Research article Special Issues

Convolution properties of meromorphically harmonic functions defined by a generalized convolution $ q $-derivative operator

  • Received: 29 December 2020 Accepted: 18 March 2021 Published: 26 March 2021
  • MSC : Primary 30C45, 30C55; Secondary 30C80

  • The goal of this article is to define, explore and analyze two new families of meromorphically harmonic functions by applying the concept of a certain generalized convolution $ q $-operator along with the idea of convolution. We investigate convolution properties and sufficiency criteria for these families of meromorphically harmonic functions. Some of the interesting consequences of our investigation are also included.

    Citation: Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza. Convolution properties of meromorphically harmonic functions defined by a generalized convolution $ q $-derivative operator[J]. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347

    Related Papers:

  • The goal of this article is to define, explore and analyze two new families of meromorphically harmonic functions by applying the concept of a certain generalized convolution $ q $-operator along with the idea of convolution. We investigate convolution properties and sufficiency criteria for these families of meromorphically harmonic functions. Some of the interesting consequences of our investigation are also included.



    加载中


    [1] S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order alpha, Hokkaido Math. J., 46 (2017), 15–27.
    [2] O. P. Ahuja, J. M. Jahangiri, Certain meromorphic harmonic functions, Bull. Malays. Math. Sci. Soc., 25 (2002), 1–10.
    [3] H. Al-Dweby, M. Darus, On harmonic meromorphic functions associated with basic hypergeometric functions, Sci. World J., 2013 (2013), 1–8.
    [4] K. Al-Shaqsi, M. Darus, On meromorphic harmonic functions with respect to symmetric points, J. Inequal. Appl., 2008 (2008), 1–11.
    [5] H. A. Al-Zkeri, F. M. Al-Oboudi, On a class of harmonic starlike multivalent meromorphic functions, Int. J. Open Probl. Complex Anal., 3 (2011), 68–81.
    [6] M. Arif, B. Ahmad, New subfamily of meromorphic multivalent starlike functions in circular domain involving $q$-differential operator, Math. Slovaca, 68 (2018), 1049–1056. doi: 10.1515/ms-2017-0166
    [7] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic $q$-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 1–16.
    [8] M. Arif, M. U. Haq, J. L. Liu, A subfamily of univalent functions associated with $q$-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–8.
    [9] M. Arif, H. M. Srivastava, S. Umar, Some applications of a $q$-analogue of the Ruscheweyh type operator for multivalent functions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM), 113 (2019), 1211–1221.
    [10] H. Bostanci, A new subclass of the meromorphic harmonic $\gamma$-starlike functions, Appl. Math. Comput., 218 (2011), 683–688. doi: 10.1016/j.amc.2011.03.149
    [11] H. Bostanci, M. Öztürk, A new subclass of the meromorphic harmonic starlike functions, Appl. Math. Lett., 23 (2010), 1027–1032. doi: 10.1016/j.aml.2010.04.031
    [12] H. Bostanci, M. Öztürk, On meromorphic harmonic starlike functions with missing coefficients, Hacet. J. Math. Stat., 38 (2009), 173–183.
    [13] H. Bostanci, S. Yalçin, M. Öztürk, On meromorphically harmonic starlike functions with respect to symmetric conjugate points, J. Math. Anal. Appl., 328 (2007), 370–379. doi: 10.1016/j.jmaa.2006.05.044
    [14] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9 (1984), 3–25.
    [15] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99–107.
    [16] J. Dziok, Classes of harmonic functions defined by subordination, Abstr. Appl. Anal., 2015 (2015), 1–9.
    [17] J. Dziok, Classes of meromorphic harmonic functions and duality principle, Anal. Math. Phys., 10 (2020), 1–13. doi: 10.1007/s13324-019-00351-5
    [18] S. Elhaddad, H. Aldweby, M. Darus, On a subclass of harmonic univalent functions involving a new operator containing $q$-Mittag-Leffler function, Int. J. Math. Comput. Sci., 14 (2019), 833–847.
    [19] S. Elhaddad, H. Aldweby, M. Darus, Some properties on a class of harmonic univalent functions defined by $q$-analogue of Ruscheweyh operator, J. Math. Anal., 9 (2018), 28–35.
    [20] M. U. Haq, M. Raza, M. Arif, Q. Khan, H. Tang, $q$-analogue of differential subordinations, Mathematics, 7 (2019), 1–16.
    [21] W. Hengartner, G. Schober, Univalent harmonic functions, Trans. Am. Math. Soc., 299 (1987), 1–31.
    [22] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84.
    [23] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [24] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Roy. Soc. Edin., 46 (1909), 253–281. doi: 10.1017/S0080456800002751
    [25] J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean Math. Soc., 37 (2000), 291–301.
    [26] J. M. Jahangiri, Y. C. Kim, H. M. Srivastava, Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integr. Transf. Spec. Funct., 14 (2003), 237–242. doi: 10.1080/1065246031000074380
    [27] J. M. Jahangiri, H. Silverman, Meromorphic univalent harmonic functions with negative coefficients, Bull. Korean Math. Soc., 36 (1999), 763–770.
    [28] S. Kanas, D. Rǎducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
    [29] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A. Samad, Applications of higher-order derivatives to the subclasses of meromorphic starlike functions, J. Appl. Comput. Mech., 7 (2021), 321–333.
    [30] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13.
    [31] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Am. Math. Soc., 42 (1936), 689–692. doi: 10.1090/S0002-9904-1936-06397-4
    [32] S. Mahmood, G. Srivastava, H. M. Srivastava, E. S. A. Abujarad, M. Arif, F. Ghani, Sufficiency criterion for a subfamily of meromorphic multivalent functions of reciprocal order with respect to symmetric points, Symmetry, 11 (2019), 1–7.
    [33] G. Murugusundaramoorthy, Harmonic meromorphic convex functions with missing coefficients, J. Indones. Math. Soc., 10 (2004), 15–22.
    [34] G. Murugusundaramoorthy, Starlikeness of multivalent meromorphic harmonic functions, Bull. Korean Math. Soc., 40 (2003), 553–564. doi: 10.4134/BKMS.2003.40.4.553
    [35] M. Öztürk, H. Bostanci, Certain subclasses of meromorphic harmonic starlike functions, Integr. Transf. Spec. Funct., 19 (2008), 377–385. doi: 10.1080/10652460801895588
    [36] K. Piejko, J. Sokół, K. Trabka-Wiecław, On $q$-calculus and starlike functions, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 2879–2883. doi: 10.1007/s40995-019-00758-6
    [37] S. Ponnusamy, N. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math., 21 (1995), 193–201.
    [38] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc., s2-42 (1990), 237–248. doi: 10.1112/jlms/s2-42.2.237
    [39] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283–289. doi: 10.1006/jmaa.1997.5882
    [40] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [41] H. M. Srivastava, Univalent functions$, $ fractional calculus$, $ and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava, S. Owa, Eds.), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, Chichester, Brisbane and Toronto, (1989), 329–354.
    [42] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional $q$-calculus operators, Miskolc Math. Notes, 20 (2019), 1245–1260. doi: 10.18514/MMN.2019.3046
    [43] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425.
    [44] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.
    [45] B. A. Stephen, P. Nirmaladevi, T. V. Sudharsan, K. G. Subramanian, A class of harmonic meromorphic functions with negative coefficients, Chamchuri J. Math., 1 (2009), 87–94.
    [46] Z. G. Wang, H. Bostanci, Y. Sun, On meromorphically harmonic starlike functions with respect to symmetric and conjugate points, Southeast Asian Bull. Math., 35 (2011), 699–708.
    [47] Z. Z. Zou, Z. R. Wu, On meromorphically starlike functions and functions meromorphically starlike with respect to symmetric conjugate points, J. Math. Anal. Appl., 261 (2001), 17–27. doi: 10.1006/jmaa.2001.7441
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2775) PDF downloads(263) Cited by(29)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog