

    (a) Jm1,m2,α1,α2(e00;x1,x2)=1;

    (b) Jm1,m2,α1,α2(e10;x1,x2)=x1+(α11)x12m1;

    (c) Jm1,m2,α1,α2(e01;x1,x2)=x2+(α21)x22m2;

    (d) Jm1,m2,α1,α2(e20;x1,x2)=x21+x21(4α13)1m1+x1(m1+4α14)1m21.

    (e) Jm1,m2,α1,α2(e02;x1,x2)=x22+x22(4α23)1m2+x2(m2+4α24)1m22.

    (f) Jm1,m2,α1,α2(e30;x1,x2)=x31+x31(6m1α13m1+6α14)1m21+x21(18α1+3m115)1m21+x1(8α1+m18)1m31;

    (g) Jm1,m2,α1,α2(e03;x1,x2)=x32+x32(6m2α23m2+6α24)1m22+x22(18α2+3m215)1m22+x2(8α2+m28)1m32;

    (h) Jm1,m2,α1,α2(e40;x1,x2)=x41+{(8α12)m21+x41(24α113)m1+(16α110)}1m31+x31{6m21+(48α130)m1+(48α136)}1m31+x21{(4α1+3)m1+60α153}1m31+x1(16α1+m116)1m41

    (i) Jm1,m2,α1,α2(e04;x1,x2)=x42+{(8α22)m22+x42(24α213)m2+(16α210)}1m32+x32{6m22+(48α230)m2+(48α236)}1m32+x22{(4α2+3)m2+60α253}1m32+x2(16α2+m216)1m42.

    Consequently, by a simple computation, we obtain the following result:

    Lemma 4. For the operators Jm1,m2,α1,α2(;x1,x2), we have

    (a) Jm1,m2,α1,α2((r1x1);x1,x2)=2m1(α11)x1;

    (b) Jm1,m2,α1,α2((r2x2);x1,x2)=2m2(α21)x2;

    (c) Jm1,m2,α1,α2((r1x1)2;x1,x2)=1m1(1+x1)x1+4m21(α11)x1;

    (d) \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2)^2;x_1, x_2) = \frac{1}{m_2}(1+x_2)x_2+\frac{4}{m_2^2}(\alpha_2-1)x_2;

    (e) \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1)^4;x_1, x_2) = \frac{3}{m_1^2}(1+x_1)^2 x_1^2-\frac{1}{m_1^3}(10x_1^4+36x_1^2+25x_1-1)x_1+\frac{1}{m_1^3}\alpha_1(16x_1^2+48x_1+32)+\frac{16}{m_1^4}(\alpha_1-1)x_1;

    (f) \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2)^4;x_1, x_2) = \frac{3}{m_2^2}(1+x_2)^2x_2^2-\frac{1}{m_2^3}(10x_2^4+36x_2^2+25x_2-1)x_2 +\frac{1}{m_2^3}\alpha_2(16x_2^2+48x_2+32)+\frac{16}{m_2^4}(\alpha_2-1)x_2.

    Remark 3. From Lemma 4, the operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) , verify the following equalities:

    (a) \underset{m_1\to \infty}{\lim}\; m_1\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1);x_1, x_2) = 2(\alpha_1-1)x_1;

    (b) \underset{m_2\to \infty}{\lim}\; m_2\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2);x_1, x_2) = 2(\alpha_2-1)x_2;

    (c) \underset{m_1\to \infty}{\lim}\; m_1\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1)^2;x_1, x_2) = (1+x_1)x_1;

    (d) \underset{m_2\to \infty}{\lim}\; m_2\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2)^2;x_1, x_2) = (1+x_2)x_2;

    (e) \underset{m_1\to \infty}{\lim}\; m_1^2\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1)^4;x_1, x_2) = 3x_1^2(1+x_1)^2;

    (f) \underset{m_2\to \infty}{\lim}\; m_2^2\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2)^4;x_1, x_2) = 3x_2^2(1+x_2)^2.

    Let C_B(S^2) be the space of all bounded and continuous functions on S^2 and S_{cd} = [0, c]\times [0, d] be a compact subset of the set S^2 . Further, let \|\varphi\| = \underset{(x_1, x_2)\in S^2}{\sup}|\varphi(x_1, x_2)|, \; \; \varphi\in C_B(S^2).

    Theorem 6. If \varphi\in C_B(S^2), then \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) converges uniformly to \varphi , as m_1, m_2\to \infty, on S_{cd}.

    Proof. From Lemma 3, we have

    \underset{m_1,m_2\to \infty}{\lim}\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{i_1i_2};x_1,x_2) = e_{i_1i_2}(x_1,x_2) \;\;{\rm{for}}\; (i_1,i_2) = \{(0,0),(0,1),(1,0)\},

    and

    \underset{m_1,m_2\to \infty}{\lim}\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{20}+e_{02};x_1,x_2) = (e_{20}+e_{02})(x_1,x_2),

    uniformly on S_{cd}. The proof, now follows on applying Theorem 2.1 of Volkov given in [9].

    In what follows, let \delta_{m_i, \alpha_i}(x_i) = \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_i-x_i)^2;x_1, x_2), \; i = 1, 2. Now, we consider the degree of approximation of the operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) in the space of bounded and uniformly continuous functions on S^2.

    For \varphi\in \overline{C}_B(S^2): = \{\varphi\in C_B(S^2): \varphi\; is\; uniformly\; continuous \} and \delta > 0, the total modulus of continuity for the bivariate case is defined as follows:

    \begin{equation} \overline{\omega}(\varphi;\delta) = \sup\{|\varphi(r_1,r_2)-\varphi(x_1,x_2)|:\;(r_1,r_2), (x_1,x_2)\in S^2 \;and\; \sqrt{(r_1-x_1)^2+ (r_2-x_2)^2} < \delta \}, \end{equation} (4.2)

    Further, the partial moduli of continuity with respect to x_1 and x_2 is defined as

    \begin{equation} \overline{\omega}_1(\varphi;\delta) = \sup\{|\varphi(x_1,x)-\varphi(x_2,x)|:x\in S \; {\rm{and}}\; |x_1-x_2|\leq \delta \} \end{equation} (4.3)

    and

    \begin{equation} \overline{\omega}_2(\varphi;\delta) = \sup\{|\varphi(y,x_1)-\varphi(y,x_2)|:y\in S \; {\rm{and}}\; |x_1-x_2|\leq \delta \}. \end{equation} (4.4)

    The properties of the modulus of continuity for the bivariate case can be seen in [15]. Now, we give the estimate of the convergence of the bivariate operators defined by (4.1) in terms of the total modulus of continuity.

    Theorem 7. Let \varphi\in \overline{C}_B(S^2), then for all (x_1, x_2)\in S^2, we have

    |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq2\; \overline{\omega}(\varphi;(\delta_{m_1,\alpha_1}(x_1)+\delta_{m_2,\alpha_2}(x_2))^{1/2}).

    Proof. From the definition of the complete modulus of continuity (4.2) of \varphi , we may write

    |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|

    \begin{eqnarray*} &\leq& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|\varphi(r_1,r_2)-\varphi(x_1,x_2)|;x_1,x_2)\\ &\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}\bigg(\overline{\omega}(\varphi;\sqrt{(r_1-x_1)^2+(r_2-x_2)^2});x_1,x_2\bigg)\\ &\leq& \overline{\omega}(\varphi;\delta)\bigg\{1+\frac{1}{ \delta}\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\sqrt{(r_1-x_1)^2+(r_2-x_2)^2};x_1,x_2\bigg)\bigg\}, \end{eqnarray*}

    for any \delta > 0.

    Now, applying the Cauchy-Schwarz inequality and Lemma 3, we get

    |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq \overline{\omega}(\varphi;\delta)\bigg[1+\frac{1}{\delta}\;\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg((r_1-x_1)^2+(r_2-x_2^2);x_1,x_2\bigg)\bigg\}^{\frac{1}{2}}\bigg].

    Choosing \delta: = (\delta_{m_1, \alpha_1}(x_1)+\delta_{m_2, \alpha_2}(x_2))^{1/2}, we reach the required result. Next, we obtain the degree of approximation of the operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) by means of the partial moduli continuity.

    Theorem 8. If \varphi\in \overline{C}_B(S^2), then for all (x_1, x_2)\in S^2, we have

    |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq 2 \bigg(\overline{\omega}_1\bigg(\varphi;\sqrt{\delta_{m_1,\alpha_1}(x_1)}\;\bigg)+ \overline{\omega}_2\bigg(\varphi;\sqrt{\delta_{m_2,\alpha_2}(x_2)}\;\bigg)\;\bigg).

    Proof. Using the definitions of partial moduli of continuity given by (4.3) and (4.4) for \varphi\in \overline{C}_B(S^2), we can write

    |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|

    \begin{eqnarray*} &\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|\varphi(r_1,r_2)-\varphi(x_1,x_2)|;x_1,x_2)\\ &\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|\varphi(r_1,r_2)-\varphi(x_1,r_2)-\varphi(x_1,x_2)+\varphi(x_1,r_2)|;x_1,x_2)\\ &\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|\varphi(r_1,r_2)-\varphi(x_1,r_2)|;x_1,x_2)\\ &+&\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|\varphi(x_1,x_2)-\varphi(x_1,r_2)|;x_1,x_2)\\ &\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\overline{\omega}_1(\varphi;|r_1-x_1|);x_1,x_2)\\ &+&\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\overline{\omega}_2(\varphi;|r_2-x_2|);x_1,x_2). \end{eqnarray*}

    Applying the Cauchy-Schwarz inequality and Lemma 3 for any \delta_1, \delta_2 > 0, we have

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq&\overline{\omega}_1(\varphi;\delta_1)\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{00};x_1,x_2)\\ &+&\frac{1}{\delta_1}\;(\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}((r_1-x_1)^2;x_1,x_2))^{\frac{1}{2}}\bigg\}\\ &+&\overline{\omega}_2(\varphi;\delta_2)\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{00};x_1,x_2)\\ &+& \frac{1}{\delta_2}\;(\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}((r_2-x_2)^2;x_1,x_2))^{\frac{1}{2}}\bigg\}\\ & = &\overline{\omega}_1(\varphi;\delta_1)\bigg\{1+\frac{1}{\delta_1}\sqrt{\delta_{m_1,\alpha_1}(x_1)} \bigg\}\\ &+&\overline{\omega}_2(\varphi;\delta_2)\bigg\{1+\frac{1}{\delta_2}\sqrt{\delta_{m_2,\alpha_2}(x_2)}\bigg\}. \end{eqnarray*}

    Hence choosing \delta_1: = \sqrt{\delta_{m_1, \alpha_1}(x_1)} and \delta_2: = \sqrt{\delta_{m_2, \alpha_2}(x_2)}, we get the desired result.

    Let

    C^k_B(S^2): = \bigg\{\varphi\in C_B(S^2): \frac{\partial^{i+j}\varphi}{\partial x_1^i \partial x_2^j}\in C_B(S^2), 0\leq i+j\leq k,\;for\;\;i,\;j = 0,1,2,...,k\bigg\}.

    In particular for k = 2, let the norm on the space C_B^2(S^2) be given by

    \|f\|_{C_B^2(S^2)} = \|f\|+\sum\limits_{i = 1}^2\bigg( \bigg\|\frac{\partial^i f}{\partial x_1^i} \bigg\|+ \bigg\|\frac{\partial^i f}{\partial x_2^i} \bigg\|\bigg)+\bigg\|\frac{\partial^2 f }{\partial x_1 \partial x_2}\bigg\|,\;\;f\in C_B^2(S^2).

    The appropriate Peetre's K-functional for the function \varphi\in \overline{C}_B(S^2) is defined as

    K(\varphi,\delta) = \underset{f\in C_B^2(S^2)}{\inf} \{\|\varphi-f \| +\delta \|f \|_{C_B^2(S^2)}\}, \delta > 0.

    From [13], for \varphi\in \overline{C}_B(S^2), it is known that

    \begin{equation} K(\varphi;\delta)\leq M \overline{\omega}_2(\varphi;\sqrt{\delta})\;{\rm{holds\; for \;all}}\;\delta > 0, \end{equation} (4.5)

    where \overline{\omega}_2(\varphi; \sqrt{\delta}) is the second order modulus of continuity for the bivariate case and M is a constant independent of \delta and \varphi .

    Theorem 9. For the function \varphi\in \overline{C}_B(S^2) and for all (x_1, x_2)\in S^2, we have the following inequality |\mathcal{J}_{m_1, m_1, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|\leq M \overline{\omega}_2\bigg(\varphi; \frac{\sqrt{\mathcal{A}_{m_1, m_2, \alpha_1, \alpha_2}(x_1, x_2)}}{2}\bigg)

    +\;\;\overline{\omega}\bigg(\varphi;\sqrt{\bigg(\frac{2x_1(\alpha_1-1)}{m_1} \bigg)^2+\bigg(\frac{2x_2(\alpha_2-1))}{m_2}\bigg)^2}\; \bigg),

    where

    \mathcal{A}_{m_1,m_2,\alpha_1,\alpha_2}(x_1,x_2) = \frac{1}{2}\bigg\{\bigg(\sqrt{\delta_{m_1,\alpha_1}(x_1)}+\sqrt{\delta_{m_2,\alpha_2}(x_2)}\bigg)^2+\bigg(\frac{2x_1(\alpha_1-1)}{m_1} +\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2\bigg\}.

    Proof. We define an auxiliary operator \mathcal{L}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) as follows:

    \begin{equation} \mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2) = \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)+\varphi(x_1,x_2)-\varphi\bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}, \frac{x_2(2\alpha_2+m_2-2)}{m_2}\bigg). \end{equation} (4.6)

    In view of Lemma 3, we have

    \begin{equation} \mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}(1;x_1,x_2) = 1,\;\mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1);x_1,x_2) = 0\; {\rm{and}}\; \mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}((r_2-x_2);x_1,x_2) = 0. \end{equation} (4.7)

    Let f\in C^2_B(S^2), and (r_1, r_2), \; (x_1, x_2)\in S^2 be arbitrary. By using the Taylor's expansion, we can write

    \begin{eqnarray*} f(r_1,r_2)-f(x_1,x_2)& = &(r_1-x_1)\frac{\partial f(x_1,x_2)}{\partial x_1}+\int_{x_1}^{r_1}(r_1-p)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp+(r_2-x_2)\frac{\partial f(x_1,x_2)}{\partial x_2}\\ &+&\int_{x_2}^{r_2}(r_2-q)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq+\int_{x_1}^{r_1}\int_{x_2}^{r_2} \frac{\partial^2 f(p,q)}{\partial p\partial q} dp dq. \end{eqnarray*}

    Now, applying \mathcal{L}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) on the above equation and using (4.7), we obtain

    \begin{eqnarray*} \mathcal{L}_{m_1,m_1,\alpha_1,\alpha_2}(f(r_1,r_2);x_1,x_2)-f(x_1,x_2)& = & \mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2} \bigg(\int_{x_1}^{r_1}(r_1-p)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp;x_1,x_2\bigg)\\ &+&\mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\int_{x_2}^{r_2}(r_2-q)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq;x_1,x_2\bigg)\\ &+& \mathcal{L}_{m_1,m_1,\alpha_1,\alpha_2}\bigg(\int_{x_1}^{r_1}\int_{x_2}^{r_2} \frac{\partial^2 f(p,q)}{\partial p\partial q} dp dq;x_1,x_2\bigg)\\ & = & \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2} \bigg(\int_{x_1}^{r_1}(r_1-p)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp;x_1,x_2\bigg)\\ &-&\int_{x_1}^{\frac{x_1(2\alpha_1+m_1-2)}{m_1}} \bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}-p\bigg)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp\\ &+&\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\int_{x_2}^{r_2}(r_2-q)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq;x_1,x_2\bigg)\\ &-&\int_{x_2}^{\frac{x_2(2\alpha_2+m_2-2)}{m_2}} \bigg(\frac{x_2(2\alpha_2+m_2-2)}{m_2}-q\bigg)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq\\ &+& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\int_{x_1}^{r_1}\int_{x_2}^{r_2} \frac{\partial^2 f(p,q)}{\partial p\partial q} dp dq;x_1,x_2\bigg)\\ &-& \int_{x_1}^{\frac{x_1(2\alpha_1+m_1-2)}{m_1}}\int_{x_2}^{\frac{x_2(2\alpha_2+m_2-2)}{m_2}} \frac{\partial^2 f(p,q)}{\partial p\partial q} dp\;dq. \end{eqnarray*}

    Let us note that

    \begin{eqnarray*} \bigg|\int_{x_1}^{r_1} (r_1-p)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp \bigg|&\leq& \bigg|\int_{x_1}^{r_1} |r_1-p| \bigg|\frac{\partial^2 f(p,x_2)}{\partial p^2}\bigg| dp\bigg|\\ &\leq& \frac{1}{2} \;\|f \|_{C_B^2(S^2)} (r_1-x_1)^2, \end{eqnarray*}

    and

    \begin{eqnarray*} \bigg|\int_{x_1}^{\frac{x_1(2\alpha_1+m_1-2)}{m_1}} \bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}-p\bigg)\frac{\partial^2 f(p,x_2)}{\partial p^2}dp\bigg|&\leq& \frac{1}{2}\bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}-x_1\bigg)^2 \|f\|_{C_B^2(S^2)}\\ & = &\frac{1}{2}\;\bigg(\frac{2x_1(\alpha_1-1)}{m_1}\bigg)^2\|f\|_{C_B^2(S^2)}. \end{eqnarray*}

    Similarly,

    \begin{eqnarray*} \bigg|\int_{x_2}^{r_2} (r_2-q)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq \bigg|&\leq&\frac{1}{2}\;\|f\|_{C_B^2(S^2)}(r_2-x_2)^2\\ {\rm{and}}\qquad\bigg|\int_{x_2}^{\frac{x_2(2\alpha_2+m_2-2)}{m_2}} \bigg(\frac{x_2(2\alpha_2+m_2-2)}{m_2}-q\bigg)\frac{\partial^2 f(x_1,q)}{\partial q^2}dq\bigg|&\leq&\frac{1}{2}\;\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2\|f\|_{C_B^2(S^2)}. \end{eqnarray*}

    Hence, we conclude that

    |\mathcal{L}_{m_1, m_2, \alpha_1, \alpha_2}(f(r_1, r_2);x_1, x_2)-f(x_1, x_2)|

    \begin{eqnarray*} &\leq&\frac{1}{2}\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2)+\bigg(\frac{2x_1(\alpha_1-1)}{m_1}\bigg)^2\bigg\}\|f\|_{C_B^2(S^2)}\\ &+&\frac{1}{2}\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_2-x_2)^2;x_1,x_2)+\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2\bigg\}\|f\|_{C_B^2(S^2)}\\ &+&\bigg\|\frac{\partial^2 f(x_1,x_2)}{\partial x_1 \partial x_2} \bigg\|\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|\;|r_2-x_2|;x_1,x_2)\\ &+&\bigg\|\frac{\partial^2 f(x_1,x_2)}{\partial x_1 \partial x_2} \bigg\| \bigg|\frac{x_1(2\alpha_1+m_1-2)}{m_1}-x_1 \bigg| \;\; \bigg|\frac{x_2(2\alpha_2+m_2-2)}{m_2}-x_2\bigg|\\ &\leq& \frac{1}{2} \bigg\{\delta_{m_1,\alpha_1}(x_1)+\bigg(\frac{2x_1(\alpha_1-1)}{m_1}\bigg)^2+\delta_{m_2,\alpha_2}(x_2)+\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2\\ &+&2\sqrt{\delta_{m_1,\alpha_1}(x_1)}\;\sqrt{\delta_{m_2,\alpha_2}(x_2)}+2\bigg|\frac{2x_1(\alpha_1-1)}{m_1}\bigg|\;\bigg|\frac{2x_2(\alpha_2-1)}{m_2}\bigg|\bigg\}\|f\|_{C_B^2(S^2)}\\ & = & \mathcal{A}_{m_1,m_2,\alpha_1,\alpha_2}(x_1,x_2)\;\|f\|_{C_B^2(S^2)}. \end{eqnarray*}

    From (4.6), using Lemma 3, we have

    |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)|\leq |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)|+|\varphi(x_1, x_2)|+\bigg|\varphi\bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}, \frac{x_2(2\alpha_2+m_2-2)}{m_2}\bigg)\bigg| \leq 3\|\varphi\|.

    Hence, for all \varphi\in {\overline{C}_B(S^2)} and f\in C^2_B(S^2), from (4.6) we get

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq&\bigg|\mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)\bigg|\\ &+&\bigg|\varphi\bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1}, \frac{x_2(2\alpha_2+m_2-2)}{m_2}\bigg)-\varphi(x_1,x_2)\bigg|\\ &\leq&|\mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi-f;x_1,x_2)|+|\varphi(x_1,x_2)-f(x_1,x_2)|\\ &+&|\mathcal{L}_{m_1,m_2,\alpha_1,\alpha_2}(f;x_1,x_2)-f(x_1,x_2)|\\ &+&\bigg|\varphi\bigg(\frac{x_1(2\alpha_1+m_1-2)}{m_1},\frac{x_2(2\alpha_2+m_2-2)}{m_2}\bigg)-\varphi(x_1,x_2)\bigg|\\ &\leq& 4\|\varphi-f\|+\mathcal{A}_{m_1,m_2,\alpha_1,\alpha_2}(x_1,x_2)\|f\|_{C_B^2(S^2)}\\ &+& \overline{\omega}\bigg(\varphi;\sqrt{\bigg(\frac{2x_1(\alpha_1-1)}{m_1} \bigg)^2+\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2}\;\bigg). \end{eqnarray*}

    Now, taking the infimum on the right hand side over all f\in C^2_B(S^2) and using the relation (4.5) we get

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq& 4 K\bigg(\varphi; \frac{\mathcal{A}_{m_1,m_2,\alpha_1,\alpha_2}(x_1,x_2)}{4}\bigg)\\ &+&\overline{\omega}\bigg(\varphi;\sqrt{\bigg(\frac{2x_1(\alpha_1-1)}{m_1} \bigg)^2+\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2}\;\bigg)\\ &\leq& M \overline{\omega}_2\bigg(\varphi;\frac{\sqrt{\mathcal{A}_{m_1,m_2,\alpha_1,\alpha_2}(x_1,x_2)}}{2}\bigg)\\ &+&\overline{\omega}\bigg(\varphi;\sqrt{\bigg(\frac{2x_1(\alpha_1-1)}{m_1} \bigg)^2+\bigg(\frac{2x_2(\alpha_2-1)}{m_2}\bigg)^2}\; \bigg).\\ \end{eqnarray*}

    This completes the proof of the theorem.

    Next, we establish the degree of approximation by the bivariate operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) for the Lipschitz class functions in the bivariate case.

    For 0 < \mu_1, \mu_2\leq 1 , the Lipschitz class Lip_M(\mu_1, \mu_2) for the bivariate case is defined as follows:

    |\varphi(r_1,r_2)-\varphi(x_1,x_2)|\leq M\;|r_1-x_1|^{\mu_1}\;|r_2-x_2|^{\mu_2},

    where M is any positive constant and (r_1, r_2), (x_1, x_2)\in S^2 are arbitrary.

    Theorem 10. Let \varphi\in Lip_M(\mu_1, \mu_2), then, we have

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq& M\; (\delta_{m_1,\alpha_1}(x_1))^{\frac{\mu_1}{2}}\;(\delta_{m_2,\alpha_2}(x_2))^{\frac{\mu_2}{2}}. \end{eqnarray*}

    Proof. For \varphi\in Lip_M(\mu_1, \mu_2), we may write

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq& \mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|\varphi(r_1,r_2)-\varphi(x_1,x_2)|;x_1,x_2)\\ &\leq& \;\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(M\;|r_1-x_1|^{\mu_1}\;|r_2-x_2|^{\mu_2};x_1,x_2)\\ &\leq& M\;\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|r_1-x_1|^{\mu_1};x_1,x_2)\\ &\times&\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(|r_2-x_2|^{\mu_2};x_1,x_2). \end{eqnarray*}

    Now, using Hölder's inequality with (p_1, q_1) = (\frac{2}{\mu_1}, \frac{2}{2-\mu_1}) and (p_2, q_2) = (\frac{2}{\mu_2}, \frac{2}{2-\mu_2}) and Lemma 3, we get |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|

    \begin{eqnarray*} &\leq&M\;(\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2))^{\frac{\mu_1}{2}}\;(\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{00};x_1,x_2))^{\frac{2-\mu_1}{2}}\\ &\times& (\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}((r_2-x_2)^2;x_1,x_2))^{\frac{\mu_2}{2}}\;(\mathcal{J}_{m_1,m_2,\alpha_1, \alpha_2}(e_{00};x_1,x_2))^{\frac{2-\mu_2}{2}}\\ & = & M\; (\delta_{m_1,\alpha_1}(x_1))^{\frac{\mu_1}{2}}\;(\delta_{m_2,\alpha_2}(x_2))^{\frac{\mu_2}{2}}, \end{eqnarray*}

    which is the required result.

    Theorem 11. For \varphi\in C_B^1(S^2) and each (x_1, x_2)\in S^2, we have

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_1,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq \|\varphi'_{x_1} \|\;\sqrt{\delta_{m_1,\alpha_1}(x_1)}+\|\varphi'_{x_2} \|\;\sqrt{\delta_{m_2,\alpha_2}(x_2)}. \end{eqnarray*}

    Proof. Let (x_1, x_2)\in S^2 be a fixed point and \varphi\in C_B^1(S^2). Then by our hypothesis, we can write

    \varphi(r_1,r_2)-\varphi(x_1,x_2) = \int_{x_1}^{r_1} \varphi'_p (p,r_2)dp+\int_{x_2}^{r_2} \varphi'_q(x_1,q)\;dq.

    Now, applying the operator \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\cdot; x_1, x_2) on both sides of the above equation, we are led to

    |\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\bigg|\int_{x_1}^{r_1} |\varphi'_p (p,r_2)|dp\bigg|;x_1,x_2\bigg)
    \begin{equation} +\;\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}\bigg(\bigg|\int_{x_2}^{r_2} |\varphi'_q(x_1,q)|\;dq\bigg|; x_1,x_2\bigg). \end{equation} (4.8)

    Now,

    \bigg|\int_{x_1}^{r_1} \varphi'_p (p,r_2)dp\bigg|\leq \bigg|\int_{x_1}^{r_1} |\varphi'_p (p,r_2)|\;dp\bigg|\leq |r_1-x_1|\;\|\varphi'_{x_1} \|

    and

    \bigg|\int_{x_2}^{r_2} \varphi'_q(x_1,q)\;dq\bigg|\leq \bigg|\int_{x_2}^{r_2} |\varphi'_q(x_1,q)|\;dq\bigg|\leq |r_2-x_2|\;\|\varphi'_{x_2} \|,

    hence on combining (4.8) and the above inequalities, we get

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi(r_1,r_2);x_1,x_2)-\varphi(x_1,x_2)|&\leq& \|\varphi'_{x_1} \|\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|;x_1,x_2)\\ &+&\|\varphi'_{x_2} \|\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_2-x_2|;x_1,x_2). \end{eqnarray*}

    Applying the Cauchy-Schwarz inequality and Lemma 3, we are led to the desired result.

    In the following result, we establish a Voronovskaya type asymptotic theorem.

    Theorem 12. Let \varphi\in C_B^2(S^2), then

    \lim\limits_{m\to \infty} m\bigg(\mathcal{J}_{m,m,\alpha_1, \alpha_2} (\varphi;x_1,x_2)-\varphi(x_1,x_2)\bigg) = 2(\alpha_1-1)x_1\;\varphi'_{x_1}(x_1,x_2) +2(\alpha_2-1)x_2\;\varphi'_{x_2}(x_1,x_2)
    +\frac{1}{2}\bigg\{x_1(1+x_1) \varphi''_{x_1x_1}(x_1,x_2)+ x_2(1+x_2)\varphi''_{x_2x_2}(x_1,x_2)\bigg\},

    uniformly on S_{cd}.

    Proof. Let (x_1, x_2)\in S_{cd} be arbitrary but fixed. By the Taylor's expansion, we get

    \begin{eqnarray*} \varphi(r_1,r_2)& = &\varphi(x_1,x_2)+\varphi'_{x_1}(x_1,x_2)(r_1-x_1)+\varphi'_{x_2}(x_1,x_2)(r_2-x_2)\\ &+&\frac{1}{2}\bigg\{\varphi''_{x_1x_1}(x_1,x_2)(r_1-x_1)^2+2\varphi''_{x_1x_2}(x_1,x_2)(r_1-x_1)(r_2-x_2)\\ &+&\varphi''_{x_2x_2}(x_1,x_2)(r_2-x_2)^2\bigg\} \end{eqnarray*}
    \begin{equation} +\epsilon(r_1,r_2;x_1,x_2)\sqrt{(r_1-x_1)^4+(r_2-x_2)^4}, \end{equation} (4.9)

    where \epsilon(r_1, r_2;x_1, x_2)\in C_B(S^2) and \epsilon(r_1, r_2;x_1, x_2)\to 0, as (r_1, r_2) \to (x_1, x_2) .

    Applying the operators \mathcal{J}_{m, m, \alpha_1, \alpha_2} (\cdot; x_1, x_2) on both sides of (4.9), we get

    \begin{eqnarray*} \mathcal{J}_{m,m,\alpha_1, \alpha_2}(\varphi(r_1,r_2);x_1,x_2)-\varphi(x_1,x_2)& = &\varphi'_{x_1}(x_1,x_2)\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_1-x_1);x_1,x_2)\\ &+&\varphi'_{x_2}(x_1,x_2)\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_2-x_2);x_1,x_2)\\ &+&\frac{1}{2}\bigg\{\varphi''_{x_1 x_1}(x_1,x_2)\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2)\\ &+&2\varphi''_{x_1x_2}(x_1,x_2)\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_1-x_1)(r_2-x_2);x_1,x_2)\\ &+&\varphi''_{x_2x_2}(x_1,x_2)\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_2-x_2)^2;x_1,x_2)\bigg\}\\ &+&\mathcal{J}_{m,m,\alpha_1,\alpha_2}\bigg(\epsilon(r_1,r_2;x_1,x_2)\sqrt{(r_1-x_1)^4+(r_2-x_2)^4};x_1,x_2\bigg). \end{eqnarray*}

    Hence, using Lemma 4, we obtain

    \begin{eqnarray*} \underset{m\to \infty}{\lim}m\{\mathcal{J}_{{m,m,\alpha_1,\alpha_2}}(\varphi(r_1,r_2);x_1,x_2)-\varphi(x_1,x_2)\}& = &2(\alpha_1-1)x_1 \varphi'_{x_1}(x_1,x_2)+2(\alpha_2-1)x_2\varphi'_{x_2}(x_1,x_2) \end{eqnarray*}
    +\;\;\frac{1}{2}\bigg\{x_1(1+x_1)\varphi''_{x_1x_1}(x_1,x_2)+x_2(1+x_2)\varphi''_{x_2x_2}(x_1,x_2)\bigg\}
    \begin{equation} \quad +\underset{m\to \infty}{\lim} m \mathcal{J}_{m,m,\alpha_1,\alpha_2}\bigg(\epsilon(r_1,r_2;x_1,x_2)\sqrt{(r_1-x_1)^4+(r_2-x_2)^4};x_1,x_2\bigg), \end{equation} (4.10)

    uniformly on S_{cd}.

    Now, using the Cauchy-Schwarz inequality, we obtain

    \bigg|\mathcal{J}_{m, m, \alpha_1, \alpha_2}\bigg(\epsilon(r_1, r_2;x_1, x_2)\sqrt{(r_1-x_1)^4+(r_2-x_2)^4};x_1, x_2\bigg)\bigg|

    \begin{eqnarray*} &\leq&\bigg(\mathcal{J}_{m,m,\alpha_1,\alpha_2}(\epsilon^2(r_1,r_2;x_1,x_2);x_1,x_2)\bigg)^{\frac{1}{2}}\\ &\times&\bigg(\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_1-x_1)^4+(r_2-x_2)^4;x_1,x_2)\bigg)^{\frac{1}{2}}\\ & = &\bigg(\mathcal{J}_{m,m,\alpha_1,\alpha_2}(\epsilon^2(r_1,r_2;x_1,x_2);x_1,x_2)\bigg)^{\frac{1}{2}}\\ &\times&\bigg(\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_1-x_1)^4;x_1,x_2)+\mathcal{J}_{m,m,\alpha_1,\alpha_2}((r_2-x_2)^4;x_1,x_2)\bigg)^{\frac{1}{2}}. \end{eqnarray*}

    From Theorem 6, \mathcal{J}_{m, m, \alpha_1, \alpha_2}(\epsilon^2(r_1, r_2;x_1, x_2);x_1, x_2) \to 0, as m \to \infty, uniformly on S_{cd} and from Remark 3, we have

    \mathcal{J}_{m, m, \alpha_1, \alpha_2}((r_1-x_1)^4;x_1, x_2) = O\bigg(\frac{1}{m^2}\bigg) , \mathcal{J}_{m, m, \alpha_1, \alpha_2}((r_2-x_2)^4;x_1, x_2) = O\bigg(\frac{1}{m^2}\bigg), uniformly on S_{cd} .

    Hence

    \begin{equation} \lim\limits_{m\to \infty} m \mathcal{J}_{m,m,\alpha_1,\alpha_2}(\epsilon(r_1,r_2;x_1,x_2)\sqrt{(r_1-x_1)^4+(r_2-x_2)^4};x_1,x_2) = 0, \end{equation} (4.11)

    uniformly on S_{cd} .

    The required result now, follows from (4.10) and (4.11).

    Example 2. Consider the function \varphi(x_1, x_2) = 5 x_1 x_2^3+x_1^3x_2 , and (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), (0.8, \\0.8), (1, 1)\} , m_i = 15, 30 for i = 1, 2 . Denote \mathcal{E}_{m_{1}, m_{2}}^{\alpha_{1}, \alpha_{2}} = |\mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|, the error function of approximation by operators. For different values of (\alpha_1, \alpha_2), the convergence of the operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) for m_1 = m_2 = 15 and m_1 = m_2 = 30 to the function \varphi is as shown in Figures 5 and 7. From Figures 6 and 8 and Tables 3 and 4 we note that when \alpha_1 = \alpha_2 = 0.4 , the bivariate approximation by \alpha -Baskakov operators outperforms others.

    Figure 5.  Approximation by \mathcal{J}_{15, 15, \alpha_1, \alpha_2}(\varphi(r_1, r_2);x_1, x_2).
    Figure 6.  Error of approximation \mathcal{E}_{15, 15}^{\alpha_{1}, \alpha_{2}}.
    Figure 7.  Approximation by \mathcal{J}_{30, 30, \alpha_1, \alpha_2}(\varphi(r_1, r_2);x_1, x_2).
    Figure 8.  Error of approximation \mathcal{E}_{30, 30}^{\alpha_{1}, \alpha_{2}}.
    Table 3.  Error of approximation \mathcal{E}_{15, 15}^{\alpha_1, \alpha_2} for (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), (0.8, 0.8), (1, 1)\}. .
    (x_1, x_2) \mathcal{E}_{15, 15}^{0.1, 0.1} \mathcal{E}_{15, 15}^{0.4, 0.4} \mathcal{E}_{15, 15}^{0.8, 0.8} \mathcal{E}_{15, 15}^{1, 1}
    (0.3, 0.5) 0.0105 0.00096 0.0174 0.0260
    (0.6, 0.7) 0.0665 0.0054 0.0821 0.1285
    (0.8, 0.8) 0.1507 0.0209 0.1652 0.2638
    (0.9, 0.9) 0.2395 0.0441 0.2362 0.3848
    (1, 1) 0.3614 0.0786 0.3270 0.5420

     | Show Table
    DownLoad: CSV
    Table 4.  Error of approximation \mathcal{E}_{30, 30}^{\alpha_1, \alpha_2} for (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), (0.8, 0.8), (1, 1)\}. .
    (x_1, x_2) \mathcal{E}_{30, 30}^{0.1, 0.1} \mathcal{E}_{30, 30}^{0.4, 0.4} \mathcal{E}_{30, 30}^{0.8, 0.8} \mathcal{E}_{30, 30}^{1, 1}
    (0.3, 0.5) 0.0042 0.00013 0.0088 0.0127
    (0.6, 0.7) 0.0286 0.000958 0.0417 0.0627
    (0.8, 0.8) 0.0665 0.0034 0.0838 0.1287
    (0.9, 0.9) 0.1078 0.0122 0.1198 0.1878
    (1, 1) 0.1649 0.0260 0.1658 0.2646

     | Show Table
    DownLoad: CSV

    Bögel [10,11] defined the concepts of Bögel continuous and Bögel differentiable functions. For details on these notions, we refer the reader to [12]. Dobrescu and Matei [17] established the uniform convergence of GBS of bivariate Bernstein polynomials to the Bögel continuous functions (B-continuous functions). Badea and Cottin [7] gave Korovkin type theorems for GBS operators. Badea et al. [6] gave a quantitative variant of the Korovkin type theorem for the B-continuous functions and applied the results to certain operators. Bǎrbosu and Muraru [9] constructed a GBS operator of Bernstein-Schurer-Stancu type to study the approximation of B-continuous functions. In this section, we introduce the GBS case of the operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) and study its approximation properties. First, we give some definitions and notations, the details can be found in the book [18].

    Let Y_1 and Y_2 be any subsets of \mathbb{R}. A function \varphi:Y_1\times Y_2 \to \mathbb{R} is called B-continuous at a point (x_1, x_2)\in Y_1\times Y_2 if

    \underset{(r_1,r_2)\to (x_1,x_2)}{\lim} \Delta_{(r_1,r_2)} \varphi(x_1,x_2) = 0,

    where \Delta_{(r_1, r_2)}\varphi(x_1, x_2) = \varphi(x_1, x_2)-\varphi(x_1, r_2)-\varphi(r_1, x_2)+\varphi(r_1, r_2) denotes the mixed difference.

    A function \varphi is said to be B-continuous in Y_1\times Y_2 if it is B-continuous at each point of Y_1\times Y_2. The space of B-continuous functions is denoted by C_b(Y_1\times Y_2).

    A function \varphi:Y_1\times Y_2 \to \mathbb{R} is said to be B-bounded in Y_1\times Y_2 if there exists M > 0 such that

    |\Delta_{(r_1,r_2)}\varphi(x_1,x_2)|\leq M,

    for every (x_1, x_2), (r_1, r_2)\in Y_1\times Y_2.

    Let B_b(Y_1\times Y_2) be the space of B-bounded functions on Y_1\times Y_2\to \mathbb{R}, with the norm

    \|\varphi\|_B = \sup\limits_{(x_1,x_2),\;(r_1,r_2)\in Y_1\times Y_2}|\Delta_{(r_1,r_2)}\varphi(x_1,x_2)|,\;\varphi\in B_b(Y_1\times Y_2).

    Let B(Y_1\times Y_2): = \{\varphi:Y_1\times Y_2 \to \mathbb{R}|\; \varphi\; is\; bounded\} endowed with the sup-norm \|.\|_\infty and C(Y_1\times Y_2): = \{\varphi:Y_1\times Y_2 \to \mathbb{R}|\; \varphi\; is\; continuous\} . It is easily seen that C(Y_1\times Y_2)\subset C_b(Y_1\times Y_2) [12].

    A function \varphi:Y_1\times Y_2\to \mathbb{R} is said to be uniformly B-continuous in Y_1 \times Y_2 if for any \varepsilon > 0 there exists a \delta = \delta(\varepsilon) > 0 such that |\Delta_{(r_1, r_2)}\varphi(x_1, x_2)| < \varepsilon, whenever \max\{|r_1-x_1|, |r_2-x_2|\} < \delta and (r_1, r_2), (x_1, x_2)\in Y_1\times Y_2.

    Let \overline{C}_b(Y_1\times Y_2) denote the space of all uniformly B-continuous functions on Y_1\times Y_2.

    A real valued function \varphi on Y_1\times Y_2 is called B-differentiable (Bögel differentiable) at a point (x_1, x_2)\in Y_1\times Y_2 if the limit

    \lim\limits_{(r_1,r_2)\to (x_1,x_2)} \frac{\Delta_{(r_1,r_2)}\varphi(x_1,x_2)}{(r_1-x_1)(r_2-x_2)},

    exists and is finite.

    The limit is called the B-differential of \varphi at the point (x_1, x_2) and is denoted by D_B(\varphi; x_1, x_2).

    Let

    D_b(Y_1\times Y_2) = \bigg\{\varphi:Y_1\times Y_2 \to \mathbb{R}|\; \varphi \;{\rm{ is \;B-differentiable\; for\; all }}\; (x_1,x_2)\in Y_1\times Y_2 \bigg\}.

    For \varphi\in B_b(Y_1\times Y_2), the mixed modulus of smoothness is given by

    \omega_B(\varphi;\delta_1,\delta_2) = \sup\{ |\Delta_{(r_1,r_2)} \varphi(x_1,x_2)|:|x_1-r_1| < \delta_1,\; |x_2-r_2| < \delta_2\},

    for all (x_1, x_2), (r_1, r_2)\in Y_1\times Y_2 and for any \delta_1, \delta_2 > 0. It is known (cf. [6] and [7]) that \omega_B(\varphi; \delta_1, \delta_2)\to 0, as \delta_1, \delta_2 \to 0, if and only if \varphi is uniformly B-continuous on Y_1\times Y_2 . Further, for any \lambda_1, \lambda_2 > 0

    \begin{equation} \omega_B(\varphi;\lambda_1\delta_1,\lambda_2\delta_2)\leq (1+\lambda_1)(1+\lambda_2)\omega_B(\varphi;\delta_1,\delta_2). \end{equation} (5.1)

    For every \varphi\in C_b(S^2), the GBS operator associated with the operator \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) is defined by:

    \mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2) = \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi(r_1,x_2)+\varphi(x_1,r_2)-\varphi(r_1,r_2);x_1,x_2)
    \begin{equation} \quad = \sum\limits_{j_1 = 0}^\infty\sum\limits_{j_2 = 0}^\infty \bigg[\varphi\bigg(\frac{j_1}{m_1},x_2\bigg)+\varphi\bigg(x_1,\frac{j_2}{m_2}\bigg)-\varphi\bigg(\frac{j_1}{m_1},\frac{j_2}{m_2}\bigg) \bigg]\;P_{m_1,m_2,j_1,j_2}^{(\alpha_1,\alpha_2)}(x_1,x_2), \end{equation} (5.2)

    where P_{m_1, m_2, j_1, j_2}^{(\alpha_1, \alpha_2)}(x_1, x_2) is defined by Eq (4.1). It is evident that \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2} is a linear operator. The following result yields us an error estimate in the approximation of a B-continuous function by the operators (5.2).

    Theorem 13. For every \varphi\in \overline{C}_b(S^2) and each (x_1, x_2)\in S^2, there holds the following inequality

    |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq 4\;\omega_B\bigg(\varphi;\sqrt{\delta_{m_1,\alpha_1}(x_1)},\sqrt{\delta_{m_2,\alpha_2}(x_2)}\;\bigg).

    Proof. Using the definition of \omega_B(\varphi; \delta_1, \delta_2) and the property (5.1), we have

    \begin{eqnarray*} |\Delta_{(r_1,r_2)}\varphi(x_1,x_2)|&\leq& \omega_B(\varphi;|r_1-x_1|,|r_2-x_2|)\\ &\leq& \omega_B(\varphi;\delta_1,\delta_2)\bigg(1+\frac{|r_1-x_1|}{\delta_1}\bigg)\bigg(1+\frac{|r_2-x_2|}{\delta_2} \bigg) \end{eqnarray*}
    \begin{equation} \quad \leq\omega_B(\varphi;\delta_1,\delta_2)\bigg\{1+\frac{|r_1-x_1|}{\delta_1}+\frac{|r_2-x_2|}{\delta_2}+\frac{1}{\delta_1 \delta_2}|r_1-x_1|\;|r_2-x_2|\bigg\} \end{equation} (5.3)

    for every (r_1, r_2), (x_1, x_2)\in S^2 and any \delta_1, \delta_2 > 0.

    From (5.2), by using the definition of mixed difference \Delta_{(r_1, r_2)}\varphi(x_1, x_2) and inequality (5.3), we get |\mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|

    \begin{eqnarray*} &\leq& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|\Delta_{(r_1,r_2)} \varphi(x_1,x_2)|;x_1,x_2)\\ &\leq&\omega_B(\varphi;\delta_1,\delta_2)\bigg\{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(e_{00};x_1,x_2)\\ &+&\frac{1}{\delta_1}\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|;x_1,x_2)+\frac{1}{\delta_2}\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_2-x_2|;x_1,x_2)\\ &+&\frac{1}{\delta_1\; \delta_2}\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|;x_1,x_2)\;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_2-x_2|;x_1,x_2) \bigg\}.\\ \end{eqnarray*}

    Now, applying Lemma 3 and Cauchy-Schwarz inequality, we get

    |\mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)|

    \begin{eqnarray*} &\leq&\omega_B(\varphi;\delta_1,\delta_2)\bigg\{1+\frac{1}{\delta_1}\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2)}\\ &+&\frac{1}{\delta_2} \sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_2-x_2)^2;x_1,x_2)}\\ &+&\frac{1}{\delta_1\;\delta_2}\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2)}\;\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_2-x_2)^2;x_1,x_2)}\bigg\}, \end{eqnarray*}

    which leads us to the required result on choosing \delta_1: = \sqrt{\delta_{m_1, \alpha_1}(x_1)} and \delta_2: = \sqrt{\delta_{m_2, \alpha_2}(x_2)}.

    Lipschitz class of B-continuous functions: For 0 < \mu_1\leq 1, \; 0 < \mu_2\leq 1 and \varphi\in C_b(S^2), the Lipschitz class Lip^{\ast}_M(\mu_1, \mu_2) of \varphi is defined as follows:

    Lip^{\ast}_M(\mu_1,\mu_2) = \{\varphi\in C_b(S^2):|\Delta_{(r_1,r_2)}\varphi(x_1,x_2)|\leq M |r_1-x_1|^{\mu_1}\;|r_2-x_2|^{\mu_2} \},

    for all (r_1, r_2), \; (x_1, x_2)\in S^2 and M is a positive constant.

    In the following theorem, we obtain the approximation degree for the operators \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi),

    if \varphi\in Lip_M^\ast(\mu_1, \mu_2).

    Theorem 14. For \varphi\in Lip^{\ast}_M(\mu_1, \mu_2) and \mu_1, \mu_2\in(0, 1], we have

    |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq M\; (\delta_{m_1,\alpha_1}(x_1))^{\frac{\mu_1}{2}}\;(\delta_{m_2,\alpha_2}(x_2))^{\frac{\mu_2}{2}}.

    Proof. From the definition of the mixed difference \Delta_{(r_1, r_2)}\varphi(x_1, x_2), (5.2) and by our hypothesis, we may write

    \begin{eqnarray*} |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|&\leq& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|\Delta_{(r_1,r_2)}\varphi(x_1,x_2)|;x_1,x_2)\\ &\leq& M \;\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|^{\mu_1}\;|r_2-x_2|^{\mu_2};x_1,x_2)\\ & = & M\; \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1|^{\mu_1};x_1,x_2)\\ &\times&\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_2-x_2|^{\mu_2};x_1,x_2). \end{eqnarray*}

    Now, applying the Hölder inequality with (p_1, q_1) = \bigg(\frac{2}{\mu_1}, \frac{2}{2-\mu_1}\bigg) and (p_2, q_2) = \bigg(\frac{2}{\mu_2}, \frac{2}{2-\mu_2}\bigg) , in view of Lemma 3, we are led to

    \begin{eqnarray*} |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)| &\leq&M\;(\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2;x_1,x_2))^{\frac{\mu_1}{2}}\;(\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(e_{00};x_1,x_2))^{\frac{2-\mu_1}{2}}\\ &\times& (\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_2-x_2)^2;x_1,x_2))^{\frac{\mu_2}{2}}\;(\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(e_{00};x_1,x_2))^{\frac{2-\mu_2}{2}}, \end{eqnarray*}

    from which the desired result is immediate.

    The following result provides us the rate of convergence of the GBS operators \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi) in terms of the mixed modulus of smoothness of the B-derivative of \varphi.

    Theorem 15. Let \varphi\in D_b(S^2) such that D_B \varphi\in \overline{C}_b(S^2)\cap B(S^2). Then for each (x_1, x_2)\in S^2, we have

    |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)|\leq \frac{C}{\sqrt{m_1 m_2}}\bigg[\|D_B \varphi \|_\infty+\omega_B\bigg(D_B \varphi;m_1^{-\frac{1}{2}},m_2^{-\frac{1}{2}}\bigg) \bigg].

    Proof. Since \varphi\in D_b(S^2), by the mean value theorem we can write

    \qquad \qquad \Delta_{(r_1,r_2)} \varphi(x_1,x_2) = (r_1-x_1)(r_2-x_2)D_B \varphi(\xi_1,\xi_2),

    where x_1 < \xi_1 < r_1 and x_2 < \xi_2 < r_2.

    From the definition of the mixed difference, we obtain

    D_B \varphi(\xi_1,\xi_2) = \Delta_{(\xi_1,\xi_2)}D_B\varphi(x_1,x_2)+D_B \varphi(\xi_1,x_2)+D_B \varphi(x_1,\xi_2)-D_B \varphi(x_1,x_2).

    Since D_B \varphi\in \overline{C}_b(S^2)\cap B(S^2), we have

    \begin{eqnarray*} |\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(\Delta_{(r_1,r_2)} \varphi(x_1,x_2);x_1,x_2)| & = &|\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)(r_2-x_2)D_B \varphi(\xi_1,\xi_2);x_1,x_2)|\\&\leq& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1| |r_2-x_2||\Delta_{(\xi_1,\xi_2)}D_B\varphi(x_1,x_2)|;x_1,x_2)\\ &+& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1||r_2-x_2|(|D_B \varphi(\xi_1,x_2)|+|D_B \varphi(x_1,\xi_2)|\\ &+&|D_B \varphi(x_1,x_2)|);x_1,x_2)\\ &\leq& \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1| |r_2-x_2|\; \omega_B(D_B \varphi;|\xi_1-x_1|,|\xi_2-x_2|);x_1,x_2)\\ &+&3 \| D_B \varphi\|_\infty\; \mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}(|r_1-x_1||r_2-x_2|;x_1,x_2).\\ \end{eqnarray*}

    Hence taking into account

    \begin{eqnarray*} \omega_B(D_B \varphi;|\xi_1-x_1|,|\xi_2-x_2|)&\leq&\omega_B(D_B \varphi;|r_1-x_1|,|r_2-x_2|)\\ &\leq& \bigg(1+\frac{|r_1-x_1|}{\delta_1} \bigg)\bigg(1+\frac{|r_2-x_2|}{\delta_2} \bigg)\omega_B(D_B \varphi;\delta_1,\delta_2), \end{eqnarray*}

    for any \delta_1, \delta_2 > 0 and applying the Cauchy-Schwarz inequality, we obtain

    \begin{eqnarray*} |\mathcal{T}_{m_1,m_2,\alpha_1,\alpha_2}(\varphi;x_1,x_2)-\varphi(x_1,x_2)| &\leq& 3\| D_B \varphi\|_\infty \sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2} ((r_1-x_1)^2(r_2-x_2)^2;x_1,x_2)} \end{eqnarray*}
    \begin{eqnarray*} &&+\bigg[\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2(r_2-x_2)^2;x_1,x_2)} +\frac{1}{\delta_1}\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^4(r_2-x_2)^2;x_1,x_2)}\\ &&+\frac{1}{\delta_2}\sqrt{\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2(r_2-x_2)^4;x_1,x_2)}+ \frac{1}{\delta_1 \delta_2}\mathcal{J}_{m_1,m_2,\alpha_1,\alpha_2}((r_1-x_1)^2(r_2-x_2)^2;x_1,x_2)\;\bigg]\omega_B(D_B \varphi;\delta_1,\delta_2). \end{eqnarray*}

    Since \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1)^{2i}(r_2-x_2)^{2j}; x_1, x_2) = \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_1-x_1)^{2i}; x_1, x_2)\; \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}((r_2-x_2)^{2j}; x_1, x_2), \\ for\; \; j = 1, 2, using Lemma 4 and choosing \delta_1 = \frac{1}{\sqrt{m_1}} and \; \delta_2 = \frac{1}{\sqrt{m_2}}, we reach the required result.

    Example 3. Let \varphi(x_1, x_2) = x_1^2x_2+x_1^3x_2, and (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), (0.8, 0.8), (1, 1)\}. The convergence of the GBS operators \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) for m_1 = m_2 = 15 and m_1 = m_2 = 30, to the function \varphi for different values of (\alpha_1, \alpha_2) is illustrated in Figure 9 and Figure 11. In Table 3 and Table 4, we have computed the error function of approximation by operators \mathcal{E^*}_{m_{1}, m_{2}}^{\alpha_{1}, \alpha_{2}} = |\mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)-\varphi(x_1, x_2)| for m_1 = m_2 = 15 and m_1 = m_2 = 30. When we examine the error approximation in Table 5 and Table 6, we observe that the best approximation is achieved when \alpha_1 = \alpha_2 = 1. This aspect is also illustrated graphically by Figures 10 and 12 respectively.

    Figure 9.  Approximation by \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2).
    Figure 10.  Error of approximation \mathcal{E^*}_{15, 15}^{\alpha_{1}, \alpha_{2}}.
    Figure 11.  Approximation by \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2).
    Table 5.  Error in approximation by \mathcal{T}_{15, 15, \alpha_1, \alpha_2} for (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), (0.8, 0.8), (1, 1)\}. .
    (x_1, x_2) \mathcal{{E}^*}_{15, 15}^{0.1, 0.1} \mathcal{{E}^*}_{15, 15}^{0.4, 0.4} \mathcal{{E}^*}_{15, 15}^{0.8, 0.8} \mathcal{{E}^*}_{15, 15}^{1, 1}
    (0.1, 0.1) 0.000047316 0.000042198 0.000018801 3.2526e-019
    (0.2, 0.3) 0.00015368 0.00027183 0.00016589 3.4694e-018
    (0.3, 0.5) 0.000097124 0.00065109 0.00053518 0
    (0.45, 0.6) 0.00065431 0.0014 0.0013 0
    (0.8, 0.8) 0.0061 0.0043 0.0052 1.1102e-016

     | Show Table
    DownLoad: CSV
    Table 6.  Error in approximation by \mathcal{T}_{15, 15, \alpha_1, \alpha_2} for (\alpha_1, \alpha_2) \in \{(0.1, 0.1), (0.4, 0.4), \\ (0.8, 0.8), (1, 1)\}. .
    (x_1, x_2) \mathcal{{E}^*}_{15, 15}^{0.1, 0.1} \mathcal{{E}^*}_{15, 15}^{0.4, 0.4} \mathcal{{E}^*}_{15, 15}^{0.8, 0.8} \mathcal{{E}^*}_{15, 15}^{1, 1}
    (0.1, 0.1) 0.000047316 0.000042198 0.000018801 3.2526e-019
    (0.2, 0.3) 0.00015368 0.00027183 0.00016589 3.4694e-018
    (0.3, 0.5) 0.000097124 0.00065109 0.00053518 0
    (0.45, 0.6) 0.00065431 0.0014 0.0013 0
    (0.8, 0.8) 0.0061 0.0043 0.0052 1.1102e-016

     | Show Table
    DownLoad: CSV
    Table 7.  Error in approximation by \mathcal{T}_{30, 30, \alpha_1, \alpha_2} for (\alpha_1, \alpha_2) \in (0.1, 0.1), (0.4, 0.4), (0.8, 0.8), (1, 1) .
    (x_1, x_2) \mathcal{{E}^*}_{30, 30}^{0.1, 0.1} \mathcal{{E}^*}_{30, 30}^{0.4, 0.4} \mathcal{{E}^*}_{30, 30}^{0.8, 0.8} \mathcal{{E}^*}_{30, 30}^{1, 1}
    (0.1, 0.1) 0.000014278 0.000011484 0.0000047012 1.0842e-019
    (0.2, 0.3) 0.00006028 0.000076333 0.000041509 3.4694e-018
    (0.3, 0.5) 0.000046143 0.00018978 0.00013393 0
    (0.45, 0.6) 0.00000579 0.00041575 0.00032164 0
    (0.8, 0.8) 0.0008673 0.0013 0.0013 1.1102e-016

     | Show Table
    DownLoad: CSV
    Figure 12.  Error of approximation \mathcal{E^*}_{30, 30}^{\alpha_{1}, \alpha_{2}}.

    Further, we note that the error in the approximation of \varphi by \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) is much smaller than the errors in the approximation of \varphi by \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2). As seen from the Table 3-6, our GBS operator \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2) gives us a better rate of convergence than the bivariate \alpha -Baskakov operators \mathcal{J}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi; x_1, x_2)

    The \alpha -Baskakov operators yield a much better approximation for a function in comparison to the classical Baskakov operators. As seen from the Tables 1 and 2, the advantage of using a non-negative real parameter is that it provides flexibility to the operators, and the results presented here show that depending on the value of the parameter \alpha, an approximation to a function improves when we compare with classical Baskakov operators (see Example 1). Also, the GBS operators presented in this paper provide a better error estimation of convergence than the bivariate \alpha -Baskakov operators with a non-negative real parameter. It is observed that the convergence rate of GBS operator \mathcal{T}_{m_1, m_2, \alpha_1, \alpha_2}(\varphi) to the function \varphi(x_1, x_2) is much better than \mathcal{J}_{m_1, m_1, \alpha_1, \alpha_2}(\varphi) operator.

    The authors are extremely thankful to the learned reviewers for a critical reading of our paper and making valuable comments leading to an improvement in the presentation of the paper. The third author is thankful to the Ministry of Human Resource and Development, Govt. of India for providing financial support to carry out the above work.

    The authors declare no conflict of interest.



    [1] A. Aral, H. Erbay, Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119-131.
    [2] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin, Germany, 1994.
    [3] T. Acar, A. Kajla, Blending type Bezier summation- integral type operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2018), 195-208.
    [4] T. Acar, A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math., 73 (2018).
    [5] T. Acar, A. M. Acu, N. Manav, Approximation of functions by genuine Bernstein- Durrmeyer type operators, J. Math. Inequal., 12 (2018), 975-987.
    [6] C. Badea, I. Badea, C. Cottin, H. H. Gonska, Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95-108.
    [7] C. Badea, C. Cottin, Korovkin-type theorems for generalised Boolean sum operators, In: Approximation Theory (Kecskemt Hungary), Colloquia Mathematica Societatis Janos Bolyai, 58 (1990), 51-67.
    [8] D. Bǎrbosu, On the remainder term of some bivariate approximation formulas based on linear and positive operators, Constr. Math. Anal., 1 (2018), 73-87.
    [9] D. Bǎrbosu, C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on q-integers, Appl. Math. Comput., 259 (2015), 80-87.
    [10] K. Bögel, Mehrdimensionale differentiation, Von functionen mehrerer Veränderlichen, J. Reine Angew. Math., 170 (1934), 197-217.
    [11] K. Bögel, Mehrdimensionale differentiation, integration and beschränkte variation, J. Reine Angew. Math., 173 (1935), 5-30.
    [12] K. Bögel, Über die mehrdimensionale differentiation, Jahresber. Dtsch. Math. Ver., 65 (1962), 45-71.
    [13] P. L. Butzer, H. Berens, Semi-groups of Operators and Approximation, Berlin Heidelberg-New York, Springer-Verlag, 1967.
    [14] X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261. doi: 10.1016/j.jmaa.2016.12.075
    [15] R. A. Devore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., Berlin, 1993.
    [16] Z. Ditzian, V. Totik, Moduli of Smoothness, Volume 9, Springer-Verlag, New York, 1987.
    [17] E. Dobrescu, I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timiş., Ser. Sti. Mat. Fiz., 4 (1996), 85-90.
    [18] V. Gupta, T. M. Rassias, P. N. Agrawal, A. M. Acu, Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, 2018.
    [19] H. G. I. Ilarslan, T. Acar, Approximation by bivariate (p, q)- Baskakov- Kantorovich operators, Georgian Math. J., 25 (2018), 397-407. doi: 10.1515/gmj-2016-0057
    [20] A. Kajla, T. Acar, Blending type approximation by generalized Bernstein- Durrmeyer operators, Miskolc Math. Notes, 19 (2018), 319-326. doi: 10.18514/MMN.2018.2216
    [21] A. Kajla, T. Acar, Modified \alpha- Bernstein operators with better approximation properties, Ann. Funct. Anal., 10 (2019), 570-582. doi: 10.1215/20088752-2019-0015
    [22] A. Kajla, T. Acar, Bezier- Bernstein- Durrmeyer type operators, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Matemáticas, RACSAM, 114 (2020), 31.
    [23] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53-63.
    [24] S. A. Mohiuddin, T. Acar, A. Alotaibi, Construction of new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749-7759. doi: 10.1002/mma.4559
    [25] M. A. Özarslan, H. Aktu\breve{g}lu, Local approximation properties for certain King type operator, Filomat 27 (2013), 173-181.
  • This article has been cited by:

    1. Abhishek Kumar, A new variant of the modified Bernstein-Kantorovich operators defined by Özarslan and Duman, 2022, 0, 2577-8838, 0, 10.3934/mfc.2022062
    2. Smita Sonker, Priyanka Moond, Approximation behavior of parametrically generalized Baskakov-Stancu operators, 2024, 0009-725X, 10.1007/s12215-024-01137-w
    3. Smita Sonker, P Priyanka, Rate of convergence of parametrically generalized bivariate Baskakov-stancu operators, 2023, 37, 0354-5180, 9197, 10.2298/FIL2327197S
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2950) PDF downloads(228) Cited by(2)

Figures and Tables

Figures(12)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog