Research article

Approximation properties of generalized Baskakov operators

  • Received: 20 January 2021 Accepted: 08 April 2021 Published: 26 April 2021
  • MSC : 41A25, 41A36

  • The present article is a continuation of the work done by Aral and Erbay [1]. We discuss the rate of convergence of the generalized Baskakov operators considered in the above paper with the aid of the second order modulus of continuity and the unified Ditzian Totik modulus of smoothness. A bivariate case of these operators is also defined and the degree of approximation by means of the partial and total moduli of continuity and the Peetre's K-functional is studied. A Voronovskaya type asymptotic result is also established. Further, we construct the associated Generalized Boolean Sum (GBS) operators and investigate the order of convergence with the help of mixed modulus of smoothness for the Bögel continuous and Bögel differentiable functions. Some numerical results to illustrate the convergence of the above generalized Baskakov operators and its comparison with the GBS operators are also given using Matlab algorithm.

    Citation: Purshottam Narain Agrawal, Behar Baxhaku, Abhishek Kumar. Approximation properties of generalized Baskakov operators[J]. AIMS Mathematics, 2021, 6(7): 6986-7016. doi: 10.3934/math.2021410

    Related Papers:

  • The present article is a continuation of the work done by Aral and Erbay [1]. We discuss the rate of convergence of the generalized Baskakov operators considered in the above paper with the aid of the second order modulus of continuity and the unified Ditzian Totik modulus of smoothness. A bivariate case of these operators is also defined and the degree of approximation by means of the partial and total moduli of continuity and the Peetre's K-functional is studied. A Voronovskaya type asymptotic result is also established. Further, we construct the associated Generalized Boolean Sum (GBS) operators and investigate the order of convergence with the help of mixed modulus of smoothness for the Bögel continuous and Bögel differentiable functions. Some numerical results to illustrate the convergence of the above generalized Baskakov operators and its comparison with the GBS operators are also given using Matlab algorithm.



    加载中


    [1] A. Aral, H. Erbay, Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119-131.
    [2] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin, Germany, 1994.
    [3] T. Acar, A. Kajla, Blending type Bezier summation- integral type operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2018), 195-208.
    [4] T. Acar, A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math., 73 (2018).
    [5] T. Acar, A. M. Acu, N. Manav, Approximation of functions by genuine Bernstein- Durrmeyer type operators, J. Math. Inequal., 12 (2018), 975-987.
    [6] C. Badea, I. Badea, C. Cottin, H. H. Gonska, Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95-108.
    [7] C. Badea, C. Cottin, Korovkin-type theorems for generalised Boolean sum operators, In: Approximation Theory (Kecskemt Hungary), Colloquia Mathematica Societatis Janos Bolyai, 58 (1990), 51-67.
    [8] D. Bǎrbosu, On the remainder term of some bivariate approximation formulas based on linear and positive operators, Constr. Math. Anal., 1 (2018), 73-87.
    [9] D. Bǎrbosu, C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on q-integers, Appl. Math. Comput., 259 (2015), 80-87.
    [10] K. Bögel, Mehrdimensionale differentiation, Von functionen mehrerer Veränderlichen, J. Reine Angew. Math., 170 (1934), 197-217.
    [11] K. Bögel, Mehrdimensionale differentiation, integration and beschränkte variation, J. Reine Angew. Math., 173 (1935), 5-30.
    [12] K. Bögel, Über die mehrdimensionale differentiation, Jahresber. Dtsch. Math. Ver., 65 (1962), 45-71.
    [13] P. L. Butzer, H. Berens, Semi-groups of Operators and Approximation, Berlin Heidelberg-New York, Springer-Verlag, 1967.
    [14] X. Chen, J. Tan, Z. Liu, J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261. doi: 10.1016/j.jmaa.2016.12.075
    [15] R. A. Devore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., Berlin, 1993.
    [16] Z. Ditzian, V. Totik, Moduli of Smoothness, Volume 9, Springer-Verlag, New York, 1987.
    [17] E. Dobrescu, I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timiş., Ser. Sti. Mat. Fiz., 4 (1996), 85-90.
    [18] V. Gupta, T. M. Rassias, P. N. Agrawal, A. M. Acu, Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, 2018.
    [19] H. G. I. Ilarslan, T. Acar, Approximation by bivariate (p, q)- Baskakov- Kantorovich operators, Georgian Math. J., 25 (2018), 397-407. doi: 10.1515/gmj-2016-0057
    [20] A. Kajla, T. Acar, Blending type approximation by generalized Bernstein- Durrmeyer operators, Miskolc Math. Notes, 19 (2018), 319-326. doi: 10.18514/MMN.2018.2216
    [21] A. Kajla, T. Acar, Modified $\alpha-$ Bernstein operators with better approximation properties, Ann. Funct. Anal., 10 (2019), 570-582. doi: 10.1215/20088752-2019-0015
    [22] A. Kajla, T. Acar, Bezier- Bernstein- Durrmeyer type operators, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Matemáticas, RACSAM, 114 (2020), 31.
    [23] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53-63.
    [24] S. A. Mohiuddin, T. Acar, A. Alotaibi, Construction of new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749-7759. doi: 10.1002/mma.4559
    [25] M. A. Özarslan, H. Aktu$\breve{g}$lu, Local approximation properties for certain King type operator, Filomat 27 (2013), 173-181.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2590) PDF downloads(224) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog